
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025 243

Serhi RENDZINYAK1, Roman KHOLODNIAK1, Vasyl KORUD2,
Dmitro TRUSHAKOV3, Oleksandr KOZLOVSKYI4

Faculty of Electronics and Computer Technologies, Ivan Franko-National University of Lviv (1), Institute of Power Engineering and Control
System Lviv Polytechnic Natonial University, Lviv (2), Department of Automation and Control in Technical Systems Central Ukrainian

National Technical University, Kropyvnytskyi (3), Department of Electrical Systems and Energy Management Central Ukrainian National
Technical University, Kropyvnytskyi (4)

ORCID: 1. 0000-0003-4544-4871; 2. 0000-0002-1289-3534; 3. 0000-0003-0326-2383; 4. 0000-0001-6885-5994

doi:10.15199/48.2025.03.56

Research on the efficiency of parallel computations
in relaxation methods for the analysisof dynamic systems

Abstract. Peculiarities of the use of parallel computing for the analysis of dynamic systems are studied using the example of the Lotka-Volterra
"predator-prey" model. Such relaxation methods as the Jacobi, Gauss-Seidel, SOR and their parallel implementations using Python libraries and
modules are considered. The analysis of the efficiency and accuracy of these methods, and the influence of the model parameters on the calculation
results, was carried out. A graphical interface for visualization and study of population dynamics has been developed. The obtained results show the
capabilities of parallel computing to accelerate and improve the accuracy of modeling complex dynamic systems that consist of parts with deep
connections.

Streszczenie. Specyfika wykorzystania obliczeń równoległych do analizy układów dynamicznych jest badana na przykładzie modelu „drapieżnik-
ofiara” Lotki-Volterry. Rozważane są takie metody relaksacji jak Jacobiego, Gaussa-Seidela, SOR i ich równoległe implementacje z wykorzystaniem
bibliotek i modułów Python. Przeprowadzono analizę efektywności i dokładności tych metod oraz wpływu parametrów modelu na wyniki obliczeń.
Opracowano graficzny interfejs do wizualizacji i badania dynamiki populacji. Uzyskane wyniki pokazują możliwości obliczeń równoległych w celu
przyspieszenia i poprawy dokładności modelowania złożonych układów dynamicznych, które składają się z części o głębokich połączeniach. (Badania
nad efektywnością obliczeń równoległych w metodach relaksacyjnych do analizy układów dynamicznych)

Keywords: parallel computations, relaxation method, dynamic system, Lotka-Volterra equations
Słowa kluczowe: obliczenia równoległe, metoda relaksacji, system dynamiczny, równania Lotka-Volterra

Introduction
In today's rapidly developing world, processing huge

amounts of data and modeling complex systems are
increasingly important tasks. One of the basic tools for
solving them is parallel computing, which allows you to speed
up information processing and solve complex problems
significantly.

The application of parallel computing for modeling
dynamic systems, which describe the interaction of various
system components in time, is especially relevant. Such
models are used in various scientific disciplines, including
physics, electrical engineering, biology, and ecology.

At the same time, there is an important problem of
creating such a task, which would be universal, and on the
example of which it is possible to check the capabilities of
parallel approaches, verify the developed software tools, and
compare their effectiveness.

Such a task can be the study of one of the classic models
of dynamic systems, namely, the Lotka-Volterra model [1, 2],
which describes the interaction between populations of
predators and prey:

1
1 2

2
2 1

()

()

dx
x a bx

dt

dx
x d cx

dt


= −


 = − +


where x1 is the number of preys; x2 is number of predators; a
is prey reproduction rate; b is the death rate of prey from
predators; d is rate of death of predators from starvation; c is
a coefficient reflecting whether the predator will have enough
food for reproduction.

This model may be of interest to electrical engineers if
accepted x1 is the number of equipment failures; x2 is the
number of operating personnel; a is damage/failure rate; b is
repair of damage by personnel; d is speed of dismissal of
personnel from absence from work; c is a coefficient that
reflects the need to hire additional personnel.

The Lotka-Volterra model predicts a cyclical relationship
between predator and prey populations, since as the number
of predators increases, so does the level of prey
consumption, which in turn increases the number of
predators. However, an increase in the level of consumption
causes obvious consequences – a decrease in the
population of prey, which leads to a decrease in the number
of predators. As the predator population declines, the number
of victims will recover. After that, the number of predators can
begin to increase, and the cycle begins again. This model is
important for understanding ecosystem dynamics and
predicting changes in populations of various species.

The Lotka-Wolterra mathematical model differs from the
classical system of differential equations in the Cauchy form
by the presence of the x1x2 component on the right side of the
equations. Thus, it is impossible to divide the system (1) into
two subsystems or equations with one state variable, which
can be connected using two additional matching sources.
This was done in works [3, 4], and other well-known works [5-
9] in which a diakoptic approach is developed as the
partitioning simulation of subcircuits using relaxation
methods.

It is not difficult to model system (1) by explicit numerical
methods and, accordingly, to analyze each equation in
parallel. Since the use of implicit integration methods is
assumed here, a false opinion can form that it is impossible
to parallelize such a process of simulation of the system (1).

This paper focuses on research and implementation of
parallel computations in relaxation methods used to solve the
Lotka-Volterra model. Relaxation methods are iterative
methods that allow you to find approximate solutions to a
system of equations through successive approaches to the
result.

Purpose and objectives of the research

The purpose of this work is to develop effective parallel
algorithms [10-14] for relaxation methods and their
application for modeling the dynamics of populations in the
"predator-prey" system. Let's consider different Python

244 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025

libraries and modules that allow you to implement parallel
calculations and compare their efficiency. Also, the relevance
of this work is explained by the fact that parallel computing
was used for population forecasting according to the Lotka-
Volterra model using relaxation methods for the first time.

To achieve the goal, it is necessary:
1) to conduct a study of the effectiveness of relaxation

methods (Jacobi, Gauss-Seidel, relaxation method with SOR
– Successive Over-Relaxation) for solving the discretized
Lotka-Volterra model;

2) to analyze the impact of parallel calculations using
various Python libraries and modules (Ray, Dash,
Multiprocessing, Joblib, Concurrent.Futures) on the speed
and accuracy of the solution;

3) to evaluate the accuracy and convergence of the
numerical solutions obtained by relaxation methods, in
comparison with the Euler method solution of the problem,
which is not divided into subtasks;

4) to demonstrate the capabilities of the developed
graphical interface for interactive research of the Lotka-
Volterra model and the influence of various parameters on its
behavior.

Research methods

A. Discretization of the Lotka-Volterra model by the
Euler method

Formally, it is possible to create an equivalence electrical
circuit in which parametric resistances R12 and R21 (Fig. 1)
are used instead of matching sources if specialized software
has such capabilities,

1 1 1
1

1 12

2 2 2
2

2 21

C C C

C C C

du u u
C

dt R R

du u u
C

dt R R


= − −



 = − −


where uC1 = x1; R1 = –1/(aC1); R12 = 1/(bC1x2); uC2 = x2;
R2 = 1/(dC2); R21 = –1/(cC2x1). However, for our task, the use
of existing software for the simulation of electric circuits is not
necessary.

C1 R1 R12 R21 R2 C2

Fig. 1. An equivalence electrical circuit of the Lotka-Volterra model

If the Lotka-Volterra differential equations are discretized
by Euler's implicit method, then we obtain a system of
nonlinear differential equations (3), which will be solved by
relaxation methods

()

()

1 1 1 1 1 2 1

2 1 2 2 1 1 1

() () () ()

() () () ()

n n n n

n n n n

x t x t x t a bx t dt

x t x t x t d cx t dt

+ + +

+ + +

 = + −


= + − +

where n is the integration step number.
Thus, a system of difference equations was obtained that

describes the change in predator and prey populations at
each time step.

B. Implementation of relaxation methods
Python programming codes are developed for the

implementation of Jacobi, Gauss-Seidel and SOR relaxation
methods, respectively.

1) Jacobi method

() () ()()
() () ()()

1
1 1 1 1 1 2 1

1
2 1 2 2 1 1 1

()

()

i i i
n n n n

i i i
n n n n

x t x t x t a bx t dt

x t x t x t d cx t dt

+
+ + +

+
+ + +

 = + −


 = + − +


where i is the iteration number.
In the Jacobi method, the update of the values of the

unknowns x1 and x2 at each iteration step is independent.
This makes it easy to distribute calculations across several
processors using such an algorithm:

1. There are divided the calculation into independent
tasks for each element x1 and x2 at each step of the iteration.

2. Each processor receives a subset of tasks to
calculate the new values of x1 and x2.

3. The calculated values are then collected and used
for the next iteration step.

2) Gauss-Seidel method

() () ()()
() () ()()

1
1 1 1 1 1 2 1

1 1
2 1 2 2 1 1 1

()

()

i i i
n n n n

i i i
n n n n

x t x t x t a bx t dt

x t x t x t d cx t dt

+
+ + +

+ +
+ + +

 = + −


 = + − +


In the Gauss-Seidel method, the values of x1 and x2 are
updated sequentially. However, it is possible to use parallel
computations for each iteration step, computing new values
in parallel and then synchronizing the results.

1. There are divided the calculation into parallel tasks
for finding x1 and x2 at each step of the iteration.

2. Each processor calculates a value for its subset of
the data.

3. After the new values are calculated, the results are
synchronized and used for the next step.

3) Method SOR

() ()()
() ()()

() ()

() ()

1 1 1 1 2 1

1
2 2 2 1 1 1

1
1 1 1 1 1

1
2 1 2 1 2

()

()

(1)

(1)

i i
n n n

i i
n n n

i i
n n

i i
n n

X x t x t a bx t dt

X x t x t d cx t dt

x t x t X

x t x t X

+ +

+
+ +

+
+ +

+
+ +

 = + −


 = + − +


 = − +


 = − +


The SOR method involves the use of the relaxation
parameter ω, which makes it a bit more difficult to parallelize.
However, similar to the Gauss-Seidel method, it is possible
to use parallel computations for each iteration step with
subsequent synchronization of the results.

1. There are divided the calculation into parallel tasks
for calculating x1 and x2 at each step of the iteration.

2. Each processor calculates the value for its subset of
data considering the relaxation parameter ω.

3. After the new values are calculated, the results are
synchronized and used for the next step.

C. Parallelization of calculations
To speed up calculations, parallel calculations using

Python libraries and modules (Ray, Dash, Multiprocessing,
Joblib, Concurrent. Futures) were applied for each of the
relaxation methods [3, 4].

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025 245

Below are examples of the implementation of parallel
calculations for each method.

D. Graphical program interface
To obtain the necessary research results and ease of

visualization, a graphical interface has been developed that
displays phase and time diagrams, changes in calculation
errors at each step, and a field with algorithm parameters.

Results of experimental research

With standard model parameters
α (alpha): 1.0 (Growth rate of prey),
β (beta): 0.1 (Rate predators consume prey),
δ (delta): 0.074 (Growth rate of predators),
γ (gamma): 1.5 (Rate predators die),
X10: 40 (Initial prey population),
X20: 9 (Initial predator population),
dt: 0.01 (Time step),
Steps: 1000 (Number of steps),
the Jacobi method shows almost one hundred percent
convergence (Fig. 2).

The Gauss-Seidel method shows minimal deviations
(Fig. 3).

The SOR method shows deviations that directly depend
on the value of ω, for example, if ω = 1.5 (Fig. 4), then there
is a shift to the left; at ω = 0.5, the curve shifts to the right and
at ω = 1.0, the values are identical according to the Gauss-
Seidel method, which is not surprising, because the SOR
method is a modified version of this method.

Overall, after setting the various model parameters, it is
safe to say that at small integration step (dt = 0.01 or less)
and with the number of steps <10000, the Jacobi method and
the Gauss-Seidel method show very accurate predictions
with small deviations for Gauss-Seidel method and with
minimum deviations for Jacobi method, although at large
integration step (dt > 0.01) or large number of steps >10000,
these methods lose their accuracy and show very unstable
results. The SOR method, in turn, either shows the same
values as the Gauss-Seidel method, or a value with a shift
that is directly proportional to the value of ω.

In the context of parallel computing, the situation is
somewhat different (Table I). The table of results is given
below (ω = 1.5 for SOR method).

Fig. 2. Results of population analysis by the Jacobian method

Fig. 3. Results of the population analysis using the Gauss-Seidel
method

Fig. 4. Results of the population analysis by the SOR method

When comparing different methods of parallel

calculations, the following was found: the Dask library shows
the same values as the relaxation methods without parallel
calculations (None), the Ray library has a significantly
increased running time, compared to Dask and None, which
is not a good symptom. The Joblib library, when using all
processors, shows results 10 times worse than other
methods, which indicates its complete unsuitability for
relaxation methods in the Lotka-Volterra model. In turn, the
Concurrent.Futures module shows a phenomenal reduction
in the time required for data processing, which, with the
increase in the number of steps and the increase in the
values of the steps, does not exceed 1 second, while None
and other modules can spend more than 5 seconds on this.
There was also an attempt to implement the Multiprocessing
module, but it showed results even worse than Joblib,
spending consistently more than 2 minutes to process the
results, when other methods take no more than 10 seconds.
That is why it was decided not to enter the value for
Multiprocessing in the table, but to warn that the module is
probably the worst way to implement relaxation methods in
our model. Therefore, an effective approach to the use of
parallel computations has been investigated and shown, as
the duration of computations, which can vary by orders of
magnitude, depends on it, as well as their importance in the

246 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025

context of accelerating the analysis of complex dynamic
systems.

Table 1. Statistical results of parallelization of algorithms

 Dask
Jobli

b

concurren
t.

futures
Ray

Non
e

dt=0.01
steps=1000
method = Jacobi

0.65s 16 s 0.039 s 2 s 0.61s

dt=0.01
steps=1000
method = Gauss

1.1 s 30 s 0.05 s 3.2 s 1.1 s

dt=0.01
steps=1000
method = SOR

1.1 s 31 s 0.05 s 3.2 s 1.1 s

dt=0.01
steps=5000
method = Jacobi

3.2 s 77 s 0.2 s 9.3 s 3.2 s

dt=0.01
steps=5000
method = Gauss

5.4 s 155 s 0.25 s 15.5s 5.4 s

dt=0.01
steps=5000
method = SOR

8.9 s 155 s 0.35 s 16.6s 7.7 s

dt=0.001
steps=2500
method = Jacobi

1.76s 38.4 s 0.13 s 5 s 1.71s

dt=0.001
steps=2500
method = Gauss

3.2 s 77 s 0.15 s 11 s 3 s

dt=0.001
steps=2500
method = SOR

3 s 83 s 0.15 s 8.7 s 3.1 s

Conclusions

In the paper, a deep study and verification of parallel
computations using Jacobi, Gauss-Seidel and SOR
relaxation methods for the analysis of dynamic systems using
the example of the Lotka-Volterra model, which describes the
"predator-prey" interaction, is carried out.

A Python application has been developed and
implemented that efficiently simulates the Lotka-Volterra
system using parallel computations to increase speed and
accuracy of the obtained results. Namely, the Jacobi method
and the Gauss-Seidel method provide high accuracy at small
values of the sampling step and a small number of iterations.
However, when these parameters increase, the accuracy of
these methods decreases. The SOR method, although more
efficient under some conditions, has shown sensitivity to the
relaxation parameter, requiring careful tuning to achieve
optimal results.

When investigating parallel computations, it was found
that the Concurrent.Futures module provides the best
computation acceleration, especially as the problem
complexity increases. The Dask and Ray libraries also
performed well, although Ray requires more resources to
configure. The Joblib and Multiprocessing modules proved to
be less efficient for this particular task.

REFERENCES

[1] V. Volterra, Lessons on the Mathematical Theory of Struggle
for Life. Paris, France: Gauthier-Villars, 1931 (original work).

[2] T. R. Malthus, An assay on the principle of population, as it
affects the future improvement of society. London, UK:
Science, 1798 (original work).

[3] Rendzinyak Serhiy. Simulation of Spatial Coordinate of
Movable Ferromagnetic Solid Object in Induced Magnetic Field
by Diakoptic Methods // Przegl d elektrotechniczny, Vol. 2011,
No. 5, pp. 146-148.

[4] Modeling of electric power systems based on diakoptic
approach and parallel algorithms in modern computer tools //
Stakhiv, P., Rendzinyak, S., Hoholyuk, O. Przeglad
Elektrotechniczny, 2010, 86(1), pp. 115–117.

[5] Newton A.R., Sangiovanni-Vincentelli A.L. Relaxation-based
electrical simulation // IEEE Trans. on Computer-Aided Design.
– 1984. Vol. 3, Is. 10. – P. 308-331.

[6] Shima T., Kamatani Y. A circuit simulator based on the
waveform-relaxation method using selective overlapped
partition and classified latencies // IEEE International
Symposium on Circuits and Systems, 7-9 June 1988. – 1988.
– Vol. 2. – P. 1651-1654.

[7] Saviz P., Wing O. Circuit simulation by hierarchical waveform
relaxation // IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. – June 1993. – Vol. 12, Is. 6.
– P. 845-860.

[8] Peterson L., Mattisson S. Tradeoffs in partitioning for waveform
relaxation on multicomputers // IEEE International Symposium
on Circuits and Systems, 1-3 May 1990. – 1990. – Vol. 2. – P.
1581-1584.

[9] Lau F.C.M. Waveform relaxation analysis of lossy coupled
transmission line sets in cascade // IEE Proc. Circuits, Devices
and Systems. – Dec. 1995. – Vol. 142, Is. 6. – P. 373-378.

[10] Robey R., Zamora Y. Parallel and High Performance
Computing. New York, NY: Manning Publications, 2021. 704 p.

[11] Foster I. Designing and Building Parallel Programs. London:
Pearson Plc, 2019. 408 p.

[12] Mattson T. G., He Y., Koniges A. E. The OpenMP Common
Core: Making OpenMP Simple Again. Cambridge, MA: The
MIT Press, 2019. 320 p.

[13] Pacheco P., Malensek M. An Introduction to Parallel
Programming. Burlington, MA: Morgan Kaufmann Publishers,
2020. 496 p. 15

[14] Chapman B., Jost G., Van Der Pas R. Using OpenMP: Portable
Shared Memory Parallel Programming. Cambridge, MA: The
MIT Press, 2007. 384 p

