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Comparative analysis of grad-CAM and LIME for explainable AI 
in CNN-based drilled hole classification in melamine faced 

chipboard  
 
 

Streszczenie. W przemyśle meblarskim precyzja w wierceniu otworów w płycie wiórowej laminowanej melaminą jest kluczowa dla utrzymania jakości 
produktu i minimalizacji strat finansowych. Ręczne monitorowanie stanu wierteł, choć do pewnego stopnia skuteczne, jest nieefektywne i mało 
precyzyjne. W niniejszym artykule przedstawiono porównawczą analizę dwóch technik wyjaśnialnej sztucznej inteligencji (XAI) — Gradient-weighted 
Class Activation Mapping (Grad-CAM) i Local Interpretable Model-Agnostic Explanations (LIME) — zastosowanych w podejściu opartym na 
konwolucyjnej sieci neuronowej (CNN) do automatycznego monitorowania stanu narzędzi (TCM). Wykorzystując wstępnie wytrenowaną sieć VGG16, 
klasyfikujemy stan wywierconych otworów na trzy kategorie: zielony, żółty i czerwony. Zarówno Grad-CAM, jak i LIME dostarczają wizualnych 
wyjaśnień dla predykcji modelu, zwiększając przejrzystość i niezawodność systemu. Nasze porównawcze badanie podkreśla mocne i słabe strony 
każdej metody w interpretacji decyzji modelu CNN, mając na celu poprawę efektywności i wiarygodności zautomatyzowanych systemów TCM. 
Proponowane podejście wykazuje znaczący potencjał w zastosowaniach przemysłowych, gdzie zrozumienie procesu decyzyjnego modeli AI jest tak 
samo krytyczne jak ich dokładność. 

 
Abstract. In the furniture industry, precision in drilling holes in melamine-faced chipboard is crucial to maintaining product quality and minimizing 
financial losses. Manual monitoring of drill conditions, while somewhat effective, is inefficient and imprecise. This paper presents a comparative 
analysis of two Explainable AI (XAI) techniques-Gradient-weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic 
Explanations (LIME)—applied to a Convolutional Neural Network (CNN) based approach for automated tool condition monitoring (TCM). By leveraging 
the VGG16 pretrained network, we classify the condition of drilled holes into three categories: Green, Yellow, and Red. Both Grad-CAM and LIME 
provide visual explanations for the model’s predictions, enhancing the transparency and reliability of the system. Our comparative study highlights the 
strengths and limitations of each method in interpreting the CNN model’s decisions, ultimately aiming to improve the effectiveness and trustworthiness 
of automated TCM systems. The proposed approach shows significant potential for industrial applications, where understanding the decision-making 
process of AI models is as critical as their accuracy. (Analiza porównawcza grad-CAM i LIME pod kątem możliwej do wyjaśnienia sztucznej 
inteligencji w opartej na CNN klasyfikacji otworów wierconych w płycie wiórowej pokrytej melaminą) 

 
Słowa kluczowe: grad-cam, lime, wyjaśnialna ai, uczenie maszynowe, płyta wiórowa laminowana, monitorowanie stanu narzędzia 
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Introduction 
The furniture manufacturing process encompasses 

numerous complex and precision-dependent steps. One of 
the most critical phases is drilling holes in melamine-faced 
chipboard, where inaccuracies can lead to substantial 
financial losses due to diminished product quality. 
Traditionally, the condition of drills has been monitored 
manually to determine the optimal time for replacement, 
ensuring consistent product quality. However, manual 
monitoring, while providing some control, lacks efficiency and 
precision. Therefore, there is a growing need for an 
automated, accurate and efficient solution. 

Various Tool Condition Monitoring (TCM) methodologies 
have been developed to evaluate and assess the condition 
of different tools, including drills [3]. Although these 
approaches can yield accurate results, they often involve 
extensive preprocessing, and errors at any stage can 
compromise the final outcome [12], [13], [14], [15], [16], [17], 
[18]. 

Despite sophisticated features derived from vast 
amounts of collected data, the accuracy of such solutions 
rarely exceeds 90% [4], [6], [7], [8], [9]. 

Convolutional Neural Networks (CNNs) have the 
capability to automatically extract relevant features from 
images, reducing the need for manual feature engineering 
[1], [2], [5], [10], [11]. However, the black-box nature of these 
models raises concerns regarding their interpretability and 
trustworthiness, especially in critical applications. 
Explainable AI (XAI) strives to make machine learning 
models more interpretable and transparent. Prominent 
techniques in XAI include Gradient-weighted Class 

Activation Mapping (Grad-CAM) [20] and Local Interpretable 
Model-Agnostic Explanations (LIME) [21], [22], which provide 
insights into individual predictions by highlighting important 
regions in the input data. 

This paper presents a comparative analysis of Grad-CAM 
and LIME applied to a CNN-based classification model for 
drilled holes in melamine-faced chipboard. By integrating 
these XAI techniques, we aim to improve the interpretability 
of the model, identify potential issues, and enhance trust in 
the automated TCM system. 

 

Data Set 
The dataset consists of images captured during 

controlled drilling experiments. The drilling was performed 
using a standard CNC vertical machining center, Busellato 
Jet 100, in Thiene, Italy. The material used was a typical 
laminated chipboard (U511SM – Swiss Krono 88 Group) 
widely utilized in the furniture industry, with dimensions of 
2500x300x18 mm. The drilling tool applied was a 12mm 
Faba WP-01 drill equipped with a tungsten carbide tip.  

Table 1 summarizes the data acquisition process and the 
final corner wear measurements for each drill at the end of 
the last drilling cycle. 

 

Table 1. Summary of data collection and drill wear measurements 

Drill # Green/Yellow/Red Total Images 

1 840/420/406 2,520 

2 840/700/280 2,520 

3 700/560/420 2,100 

4 840/560/280 2,520 

5 560/560/560 1,680 
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CNN Model and VGG16 Pretrained Network 
 To classify the condition of drilled holes, we applied a 
Convolutional Neural Network (CNN) based on the VGG16 
architecture. The VGG16 network, pretrained on the 
ImageNet dataset, was utilized as the base model. The final 
layers were modified to suit our classification task, adapting 
it to distinguish between the three drill conditions: Green 
(good condition), Yellow (moderate wear), and Red (severe 
wear). 
 The dataset was divided into five folds, each representing 
a different drill, to perform cross-validation. This approach 
ensured that the model’s performance was consistently 
evaluated and generalized well to unseen data. In each fold, 
one subset was used for testing while the others were used 
for training. 
 The training process involved fine-tuning the VGG16 
network on our dataset of drilled hole images. The model’s 
performance was evaluated based on accuracy and the 
number of misclassified cases. Table II summarizes the 
evaluation results for each fold. 
 
Table 2. Summary of data collection and drill wear measurements 

Drill # Acc % Green as Red Red as Gren Total 

1 71.00  1 3 4 

2 70.82  8 11 19 

3 63.98  1 58 59 

4 56.13  61 0 61 

5 70.77  1 15 16 

Total 66.60 72 87 159 

 
The overall accuracy across all folds was 66.60%. The 

highest accuracy was observed in Fold 1 (71.00%), while 
Fold 4 showed the lowest accuracy (56.13%). 
 
Explainable AI Techniques 

To interpret the predictions of our CNN model and 
improve its transparency, we applied two XAI techniques: 
Gradient weighted Class Activation Mapping (Grad-CAM) 
and Local Interpretable Model-Agnostic Explanations 
(LIME). Both methods provide visual explanations by 
highlighting important regions in the input images that 
influence the model’s predictions. 
 
A. Gradient-weighted Class Activation Mapping (Grad-CAM) 
 Grad-CAM uses the gradients of the target class flowing 
into the final convolutional layer to produce a localization 
map highlighting important regions in the image [22]. It 
operates 
by: 

• Performing a forward pass to compute activations. 

• Computing gradients of the classification score with 
respect to feature maps. 

• Averaging these gradients to obtain importance weights. 

• Combining the weights with the feature maps to produce 
a heatmap. 

• Overlaying the heatmap on the original image for 
visualization. 

 
B. Local Interpretable Model-Agnostic Explanations (LIME) 
 LIME approximates the classification behavior of a 
complex model with a simpler, interpretable model to provide 
local explanations [27]. For image data, LIME: 

• Segments the image into superpixels. 

• Generates synthetic images by perturbing these 
superpixels. 

• Classifies the synthetic images using the original model. 

• Fits an interpretable model (e.g., linear model) to these 
samples. 

• Highlights superpixels that contribute most to the 
prediction. 

 
Numerical Experiments 
 We applied both Grad-CAM and LIME to interpret the 
predictions of our CNN model. Figures 1 and 2 show 
examples of correctly classified images with their respective 
explanations. 
 Figures 3 and 4 display examples of misclassified images 
and their explanations.  
 
A. Analysis of Grad-CAM Explanations 
 Grad-CAM heatmaps indicate that the model focuses on 
specific regions around the drilled holes when making 
predictions. In correctly classified images, the highlighted 
areas correspond to the edges and wear patterns indicative 
of the drill condition. In misclassified cases, the model may 
focus on irrelevant regions, leading to incorrect predictions. 
 
B. Analysis of LIME Explanations 
 LIME explanations highlight superpixels that contribute 
most to the prediction. In correctly classified images, LIME 
identifies segments that align with areas of wear or 
characteristic patterns. Misclassifications often result from 
the model attributing importance to superpixels that do not 
correspond to meaningful features, suggesting that the 
model may be sensitive to noise or irrelevant textures. 
 
Discussion 
 The comparative analysis of Grad-CAM and LIME 
reveals distinct advantages and disadvantages for each 
method in interpreting the CNN model’s decisions.  
 
A. Advantages and Disadvantages of Grad-CAM 
 
Grad-CAM offers several advantages: 

• Class-Discriminative Localization: Grad-CAM provides 
class-specific heatmaps, highlighting the regions that 
positively influence the predicted class [22]. 

• Alignment with CNN Architecture: It leverages the 
convolutional layers’ spatial information, making it 
particularly effective for CNNs. 

• Computational Efficiency: Grad-CAM requires only a 
single backward pass to compute gradients, making it 
relatively efficient. 

 
However, Grad-CAM has some limitations: 

• Model Dependency: It is inherently tied to models with 
convolutional layers, limiting its applicability to other 
architectures. 

• Coarse Explanations: The resulting heatmaps may be 
coarse and lack fine-grained details, potentially 
overlooking subtle features. 

• Gradient Saturation: In some cases, gradients can 
saturate, leading to less informative heatmaps. 

 
B. Advantages and Disadvantages of LIME 
 
LIME’s advantages include: 

• Model-Agnostic Explanations: LIME can be applied to 
any classifier, regardless of its internal structure [27]. 

• Local Interpretability: It provides explanations for 
individual predictions by approximating the model locally 
with an interpretable one. 

• Superpixel-Based Insights: By highlighting superpixels, 
LIME can offer insights into specific image regions 
influencing the prediction. 
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The disadvantages of LIME are: 

• Dependency on Segmentation: The quality of 
explanations depends on the image segmentation 
algorithm; poor segmentation can lead to misleading 
explanations. 

• Computational Cost: Generating explanations requires 
creating and classifying multiple perturbed samples, 
which can be computationally intensive. 

• Approximation Errors: The linear model used to 
approximate the complex model may not capture non-
linear interactions, potentially reducing explanation 
fidelity. 

 Figure 1 presents examples of LIME and Grad-CAM 
visualizations for correctly classified images. These 
visualizations help in understanding the model’s focus areas 
and can be used to identify potential issues in the model or 
the dataset. 
 Figure 2 shows examples of LIME and Grad-CAM 
visualizations for incorrectly classified images. These 
visualizations provide insights into the model’s errors, 
highlighting areas where the model’s predictions were 
influenced by irrelevant or misleading features in the images. 
 

 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig 1. LIME and Grand-CAM explanations for correctly classified images: (a) Green (Predicted: Green), (b) Yellow (Predicted: Yellow), (c) 
Red (Predicted: Red); For LIME highlighted superpixels: (d), (e), (f)  and  For Grad-CAM highlighted superpixels: (g), (h), (i) respectively. 
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
Fig 2. LIME and Grad-CAM explanations for misclassified images: (a) Green (Predicted: Red), (b) Green (Predicted: Red), (c) Red (Predicted: 
Green); For LIME highlighted superpixels: (d), (e), (f) and for Grad-CAM Heatmaps: (g), (h), (i) respectively

 
Application to Drilled Hole Classification 
 In our experiments, Grad-CAM provided smoother and 
more intuitive visualizations, effectively highlighting regions 
around the drilled holes that correlated with wear patterns. This 
helped in understanding where the model focused its attention 
when making predictions. 
 LIME offered more granular insights at the superpixel level, 
potentially revealing finer details. However, the reliance on 
segmentation meant that if the superpixels did not align well 
with meaningful features (e.g., edges of the holes or wear 
marks), the explanations could be less precise or even 
misleading. 
 Moreover, the computational cost of LIME was higher due 
to the need to generate numerous synthetic samples for each 
explanation. In a real-time industrial setting, this could be a 
limiting factor. 
 

D. Recommendations 
 
Based on the advantages and disadvantages observed: 

• For CNN Models in Image Classification Tasks: Grad-
CAM may be preferred due to its efficiency and alignment 
with convolutional architectures. 

• When Model-Agnostic Explanations are Needed: LIME is 
suitable when explanations are required for models 
beyond CNNs or when comparing different model types. 

• Combining Methods: Using both methods in conjunction 
can provide complementary insights, balancing the 
coarse localization of Grad-CAM with the superpixel level 
details of LIME. 

 
Conclusion 
 This paper presented a comparative analysis of Grad-
CAM and LIME for explaining the predictions of a CNN-based 
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model classifying drilled holes in melamine-faced chipboard. 
By applying these XAI techniques, we enhanced the 
interpretability and transparency of the model, which is 
crucial for industrial applications where understanding the 
reasoning behind AI decisions is essential. 
 Our findings suggest that while Grad-CAM is more 
suitable for providing quick, class-specific visualizations in 
CNNs, LIME offers detailed, model-agnostic explanations at 
the cost of higher computational resources. Combining these 
methods can offer a more comprehensive understanding of 
the model’s decisions. 
 Future work will focus on integrating these explanations 
into real-time TCM systems and exploring additional XAI 
techniques to further improve model interpretability and 
performance. 
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