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SolarM2P: map-to-point deep neural network  
for post-processing of numerical weather prediction-based 

 solar irradiance forecasts 

 

SolarM2P: głęboka sieć neuronowa typu mapa-punkt do przetwarzania końcowego numerycznych prognoz 
pogody opartych na natężeniu promieniowania słonecznego 

 
 

Abstract: In this paper, we propose the SolarM2P deep convolutional neural network that implements a map-to-point approach for post-processing 
solar irradiance predictions based on Numerical Weather Prediction (NWP) models. The training and testing of the neural network were carried out 
on the archival data of solar irradiance forecasts of the Global Forecast System (GFS) for 2015-2023 for a part of the northeastern region of Ukraine. 
It is shown that the relative root mean square error (rRMSE) decreases from 40.4% for the best of the basic post-processing methods to 33.8% for 
the developed approach.  
 
Streszczenie: W tym artykule zaproponowano głęboką splotową sieć neuronową SolarM2P, która implementuje podejście od mapy do punktu do 
postprocessingu prognoz natężenia promienienia słonecznego w oparciu o modele numerycznych prognoz pogody (NWP). Uczenie i testowanie 
sieci neuronowej przeprowadzono na danych archiwalnych prognoz natężenia promieniowania słonecznego Globalnego Systemu Prognoz (GFS) na 
lata 2015-2023 dla części północno-wschodniego regionu Ukrainy. Pokazano, że względny błąd średniokwadratowy (rRMSE) zmniejsza się z 40,4% 
dla najlepszych podstawowych metod postprocessingu do 33,8% dla opracowanego podejścia. 

 
Keywords: model output statistics; numerical weather prediction; solar irradiance forecasting. 
Słowa kluczowe: statystyki wyjściowe modelu; numeryczne prognozowanie pogody; prognozowanie natężenia promieniowania słonecznego. 
 
 
 
 

Introduction 
Today, a large number of approaches have been 

developed to predict the power of solar power plants. Many 
of them use the solar radiation forecasting as a basis. A 
fairly broad overview of these approaches is given in [1]. 
For the purposes of long-range forecasting, physical 
methods based on Numerical Weather Prediction (NWP) 
models are the most appropriate. Despite the progress 
which was made in recent decades in long-term NWP 
based forecasting of solar irradiance, the accuracy of the 
forecasts remains relatively low. There is great potential in 
the development of post-processing approaches for NWP 
model prediction results. These approaches, traditionally 
referred to as model output statistics (MOS), have been 
actively developed for a long time [2-5]. Recently, for 
processing the results of NWP models, the modern 
methods based on machine learning and deep learning 
(deep neural networks) have been widely used [6, 7]. For 
example, [8] proposes several variants of deep neural 
networks for post-processing the results of the air 
temperature forecast, which is the output of the NWP 
model. However, this approach, in contrast to the one 
proposed by us, is more applicable for map-to-map 
converting.  A number of other solar irradiance predicting 
approaches using deep neural networks employ sky images 
as input [9, 10] and they are therefore limited to a forecast 
horizon up to several hours ahead. A number of forecasting 
approaches based on deep neural networks have also been 
proposed that use time series of solar irradiance [11, 12], 
and in some cases, other meteorological parameters [13]. 
However, these approaches do not take into account the 
influence of the spatial distribution of predictors on the 
forecast. 

 
In this article, we propose a map-to-point deep learning 

approach and a SolarM2P neural network architecture for 
post-processing of solar irradiance predictions made by 
NWP models. The suggested approach makes it possible to 
improve a number of indicators of forecast accuracy at a 
certain geographical point and at the same time can 
increase the temporal resolution. 

 
Data 

In the present article, the proposed deep learning 
approach was tested on the forecast data of the Global 
Forecasting System (GFS) developed by the US National 
Center for Environmental Prediction (NCEP) [14]. The 
studies used archival forecast data from 2015 to 2023 
including. In this article, the value of prediction is Global 
Horizontal Irradiance (GHI). The data were taken for the 
forecast horizon up to 48 hours from the moment the model 
was launched. The result of the GFS forecast is presented 
with a spatial resolution of 0.25 degrees on a global grid of 
latitude and longitude. In our research, we used forecast 
data for 25 geographic points forming a rectangle with a 
central point with coordinates 49.75N, 36.0E, which is 
located in the vicinity of the town of Merefa, Kharkiv region, 
Ukraine. This point, for which the forecast of solar 
irradiance is refined, is referred to as the point of interest 
(POI) in the text. The location on the map of the Kharkiv 
region of the points for which the forecast data of the GFS 
model were used is shown in Fig. 1. 
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Fig. 1.  Location of points on the map of Kharkiv region (Ukraine), 
for which the forecast data of the GFS model were used. 
 

 The data of direct measurements at 
hydrometeorological stations are most often used as actual 
solar irradiance data. However, for the territory of Ukraine, 
such data are limited and available only for some 
geographical points. There is also another approach to 
estimating the actual solar irradiance at a certain 
geographical point, which is based on the use of satellite 
images of the atmosphere [15]. This approach was used in 
the present work. We used solar irradiance data from the 
Copernicus Atmosphere Monitoring Service (CAMS) [16] as 
actual data. Throughout the rest of this article, we use the 
notation “satellite” for these data. 

To apply the traditional method of increasing the 
temporal resolution of the solar irradiance forecast, which 
was used in this work as a baseline for evaluating the 
effectiveness of the proposed approach, information on the 
solar irradiance value for the case of a clear sky is required. 
In our study, we used the Ineichen and Perez clear sky 
model [17]. The monthly values of Linke's turbidity were 
used. The clear sky data were generated using the python 
pvlib library. In addition, with the help of this library, the 
zenith angle of the sun was obtained.  
 
Benchmark methods 

To evaluate the effectiveness of the proposed deep 
learning approach, in this article we also considered the 
basic methods for processing forecast results mentioned in 
a number of sources [3], [5]. The mentioned methods were 
used as a benchmark. Actually, they do not apply to MOS 
methods and only allow increasing the time resolution of the 
GFS model forecast to the required value of 1 hour. The 
following basic approaches for post-processing of the GFS 
model forecasts were considered: 

1. A simplified approach based on the constancy of 
solar irradiance for each 3-hour period (the approach is 
denoted as “3h_const”). 

2. An approach that uses direct linear interpolation of 
solar irradiance (the approach is denoted as “dir_inter”). 

3. An approach in which the clear sky coefficient was 
assumed to be constant for each 3 hours (an approach 
denoted as “kt_ const”). 

4. An approach that uses linear interpolation of the clear 
sky coefficient (the approach is denoted as “kt_inter”). 

In the first simplified approach, solar irradiance was 
assumed to be constant for each 3 hours and equal to the 
average value for this period, obtained from the GFS model. 

In the second approach, direct linear interpolation of 
average 3-hour values is used to obtain 1-hour solar 
irradiance values. 

The third approach involves the use of the clear sky 
coefficient which is calculated from the expression [3]: 

 
(1)    𝑘𝑡 = 𝐼𝑡/𝐼𝑐𝑠 𝑡  

 
where: It, Ics t – respectively denote the actual and clear sky 
value of GHI for hour t. 

According to this approach, the value of the average 
clear sky coefficient for each of the 3-hour intervals k3h is 
first calculated. Further, based on the assumption that this 
coefficient is constant throughout each of the intervals, the 
average values of solar irradiance for each hour within the 
interval were calculated using the expression It = k3hIcs t, 
where Ics t is the 1-hour average GHI value for hour t for 
clear sky conditions. 

According to the fourth approach, after determining the 
average clear sky coefficient k3h for each of the 3-hour 
intervals, its linear interpolation is carried out, which allows 
for obtaining coefficient values for each hour k1h. Further, by 
analogy with the previous approach, the values of solar 
irradiance for each hour are determined. 
 
Proposed deep learning approach for post-processing 
NWP based predictions 

Some of the first deep neural networks that 
revolutionized computer vision tasks were AlexNet [18], 
VGGNet [19] and a number of others. Over the past 
decade, such CNNs have proven to be highly effective. 
They showed especially high performance in image 
processing tasks. The input of such a neural network is 
usually a 3-D pixel intensity tensor m×n×c, where m is the 
image height, n is its width, and c is the number of channels 
(c = 3 for color images). CNNs can be used both in 
classification problems [20] and in regression problems [21]. 

There is a direct analogy between the information 
obtained from the output of NWP models and the images 
processed by deep CNNs. In the case of the NWP output, 
we also have a 3-D tensor the elements of which are the 
value of a certain meteorological parameter, such as solar 
irradiance. The first and second dimensions of the 
mentioned tensor correspond to latitude and longitude, 
whereas as the third dimension (the number of input 
channels cin) we can use the time slices of the NWP model 
prediction. Thus, we can build a deep CNN and enable it to 
learn complex spatiotemporal patterns in the data received 
from the NWP model and, as a result, improve prediction 
accuracy. In solar energy applications, we are usually 
interested in predicting the value of solar irradiance at a 
certain point, therefore, in this article, we considered a 
1×1×cout tensor as the output of such a neural network. 
Such a neural network architecture implements the map-to-
point approach.     

Due to the features of CNN, the number of channels cout 
in the output tensor can in principle be arbitrary and does 
not depend on the number of input channels cin. Thus, we 
can arbitrarily adjust the temporal resolution of the data, for 
example, upwards. As already noted in this article, the 
proposed deep learning approach was tested on the output 
of the GFS model, which is a forecast of solar irradiance 
with time averaging over every 3 hours. We used a forecast 
horizon of up to 48 hours from the start of the model. Thus, 
the number of input channels is cin = 16. In solar energy 
applications, a time resolution of 1 hour is currently 
acceptable. With a constant forecast horizon of up to 48 
hours, the number of channels at the output of the neural 
network should be cout = 48. 

The choice of the size m×n of the initial data map, based 
on which the forecast of solar irradiance at the POI is 
carried out, was made based on an analysis of the 
literature. Thus, [3] found that the greatest increase in 
forecast accuracy is obtained by simply averaging the 
output of the ECMWF model on a 4×4 grid. A similar 
conclusion was obtained [22] for the GFS model at the 
same spatial resolution. For reasons of symmetry, we 
chose the size of the data map as 5×5, with the POI placed 
in the center. Given the spatial resolution of the GFS model 
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of 0.25 degrees, this field corresponds to the size of the 
region of approximately 100×100 km. It should be noted 
that in the case of processing the output of the GFS model 
using CNN, a more sophisticated approach takes place, 
since the data at different points are combined using 
different weights obtained by training the neural network. 

The architecture of the proposed SolarM2P neural 
network which is based on convolutional layers, is shown in 
Fig. 2. In essence, this model is a regression model, at the 
output of which 48 continuous values are predicted - GHI 
for each of the 48 hours within the forecast horizon.  

Thus, the neural network performs a nonlinear 
transformation of the form: 

 
(2)                      𝐼out  =  𝐹(𝐼𝑖𝑛)    
 
where: Iin – the input tensor, which is a set of solar 
irradiance prediction maps made by the NWP model, Iout – 
the output tensor, which is an updated forecast of solar 
irradiance at the POI.  

 

 
 

 
 

Fig. 2. The structure of the proposed SolarM2P neural network for post-processing the solar irradiance forecasts of NWP models.  
The network implements a map-to-point approach. The figure indicates: С1…С4 – 2D convolution operations, BN – batch normalization 
operation, ReLU – activation function, AvgPool – averaging pooling operation, mask – mask application (see explanation further  
in the article). The numbers indicate the sizes of the tensors after the various layers of the network. 

 
 

As it is known, training a neural network consists in 
finding such values of weights in its layers that lead to the 
minimum value of the loss function. The average sum of 
squared errors, which is most often used for regression 
problems [23, 24], was used as a loss function: 

 

(3)             𝑀𝑆𝐸 =
1

𝑁
∑ (𝐼𝑜𝑢𝑡 𝑖   

− 𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑖  
)

2
𝑁
𝑖=1     

 
where: Iout i, Iground i – respectively, the value of the i-th 
element of the output tensor of the neural network and the 
ground true value, N – the number of elements over which 
the averaging is carried out. 

In total, there were 6512 days of forecasts in the dataset 
(for the period 2015-2023, there were two forecasts for 
each day). The data were randomly divided into three parts: 
data for training (about 70% of all data), data for validation, 
according to which the hyperparameters of the model were 
selected (about 15% of all data), data for testing (about 
15% of all data). This sampling method ensured data 
consistency in the training, validation, and test data sets. 
The check showed that in all datasets, different periods of 
the year were presented in the same way, which makes it 
possible to obtain a more robust post-processing method. 

The training was carried out by the method of error 
backpropagation. For optimization batch gradient descent 
was used with batch_size = 32. To increase the speed of 
learning, z-scaling of the data was applied based on the 
mean and standard deviation. Such normalization was 
carried out for input and output data, separately for each 
channel. 

After training, the weights in the layers of the neural 
network remain unchanged. The use of a neural network for 
post-processing of solar irradiance forecast data with a 
prediction horizon of 48 hours consists in feeding a tensor 
of the appropriate dimension, which is the output of the 
GFS model, to CNNs input. The neural network performs a 
mapping of the form (2), the result of which is an updated 
forecast at the POI. 

All the approaches considered in this article, due to the 
imperfection of the models used, can lead to inadequate 
forecasts. For example, forecasts of solar irradiance It<0 
with small absolute values in the morning and evening 
hours. Therefore, for all approaches, we used a set of 
corrective rules of the form:  

 

(4)             𝐼𝑡  = {
0       𝑖𝑓 𝐼 𝑡 < 0  

 1.25𝐼с𝑠 𝑡    𝑖𝑓 𝐼𝑡 > 1.25𝐼с𝑠 𝑡  
.    

 
 It should also be emphasized that the neural network 
should be used to post-process the GFS model predictions 
only at the POI for which it was trained (or very close to it). 
A different model must be trained and used to post-process 
a forecast at a different geographic location for obtaining 
similar accuracy scores. 

The baseline from which many of the solar irradiance 
forecast accuracy metrics are calculated is the forecast 
error for a particular hour t: 
 
(5)            𝑒𝑡  = 𝐼𝑡  

− 𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑡 
    

 
where: It, Iground t – respectively, the predicted and true 
values of solar irradiance for hour t. 
 An important predictive accuracy metric used in this 
article is the mean bias error: 
 

(6)              𝑀𝐵𝐸 =
1

Т
∑ 𝑒𝑡

Т
𝑡=1      

 
where: T – the length of the forecast period. 
 The MBE can be used to estimate the systematic shift of 
the forecast up or down. 
 As noted in a number of sources [2], [3], for solar power 
applications, the most relevant is the use of the standard 
error of the forecast, which imposes a larger penalty for 
large deviations in the forecast: 
 

(7)                   𝑅𝑀𝑆𝐸 = √
1

Т
∑ 𝑒𝑡

2.Т
𝑡=1      
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 Also, the accuracy of the forecast can be further 
evaluated using the mean absolute error, which is more 
applicable for applications in which the linear dependence 
of the penalty on the magnitude of the error is typical: 
 

(8)                             𝑀𝐴𝐸 =
1

Т
∑ |𝑒𝑡|.Т

𝑡=1     

     
 Another predictive accuracy metric used is Pearson's 
linear correlation coefficient between predicted and actual 
values of solar irradiance: 
 
 

(9)                            𝜌 =
𝑐𝑜𝑣(𝐼𝑡  ,   𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑡 

)

𝜎𝐼𝑡
𝜎𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑡

     

 
where: cov(It, Iground t) – the covariance of predicted and 
actual values of solar irradiance, σIt, σIground t are the 
standard deviation of predicted and actual values of solar 
irradiance, respectively. 
 Relative variants of MBE, RMSE and MAE make it 
possible to compare the accuracy of forecasts for conditions 
with different average solar irradiance levels: 
 

(10)  𝑟𝑀𝐵𝐸 =
𝑀𝐵𝐸

𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑒𝑎𝑛 

100, %     

  
 

 
Fig.3. Plot of solar irradiance forecasts for two summer days (June 28 and 29, 2019). 
 
 
Table 1. Accuracy metrics for the basic and proposed approaches for post-processing the solar irradiance forecast of the GFS model 

Approach 
Metric 

RMSE (W/m2) rRMSE (%) MBE (W/m2) rMBE (%) MAE (W/m2) rMAE (%) ρ 

3h_const 126.33 49.18 31.54 12.28 89.55 34.86 0.88 

dir_inter 103.74 40.39 30.03 11.69 70.06 27.27 0.92 

kt_const 110.03 42.83 33.22 12.93 63.4 24.68 0.92 

kt_inter 106.68 41.53 32.38 12.61 61.1 23.79 0.92 

SolarM2P 86.69 33.75 -0.38 -0.15 53.96 21.01 0.94 

 
 

(11)  𝑟𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑒𝑎𝑛 

100, %    

(12)  𝑟𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝐼𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑒𝑎𝑛 

100, %     

 
where: Iground mean – the average value of the actual solar 
irradiance in the entire dataset. 

The above metrics were calculated for the POI (49.75N, 
36.0E) only for hours when solar irradiance for clear 
weather conditions Ics t >0 (night hours were not taken into 
account). Also, we did not introduce a limitation on the 
zenith angle of the sun, as is sometimes done in similar 
calculations [5]. 
 
Results and discussion 

As an example, Fig. 3 shows solar irradiance forecasts 
for two summer days. The forecasts were obtained using 
various post-processing methods. The same figure shows 
actual GHI values and values for clear sky conditions. An 
analysis of such graphs showed that the weather patterns 
studied by the neural network allow it to more adequately 
respond to changes in the level of solar irradiance, both 
downward and upward. However, as expected, sometimes 
the neural network is unable to predict sudden changes in 
solar irradiance. 

The trained neural network was used to post-process 
the results of the GFS model prediction from the test 
dataset (this approach is referred to as “SolarM2P” in the 
text of the work). The test set included a total of 976 days of 
forecasts. For exactly the same test set, the traditional post-
processing methods (described in this article in “Benchmark 
methods” section) were applied, which were used as 
baselines. The results of calculating the accuracy metrics of 
these approaches are shown in Table 1.  

As it can be seen from Table 1, the proposed deep 
learning approach improves all the considered forecast 
accuracy metrics. The improvement of one of the main 
metrics for solar power applications, rRMSE, is especially 
noticeable, which, compared with the best of the basic post-
processing approaches, decreases in absolute terms by 
almost 7% (in relative terms, the decrease is 16% to the 
initial value). The post-processing approach proposed by 
this work obtained a value of 33.75% to rRMSE metric. In 
other words, the proposed method provides better results 
than the ones shown in [4] (40.5%) and [5] (35.7%) in terms 
of forecast post-processing methods. A similar and 
significant improvement has been also noticed in the MBE 
value, which tends to zero (i.e., a forecasted parameter 
achieved values that are slightly closer to the real values 
observed in a real physical parameter). It suggests that 
after the proposed post-processing there is practically no 
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systematic forecast shift. rMAE and correlation coefficient ρ 
are also improved, although not as much. It should be noted 
that in the case of applying the proposed post-processing 
method in regions with sharply changing weather 
conditions, some deterioration of forecast accuracy metrics 
is possible in comparison with the values given in the Table 
1. However, this situation is typical for any forecasting or 
post-processing method. 

 
Fig. 4. Scatter plot of predicted (GHI forecast) and actual (GHI 
satellite) solar irradiance values for the POI. The predicted values 
are obtained using the proposed approach. 

 
Figure 4 shows a scatter plot of predicted and actual 

values of solar irradiance which can be used to visually 
assess the degree of linear relationship between these 
values. As can be seen, the prediction of the GFS model 
with post-processing based on the proposed approach 
demonstrates a good agreement with the actual values of 
solar irradiance. Although it is possible to notice a high 
number of spread points (compared to the diagonal ideal 
reference), such an effect is considered typical for long-term 
forecasting methods due to the divergence between 
predicted and real values of a physical parameter. The 
longer the forecasting horizon, the wider the spread points 
get. For example, in [5] a rather lower correlation coefficient 
of about 0.7 was obtained. 
 

Conclusion 
 This work proposed a map-to-point approach and 
SolarM2P neural network for post-processing of solar 
irradiance predictions made by NWP models. The 
evaluation of the proposed approach was carried out on a 
test set of GFS model forecasts with an equivalent duration 

of almost 3 years and various weather conditions, which 
allows us to speak about the adequacy of the obtained 
accuracy metrics. As a result of the research, it was found 
that the proposed approach can significantly improve a 
number of the most common indicators of the accuracy of 
solar irradiance forecasts. At the same time, a feature of the 
proposed approach is also the possibility of an arbitrary 
increase in the temporal resolution of the forecast. 
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