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Computer vision algorithm for identifying main beer 
fermentation stages 

 

Algorytm komputerowego widzenia do identyfikacji głównych etapów fermentacji piwa 
 
 

Abstract: The article examines the current issues of beer production related to the yeast foam formation during fermentation, and discusses the 
importance of controlling the fermentation stages to ensure the proper product quality. Computer vision technologies were applied to identify the 
stages of the main fermentation. Based on the analysis of the computer vision algorithms, the K-means method was used for image clustering. The 
systematic description of the algorithm for detecting contaminated foam based on the K-means method is provided. 

 
Streszczenie: W artykule omówiono bieżące problemy produkcji piwa związane z powstawaniem piany drożdżowej podczas fermentacji oraz 
omówiono znaczenie kontrolowania etapów fermentacji w celu zapewnienia odpowiedniej jakości produktu. Zastosowano technologie wizji 
komputerowej w celu zidentyfikowania etapów głównej fermentacji. Na podstawie analizy algorytmów wizji komputerowej do klasteryzacji obrazów 
zastosowano metodę K-means. Przedstawiono systematyczny opis algorytmu wykrywania zanieczyszczonej piany w oparciu o metodę K-means. 
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Introduction 

Machine learning and computer vision technologies [1] 
are actively used in various manufacturing industries to 
automate processes and improve product quality. For 
example, in the automotive industry, the computer vision is 
applied for checking the quality of welds, detecting defects 
in parts, and controlling the correctness of assembly. 
Similar technologies are also widely used in the food 
industry to monitor product quality at all stages of 
production, from primary processing to final packaging. 

The use of computer vision makes it possible to 
automatically analyze images obtained with the help of 
cameras and carry out high-precision quality control without 
the involvement of specialists. Machine learning algorithms, 
in particular image segmentation methods, allow quick 
detection of defects, anomalies or contamination on 
products, which significantly improves the efficiency of 
production processes and ensures high quality. This is 
important for modern high-tech industries. 

Beer production is one of the most widespread sectors 
of the food industry. This is an intricate process comprising 
multiple stages, each of which is critical for obtaining a high-
quality beverage [2]. There are two distinct beer 
fermentation methods: either utilizing open fermentation 
vats or closed cylindrical conical tanks. For the purposes of 
this discussion, we will focus solely on the open vat 
fermentation. At this stage, it is imperative to maintain 
optimal fermentation conditions through regulating 
temperature, pH, etc. [2,3].  

It is also important to remove spent dead yeast from the 
surface of the beer wort to prevent the presence of 
fermentation by-products in the final product and to ensure 
high quality of the beer. In this context, the detection and 
removal of contaminated foam that forms on the surface of 
the beer at different stages of fermentation is of particular 
importance. 

After completing the brewing process, yeast is 
introduced to the wort resulting in what is called young beer. 
Then the primary fermentation commences, during which 
the yeast transforms monosaccharides into alcohol and 
carbon dioxide. Young beer undergoes several stages of 
fermentation, characterized by changes in the metabolic 
processes of the yeast, in particular in the release of carbon 
dioxide and heat energy, changes in pH and the degree of 

fermentation. One of the metrics for controlling the 
fermentation process is the appearance of the beer wort 
surface on which foam is formed. Four main stages of 
fermentation are identified, each of which is characterized 
by a certain percentage of the contaminated foam [3].  

1) Initial. A sign of a successful start is the whitening of 
the beer. The surface is covered with a thin layer of fine 
foam. The amount of contaminated foam relative to the total 
surface area is ≤5% (Figure 1,a). 

2) Young krausen. The layer of fine foam becomes 
deeper and has brown caps. The temperature of the beer 
rises from 6 °C to 11 °C. The amount of the contaminated 
foam increases and reaches 30% of the total surface area 
(Figure 1,b).  

3) High krausen. Lasts 1-3 days. The ridges or crests in 
the foam become higher and the bubbles coarser.. The 
contaminated foam that appears at this stage should be 
removed daily to avoid it getting into the beer in the form of 
flakes. The relative area of  contaminated foam that forms 
daily after regular cleaning is in the range of 30-60% (Figure 
1,c). 

4) Krausen collapsing. The temperature is gradually 
reduced by 1 °C per day until it reaches 5 °C. At this stage, 
the high crests slowly collapse as less carbon dioxide is 
formed. The foam becomes heavily contaminated and looks 
browner. The contaminated foam must be removed. 
Despite daily foam collection, the relative area of 
contamination is in the range of 60-100%. At this stage, it is 
important to carefully remove all contaminated foam from 
the beer wort surface so that it does not get into the next 
production stage. (Figure 1,d) 

Therefore, the development of automated systems 
capable of an efficient and accurate detection of the main 
fermentation stages and contaminated foam for its 
subsequent removal is of topical importance. 

Segmentation of the wort surface into clean and 
contaminated foam is an important metric for determining 
the current stage of fermentation. Detection of the 
contaminated foam can serve as a signal for its collection, 
and can also be part of an automated system for removing 
the contaminated foam at different stages of fermentation. 
Such a system will help to ensure a high level of beer 
quality control and optimize the beer production process. 
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  (a) 
 

  (b) 
 

  (c) 
 

  (d) 
Fig. 1: Main fermentation stages: (a) Initial, surface whitening; (b) 
Young krausen; (c) High krausen; (d) Krausen collapsing, end of 
fermentation 
 

Overview of Computer Vision Methods 
The automation and development of projects aimed at 

detecting and cleaning contaminated foam in open 
fermentation tanks is an important step in improving the 
quality and efficiency of beer production. Traditional 
methods of quality control in this process require a 
significant involvement of the human factor [4], which leads 
to a certain risk of error and lack of efficiency. However, 
recent developments in computer vision [5] have made it 
possible to use automated systems to detect and control 
the quality of beer in open fermentation vats. 

There are a number of modern computer vision 
technologies that can be used to solve the problem of 
detecting beer fermentation stages based on images of the 
beer wort surface. Several areas can be distinguished: 

1. Semantic segmentation based on deep neural 
networks [6-13]. The two popular architectures are U-Net [6] 
and Mask R-CNN [7]. The U-Net architecture is effective in 
the tasks of segmenting microscopic images, medical 
images, and other biomedical research. The Mask R-CNN 
architecture is an improved algorithm that extends the 
popular Faster R-CNN algorithm [8] for object detection and 
segmentation tasks. However, Mask R-CNN requires 
additional computational resources. 

2. Motion tracking methods [14] are designed to 
detect and track moving objects. They are widely used in 
robotics, video analysis, auto piloting, video games, etc. 
These methods can determine the speed of movement of 
objects, which is useful for analysing the course of the 
fermentation process. 

3. Object localisation based on object detection 
methods. YOLO (You Only Look Once) [15] and SSD 
(Single Shot MultiBox Detector) are popular [16]. The YOLO 
algorithm uses a slightly different approach to detection 
than the traditional ones. The idea is that the neural network 
processes the input image only once. The SSD algorithm, 
like YOLO, processes the image once. However, it uses 
different feature maps with different resolutions, which 
increases the resolution of the image and therefore the 
complexity of the real-time computation. 

4. The analysis of texture features and image 
structure is based on the use of methods such as Local 
Binary Patterns and Histogram of Oriented Gradients [12, 
17]. These methods are designed to detect an object in an 
image and check whether it belongs to a particular class. 

All the methods described above can be used for input 
image identification using certain features. However, foam 
formation during fermentation is a random process and 
therefore there are no identical images for the same stage, 
which complicates the initial training of the convolutional 
neural network and makes the application of the above 
algorithms difficult. 

In our opinion, the task of recognising the fermentation 
stages can be solved by segmenting the surface of the beer 
wort into contaminated and white foam, the percentage of 
which characterizes each stage. For this task, the K-means 
algorithm was selected [9-11]. It allows the image to be 
divided into clusters according to the similarity of the 
colours that characterise the contaminated foam on the 
surface of the wort. In addition, the algorithm is simple and 
can work effectively with large data sets without prior 
training of the network. This enables a fast adaptation of the 
algorithm to new conditions and different types of wort in 
real time, which is an important factor in the beer production 
process. 

 
Algorithm for detecting the main fermentation stages 

The use of the open fermentation vat in beer production 
has certain disadvantages. One of them is the direct contact 
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of the wort with the environment, which imposes special 
hygiene requirements to the process of contaminated foam 
removal. A high quality and timely cleaning of the wort can 
be ensured only with the help of intelligent automated 
systems [18]. Such a system should contain several 
components: 

• A computer vision algorithm is required to detect 
and evaluate contaminants in the wort and activate the 
cleaning system promptly. 

• A robotic cleaning system should be designed to 
remove the contaminated foam from the surface of the wort 
in various vat sizes and operating conditions with ease. 

• A control system for electric drives should offer an 
accurate and coordinated control of the manipulator 
movement and ensure safe operation. The control ought to 
rely on information gathered from the computer vision 
algorithm and consider the particulars of the beer 
production setting. 

To successfully automate the beer wort cleaning during 
the main fermentation process, an efficient algorithm for 
detecting each stage needs to be devised. 

To address this issue, an algorithm utilising the Open 
CV library [19], with a range of standard image processing 
functions, was developed in the Python programming 
language. The algorithm requires an image of the beer wort 
surface during fermentation as an input. 

The algorithm comprises the subsequent steps: 
1. Uploading and preparing the image. 
The input files can consist of JPEG, PNG or TIFF 

images depicting the surface of young beer (Figure 2, a). 
The images must have a resolution of 960×1280 pixels and 
must be in the RGB colour model. Consequently, each 
image is depicted by a 960×1280 matrix with each element 
containing an array of three colour channel values, ranging 
from 0 to 255. After reading a colour image, it is converted 
to black and white for further processing. This conversion is 
implemented using the cv2.cvtColor() function with the 
cv2.COLOR_BGR2GRAY parameter. The resulting matrix 
is of the same size as the original one and consists of single 
values ranging from 0 to 255. These values represent the 
intensity of the pixel, as opposed to the original three RGB 
values per pixel. 

2. Define the boundaries of the elements in the image. 
To prepare the beer wort surface image for further 

processing, the background is removed, leaving only the 
surface in view. To achieve this, we apply a Gaussian filter 
[20] and a median filter [21] to blur the monochrome image. 
The outcome is an image with blurred edges. The function 
cv2.absdiff() computes the absolute difference between 
every corresponding matrix element of a grayscale image 
and a grayscale image which has been blurred. When 
examining the middle of an object within the image, the 
absolute difference will be almost zero, despite the blurring. 
However, near the edges of the objects, as a result of 
differences in their colour intensity, the cv2.absdiff() function 
will output non-zero values. The processed image is 
binarised using the cv2.threshold() function. This function 
sets all values less than the experimentally determined 
threshold "9" to black "0" and those greater than the 
threshold to white "255". Consequently, an image with a 
black background and white object boundaries is 
generated.  

3. Separating the surface area of the young beer. 
From the binary image obtained in the previous step of 

the algorithm, object contours need to be defined. To 
achieve this, the cv2.findContours() function is utilized. 
Afterward, each object's area is calculated. The object 
exhibiting the largest area corresponds to the surface of the 
young beer. Next, a black mask is produced to match the 

size of the input image. The outline of the beer wort surface 
is then transferred onto it and subsequently filled with white. 
Next, a black output image of the same dimensions is 
produced. The pixels from the input image that correspond 
to the location of the white pixels in the black-and-white 
mask image are then transferred to it. This enables 
highlighting the surface of the young beer against the black 
background. To improve image segmentation, the black 
background is replaced with a green one (Figure 2, b). 

 

 (a) 
 

 (b) 
 
Fig. 2. (a) Surface of beer wort (input image); (b) surface of beer 
wort without background 

 
4. Colour segmentation. 
The image produced is transformed into an array 

wherein each element corresponds to a single pixel 
composed of three channel values from the Pi(Ri, Gi, Bi) 
colour model. Subsequently, these values are represented 
through floating point numbers. 

The original image requires segmentation into three 
clusters: the green background (the metal vat and the wall), 
white uncontaminated foam, and brown contaminated foam. 
To accomplish K-means segmentation, we developed an 
algorithm (Figure 3) that includes the following steps: 
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I. Three centroids are selected randomly, denoted as 
Ck(Rck, Gck, Bck), where k = 0,1,2 defines the ordinal position 
of each centroid. Rck corresponds to the red channel of the 
centroid's colour, Gck to the green channel, and Bck to the 
blue channel, respectively. 

II. The RGB model is formed by adding three colours 
and can be presented as a coordinate system having three 
axes representing these colours. This colour space's 
coordinates are bounded evenly, with the values ranging 
from 0 to 255. Then, the distance between each pixel's 
coordinates and the three centroids is measured using the 
formula (1). 

(1)  ( ) ( ) ( )222
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where i= [0, 1, ... 1254399] is the current pixel number. 
The outcome is an array comprising the ordinal numbers 

of the centroid with which the distance dck is the shortest 
III. The mean average of all the pixels that belong to a 

cluster with each centroid in the three colour channels is 
calculated using the formula (2). These will be the updated 
centroids. 
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where Nk is the number of pixels associated with centroid k. 
IV. By repeating steps II and III, the algorithm 

improves the accuracy of clustering until the stopping 
criterion is met. For the K-means method, the stopping 
criterion is the fulfilment of the inequality (Cka – Cka-1) ≤ ε or 
the performance of the maximum number of iterations amax 
(Figure 3). 

Next, applying the formula (3), minimum distances to the 
corresponding Sk clusters and their sum (4) need to be 
determined. 
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where Sk is the aggregate distances from pixels Pj to the 
closest centroid Ck; 

Pj is the vector of elements that pertain to the k-th 
centroid; 

Snew is the sum of the minimum distances to the 
centroids Ck. 

As clustering is a non-linear programming problem, step 
IV results in the first local minimum calculated using the 
formula (4). The Snew value of this minimum serves as the 
initial value for the first iteration or is compared with the 
value obtained in the previous iteration. If the current 
minimum is smaller, the previous value is replaced with it. 

As the centroids' initial centres are chosen randomly, 
the algorithm calculates the local optimal centroid value in 
one cycle (steps I÷IV). Consequently, image clustering 
should be carried out multiple times for the centroid values 
to become stable. It was determined experimentally that the 
total of 10 different randomly selected sets of centroids are 
needed to achieve the global minimum of the sum of 
distances Smin. Therefore, we chose a constant number of 
cycles p=10. The set of centroids and the pixels belonging 
to them are chosen according to the smallest sum of 
distances Smin and do not depend on the iteration at which 
this sum was achieved. As a result, we obtain the centroids 
and an array of elements with their ordinal numbers, where 
the total distances correspond to the global minimum (4). 

 
 
 

 
Fig. 3a: Segmentation algorithm: block diagram 
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----------------------------------------------- 
SEQUENCE 
   // Step 1: Uploading and preparing the image. 
   READ image (input_image) 
   CONVERT image to grayscale (grayscale_image) 
   // Step 2: Define the boundaries of the elements in the image 
   APPLY Gaussian blur to grayscale_image (blurred_image) 
   APPLY Median filter to blurred_image (background_image) 
   COMPUTE the difference between grayscale_image and background_image (diff_image) 
   APPLY thresholding to diff_image with a threshold (threshold_image) 
   // Step 3: Separate the surface area of the "young beer". 
   FIND contours in threshold_image (contours) 
   SELECT the largest contour corresponding to the surface of the beer wort (largest_contour) 
   CREATE a mask (mask) for the beer wort surface 
   APPLY mask to input_image to isolate the beer surface (output_image) 
   // Step 4: Colour segmentation (K-means clustering). 
   FOR iteration = 1 to 10: 
         // Step 4.1: New random centroids 
      INITIALIZE 3 random centroids C0, C1, C2 (random_centroids) 
          REPEAT (until centroids stabilize or max iterations reached): 
         // Step 4.2: Assign each pixel to the nearest centroid 
         FOR each pixel in output_image: 
            CALCULATE the distance to each centroid using formula (1): 
            ASSIGN the pixel to the nearest centroid (C0, C1, or C2) 
         END FOR 
         // Step 4.3: Compute the new centroids for each cluster 
         FOR each centroid Ck: 
            COMPUTE the new centroid Ck using formula (2): 
         END FOR 
        // Check stopping criteria 
         IF |Ck_new - Ck_old| ≤ ε OR maximum iterations reached THEN: 
            BREAK REAPEAT // Exit the loop 
         // Step 4.4: Compute the new distances to the centroids for each pixel 
         COMPUTE the distance to the new centroids for each pixel using formula (3): 
         COMPUTE the total sum of distances (S_new) using formula (4): 
         // Step 4.5: If the sum of distances is smaller than the previous iteration, update centroids 
         IF S_new < smallest_sum THEN: 
            UPDATE previous_centroids = current_centroids 
            UPDATE smallest_sum = S_new 
         END IF 
      // Step 4.6: Continue to the next iteration if max iterations are not reached 
      IF iteration < 10 THEN: 
         CONTINUE // Move to the next iteration 
   END FOR 
   // Step 5: Processing the results of the segmentation algorithm. 
   CONVERT centroids from floating point to integer format (np.uint8) 
   SEGMENT the image using the updated centroids 
   DISPLAY segmented_image 
   // Calculate the number of pixels for each class 
   CALCULATE green_count = Count the green pixels 
   CALCULATE brown_count = Count the brown pixels 
   CALCULATE white_count = Count the white pixels 
   // Calculate the percentage of contaminated foam 
   CALCULATE brown_area = (brown_count / (brown_count + white_count)) * 100 
   // Step 6: Check if the contaminated foam exceeds the threshold 
   IF brown_area > threshold THEN: 
      PRINT "Contaminated foam area:" brown_area "%" 
      ACTIVATE cleaning system 
   ELSE: 
      PRINT "Contaminated foam area within acceptable limits:" brown_area "%" 
   ENDIF 

-----------------------------------------        
             

Fig. 3b: Segmentation algorithm: pseudocode 

 
V. Processing the results of the segmentation algorithm. 
As the K-means method's centroid coordinates are in 

floating point values, they need to be converted into an 
integer format to display the image. The conversion process 
employs the np.uint8() function, which transforms the input 
centroid coordinates into unsigned 8-bit integers.  
 
Results 

The experiment aimed to analyse the surface of the 
beer wort shown in Figure 2a. This image, which was 
obtained experimentally during the technological process, 

shows the stage of active fermentation of beer, which is 
characterized by the ratio of contaminated foam to the total 
surface area in the range of 30-60%. The algorithm 
developed (Figure 3) has generated a multidimensional 
array that comprises three colour clusters: red, green and 
blue. 

The resultant array was then transformed into a one-
dimensional array using the labels.flatten() function, which 
accurately represents the output image. Each element of 
this array represents a pixel displayed in the format (Rk, Gk, 
Bk), where Rk, Gk, Bk are the colours of the pixel 
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corresponding to the centroid of the k-th cluster in the 
image. This enables effective processing, storage and 
utilisation of such images. Thus, a segmented image is 
obtained (Figure 4), wherein every pixel is depicted by the 
colour of its associated cluster. 

To ascertain the corresponding stage of the primary 
fermentation, the number of pixels that correspond to each 
of the three designated colours in the segmented image 
needs to be calculated. Then, the percentage of the brown 
pixels representing the colour of the contaminated foam, 
compared to the sum of the brown and white pixels, is 
determined. This method enables the calculation of the ratio 
of the contaminated foam area to the young beer surface 
area, expressed as a percentage.  

For the given example (Figure 4), 48.52% of the surface 
area is contaminated. This percentage of foam corresponds 
to the stage of active fermentation of beer, and therefore 
the result of the algorithm has been confirmed 
experimentally. 

 
Fig. 4: Segmentation algorithm 

 

Based on expert analysis, the maximum allowable level 
of contaminated foam of young beer has been set at 40%. If 
the quantity exceeds this limit, the contaminated foam must 
be removed by an automated system. 

 
Conclusions 

Using the computer vision technology, an algorithm was 
developed to detect the various stages of primary beer 
fermentation by segmenting the images of the surface of 
young beer. The accuracy and speed of input image 
processing are high due to the employment of the K-means 
method. 

The algorithm facilitates the determination of the level of 
beer contaminated foam by calculating the relative area of 
the contaminated foam. As demonstrated in the example 
provided, this area accounted for 48.52% of the surface. 
The algorithm is a reliable tool for automating the process of 
wort cleaning and analysis of fermentation stages. This 
reduces the risk of beer contamination with yeast foam and 
improves beer production quality. 

This algorithm is planned to employed as an integral 
part of the beer production control system. Specifically, it 
can be utilised to detect and prevent emergencies and 
gather statistical data on the course of fermentation 
processes in the production environment. 

The implementation of such algorithms will promote 
innovation and implementation of modern technology in the 
beer industry. 
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