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Mathematical model of an induction motor with consideration of 
current displacement in rotor bars using Matlab/Simulink 

 
 

Abstract. A mathematical model of an induction motor with a squirrel-cage rotor is proposed that takes into account the saturation of the magnetic 
system and the current displacement in the rotor bars. In order to take into account the saturation of the main magnetic flux, the main magnetization 
curve is used. To take into account the current displacement, the bars along with the short-circuited rings are partitioned into n layers in height. As a 
result n windings on the rotor are coupled to the main magnetic flux and covered by different magnetic leakage fluxes. 
 
Streszczenie. Zaproponowano model matematyczny silnika indukcyjnego z wirnikiem klatkowym, który uwzględnia nasycenie układu 
magnetycznego i przesunięcie prądu w prętach wirnika. Aby uwzględnić nasycenie głównego strumienia magnetycznego, wykorzystano główną 
krzywą magnesowania. Aby uwzględnić przesunięcie prądu, pręty wraz z zwartymi pierścieniami podzielono na n warstw wysokości. W rezultacie n 
uzwojeń na wirniku jest sprzężonych z głównym strumieniem magnetycznym i pokrytych różnymi strumieniami rozproszenia magnetycznego. 
(Model matematyczny silnika indukcyjnego z uwzględnieniem przesunięcia prądu w prętach wirnika przy użyciu pakietu Matlab/Simulink)  
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Introduction 
Induction motors are an important component of a 

modern electric drive. They are widely used in the industrial 
sector in equipment such as electric furnaces, pumps, 
rolling mills, paper machines, combined metalworking 
machines, roller bearing drives, walking excavators, crane 
drives, elevators, wind tunnels, and are characterized by 
their ability to operate for a long time without technical 
maintenance, resulting in low operating and maintenance 
costs. They can be easily adapted to the requirements of 
different applications in size, power, and speed. These 
motors can operate at a variety of speeds and loads, 
making them suitable for use in a wide range of electric 
drives. Most machines operate with an efficiency of more 
than 85%, helping to reduce energy consumption and 
operating costs. 

In modern conditions, the development of asynchronous 
drives requires the correct selection of an asynchronous 
motor and the development of a control system that would 
ensure the maximum possible efficiency of the drive system 
in general. In this situation, mathematical modeling of the 
electric drive system plays an important role. Obviously, the 
adequacy of the results of mathematical modeling depends 
on the chosen mathematical model of the IM, in particular, 
the consideration of those factors that affect the behavior of 
the electric drive in different operating modes. The main 
ones are the saturation of the magnetic circuit and the 
displacement of current in the bars of a short-circuited rotor, 
and since the technical literature contains a large number of 
ways to take these factors into account, an important 
problem is to analyze them to determine their suitability for 
solving specific problems. 

Among the well-known mathematical modelling tools, 
the Matlab/Simulink software environment holds a leading 
position. It implements mathematical models of 
asynchronous motors with squirrel-cage and phase rotor in 
SimPowerSystem in the “Asynchronous machine” section. 
This block implements a three-phase induction machine 
(wound rotor, single squirrel-cage, or double squirrel-cage) 
that operates in generator or motor mode.  

The model of an induction motor provides the possibility 
to set the parameters of the magnetic saturation curve of 
the stator and rotor iron (saturation of the mutual flux) 
without load. However, these mathematical models of the 
Matlab/Simulink ‘Induction Machine’ block are based on the 

classical single-phase T-shaped equivalent circuit [1], 
where the parameters have unchanged nameplate values, 
and the phenomenon of magnetic circuit saturation is either 
not taken into account at all or their saturated values are 
used [2].  

Essentially, linear mathematical models are used. This 
approach is considered to be generally accepted, and a 
corresponding standard has even been developed [3]. 
However, in a number of operating cases of squirrel-cage 
induction motors, the displacement of currents in the bars is 
crucial, especially in the case of deep-groove motors. 
Obviously, the calculation results obtained under such 
conditions do not always meet the needs of practice in 
terms of accuracy, so new methods of artificially taking into 
account the phenomenon of current displacement and 
saturation using various coefficients appear in the technical 
literature, and the number of variants of such models is 
constantly growing.  

One of the ways to take into account the skin-effect 
phenomenon in rotor bars is to represent the substitute 
winding circuit in the form of the equivalent circuit, but the 
problem is to determine the parameters of its elements. The 
most promising direction, in our opinion, is the method 
proposed in [5] and developed in [6, 7], the essence of 
which is to represent the rotor winding in the form of 
several, formed by dividing each rod together with short-
circuiting rings in height into several elementary ones. 
The goal of the paper is to improve the mathematical model 
of an induction motor with a squirrel-cage rotor in 
Matlab/Simulink regarding the influence of current 
displacement in the rotor bars and leakage fluxes in the 
rotor circuits. 
 
Model description 

The mathematical model of an induction machine is 
represented by equations in the state space of the fourth 
order - the electrical part, and the second order - the 
mechanical part. Electrical variables and rotor parameters 
reduced to the stator winding are indicated by dashes. 

Equations of equilibrium of the stator equivalent circuits 
represented in the system of orthogonal axes d, q, which 
rotate at an arbitrary speed, have the form 

 ds
qs s ds ds

d
R i U

dt


= − +  
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(1a) .
qs

ds s qs qs

d
R i U

dt


= − − +  

The short-circuited rotor winding in the axes d q is 
described by two equations 

( )dr
r qr r dr

d
R i

dt


  


  = − −   

(1b) ( )
qr

r dr r qr

d
R i

dt


  


  = − − −  

where Uds, Uqs are stator voltages in dq axes; ids, iqs – stator 
currents in dq axes; idr, iqr are rotor currents in dq 

axes;d.s,qs are flux linkages of the stator along the axes d, 

q, dr , qr  are rotor flux linkages; Rs, rR – active 

resistances of the phase windings of the stator and the 

reduced rotor;  is a reference frame angular velocity; r- 

eelectrical angular velocity (ωm×p), -r=2. 
The electromagnetic moment of the IM is determined by the 
formula 

( )1.5e ds qs qs dsM p i i = −  

The equation of motion of the rotor of an asynchronous 
motor is described by the following equation 

 ( )m
e m

d p
M M

dt J


= −  (2) 

where m is an angular frequency of rotation of the rotor; J 
is the combined moment of inertia of the rotor along with the 
load on the shaft; Me is the torque electromagnetic moment 
of ID; Mm is the mechanical load moment on the motor 
shaft. 
In order to take into account the displacement of currents in 
the rotor rods, the slotted part of the bars, as well as the 
short-circuit rings, are divided into n layers by height [4, 5]. 
As a result, we will get n short-circuited windings on the 
rotor, which we will convert to three-phase windings [2]. 
Thus, the mathematical model considers m=n+1 three-
phase windings (Fig. 1), between which there are mutual 
inductive connections both due to the main magnetic flux 
and scattering fluxes. 

ia1 ic1ib1 ian ibn icn
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Fig. 1. Equivalent circuit of stator and rotor 
 

Taking into account the breakdown of the slotted part 
of the rotor, the system of equations of the electrical 
balance of IM in the orthogonal axes d, q consists of 
equations (1) for the stator contours and 2n equations for 
the equivalent rotor loops: 

 ( )drk
r qrk rk drk

d
R i

dt


  


  = − −  

() ( )
qrk

r drk rk qrk

d
R i

dt


  


  = − − − , (k= )  

The equation of mechanical equilibrium can be 
written in the form 

() ( )( )1 5r
ds qs qs ds m

d p
, p i i M

dt J


 = − −  

The flux linkage of each winding has two components - 
the flux linkage with the working field, the lines of which 
cross the air gap,  the flux linkage with the dissipation fields, 
the stator winding dissipation field determined only by the 
currents of the stator circuits, and the flux linkage of the 
rotor winding dissipation determined just by the rotor 
currents. 

In addition, we will assume that the rotor winding is 
reduced to the stator winding by the number of phases and 
their turns. The current and voltage reduction factors are 
determined by the following formulas 

2 22 / , 4 /i s s s u s sk m w k z k w k z= =  

where 
s

m – the number of phases of the stator winding;  ws, 

ks – number of turns of the stator winding and its winding 
factor; z2 is the number of rotor grooves .  
 The reduced active resistance and inductive scattering 
resistance of the rotor circuits are determined by the 
following formulas 

2

2(4 ( ) /r c s s sr r m w k z=    2

2(4 ( ) /r c s s sx x m w k z =  

where ,c cr x is active and resistance scattering of the rod. 

Instead of currents and flux linkages of real IM circuits, 
we will consider currents and flux linkages transformed to 

orthogonal axes d , q  contours At the same time, we will 

mark: 

 ( )1ds s ds m dr drnL i L i i  = + + +  

 ( )1qs s qs m qr qrnL i L i i  = + + +  

 1 1 1dr r dr m dsL i L i   = +  

 1 1 1qr r qr m qsL i L i   = +  

(5)        

 drn rn drn m dsL i L i   = +  

 qrn rn qrn m qsL i L i   = +  

where Ls – total stator inductance: Lr1,,Lrn – dissipation 
inductance of the reduced rotor; Lm is the magnetization 
inductance. 

The DE system (3) is supplemented with closed 
equations for the flux linkages of the circuits, which are 
determined based on the use of the magnetization curves of 

the main magnetic fluxµand by the dissipation currents of 

the stator windings s and rotor r 

=(i)   s=s(is)   r =r(ir) 
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where 

( ) ( )
22

sd rd sq rqi i i i i = + + +  

2 2
s sd sqi i i= +   2 2

r rd rqi i i= +  

Due to the representation of each rotor rod by several 
elementary currents of the rotor circuits, they are defined as 
the sum of the currents of n bar elements. 

1 ...rx r x rnxi i i= + +  1
...

ry r y rny
i i i= + +  

The mutual inductive connection of the rotor contours along 
the groove scattering paths can be considered linear 
formed from the currents of the same phases, represented 
in the form 

nd n d nq n qL i ;   L i . =  =  

where 

() 

11 1

1

n

n

n nn

L L

L

L L

 
 

=
 
  

   

0k z kL k l  =  

where 0 = 410–7 H/m; l is the calculated length of the 

rotor; k– own and mutual conductivities of the groove 
scattering paths of n layers of the rotor winding. 

To calculate transient processes, it is necessary to 
integrate the nonlinear system of differential equations (3), 
(4) by one of the numerical methods. At a constant slip s, 
the steady-state regime is described by a nonlinear system 
of finite electrical equilibrium equations 

0 sy s sx sxR i u − + = ; 

 0 sx s sy syR i u  + =  

() 0 1 1 1 0y xs R i − + =   

 

 0 1 1 1 0x ys R i  + =  

      0 0ny n nxs R i − + =  

 0 0.nx n nys R i  + =  

which is nonlinear due to the nonlinear dependence of 
fluxes on currents. Therefore, its solution requires the use 
of iterative methods. 

The flux of each circuit depends on the currents of all 
circuits, and the solution of system (7) at a given slip value 

is the current vector i


= (isx, isy, i1x, i1y, …,inx, iny )* (the 

uppercase (*) means transposition). By setting the slip 

values s within 1.0  s > 0.0, the static characteristics can 
be calculated in the form of currents versus slip, which allow 
for the calculation of flux cohesion, electromagnetic torque, 
and power. Due to the nonlinear dependence of the flux 
coupling of the circuits on the currents caused by the 
saturation of the magnetic circuit of the IM, the system of 
algebraic equations (7) is nonlinear, so its solution requires 
the development of an appropriate algorithm. 

Having formed the vectors of voltages 
*( , ,0, ,0)sx syu u u=  and fluxes  , we represent it in 

vector form 

() ( , , )y i s u =  

If the x-axis is aligned with the image vector of the 
supply voltage, which is commonly practiced, then 

sx mu U= ; 0syu = , , where Um is the amplitude value of the 

phase voltage. The solution to equation (8) at a given slip 
value s is the vector of loop currents. One of the ways to 
determine it is the differential method of continuation in the 
parameter [6]. To do this, in system (8), we multiply the 

vector u  by the scalar parameter  (0 1)  , and 

represent equation (8) in the form 

() ( , , )y i s u =  

We differentiate the system of finite equations (9) with 

respect to the parameter . As a result, we obtain the 
differential equation of the form 

()          

1 1

1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1

sysx sysy sy x sy y synx syny

sxsx sxsx s sx x sx y sxnx sxny

ysx ysy y x y y ynx yny

xsx ysy y x y y Yxnx yny

nysx nysy ny x ny y nynx n

x x x x x x

x x r x x x x

sx sx sx r sx sx sx

sx sx sx sx r sx sx

sx sx sx sx sx r sx

− − − − − − −

−

− − − − − − −

−

1

1

1

0

0

0

0

0

sx m

sy

r x

r y

rnxnyny

srnynxsx nxsy nxsy nx y nxnx nxny n

di dt U

di dt

di dt

di dt

di dt

di dtsx sx sx sx sx sx r

                            =                           − − − − − − −   

Equation (10) is solved by the method of continuation by 
parameter, increasing the value of the applied voltage in 

proportion to the parameter . The value of the current 

vector i  at a given voltage at each step is refined by the 

Newton method.  
After reaching the steady-state mode by the method 

described above at a given slip 1,0s = , it is possible to 

perform iterative calculations for a number of consecutive 

slip values in the required range of changes in the 
mechanical characteristic. As the practice of calculations 
shows, the iterative process is convergent. In the event of a 
discrepancy, it is necessary, as at the first In the event of a 
discrepancy, it is necessary, as in the first stage, to exit by 
the parameter to the mode specified by slip.  

The problem of calculating the steady-state mode at a 
given torque on the motor shaft is solved in two stages. At 
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the first stage, we set a slip value that is probably close to 
the specified torque and calculate the coordinates of the 
mode, including the value corresponding to the numerical 
value of the slip, using the above electromagnetic torque 
formula. We substitute the obtained coordinate values into 
the steady-state equation and obtain the unbound states, 
which are reduced to zero step by step in the second stage 
of the calculation. In this case, the Jacobi matrix is the 
same as in the iterative refinement of the solution. 
 

Research results 
To evaluate the results of the changes made to the 

model of an induction motor with a squirrel-cage rotor, we 
simulated an induction motor in Matlab/Simulink 
4AP160S4Y3 (P=15 kW, U = 220 V, In = 29.9 А, p0 = 2, 
sn=0.02, mn=2.0, mк=2.2, mm=1.6). In Fig.2, the calculation 
results of current dependencies on time in three elements of 
the rotor bar in the starting mode with the rated torque on 
the shaft are presented. 

 
Fig. 2. An example of the results of calculating the time 
dependence of currents in three elements of the rotor bar in the 
starting mode with the rated torque on the shaft. 
 

 Figure 3 shows the calculated mechanical 
characteristics of the motor using the existing AD model in 
Matlab/Simulink and the improved model taking into 
account the influence of current displacement in the rotor 
bars. 

 

 
Fig. 3. Mechanical characteristics M(s). calculated taking into 
account the presentation of each bar with several elementary (1) 
and without it (2) 

Conclusion 
As it follows from the conducted studies, when choosing a 
replacement scheme for an asynchronous motor with a 
short-circuited rotor, it is necessary to keep in mind that the 
classic version of the T-shaped scheme for motors with 
deep grooves does not provide adequate calculation 
results. More accurate results can be obtained by equating 
a short-circuited winding with several, formed by dividing it 
into several layers in height. 
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