
146 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025

1. Maciej CZYŻAK1, 2. Robert SMYK2

ANS w Elblagu (1), Politechnika Gdańska (2)
ORCID: 2. 0000-0001-9365-4633

doi:10.15199/48.2025.03.35

New residue-to-binary converter
for moduli set {𝟐𝒏 − 𝟏, 𝟐𝒏, 𝟐𝒏 + 𝟏} based on core function

Abstract. The paper presents a new algorithm for conversion from the residue number system with the base {2𝑛 − 1, 2𝑛 , 2𝑛 + 1} to the binary system.
The converter is based on core function. The use of core function allows for simpler converter formula and thus leads to more effective converter
architecture. The conversion algorithm is presented. The architecture of a new converter is shown and its time-hardware complexity is analysed.

Streszczenie. W artykule przedstawiono nowy algorytm konwersji z systemu resztowego z bazą {2𝑛 − 1, 2𝑛, 2𝑛 + 1} do systemu binarnego. Konwerter
opiera się na wykorzystaniu funkcji jądra. Zastosowanie funkcji jądra pozwala na uproszczoną formułę konwertera, a tym samym prowadzi do bardziej
efektywnej architektury konwertera. Przedstawiono nowy algorytm konwersji oraz pokazano architekturę nowego konwertera i przeanalizowano jego
złożoność czasowo-sprzętową. (Nowy konwerter resztkowo-binarny dla zestawu modułów {𝟐𝒏 − 𝟏, 𝟐𝒏, 𝟐𝒏 + 𝟏} na podstawie funkcji rdzeniowej)

Keywords: core function, residue number system, RNS, residue-to-binary conversion
Słowa kluczowe: funkcja jądra, resztowy system liczbowy, RNS, konwersja z RNS do systemu binarnego

Introduction
Digital signal processing (DSP) is a subarea of electrical
engineering as well as the main tool used in this area. The
DSP has been applied to improve the design of electric drives
[1-5]. For example, FFT can be used to analyze short-circuit
currents of transformers [6].

The majority of digital architectures that process signals
in real-time require the pipelined high-speed hardware
realization. Such solutions call for fine granulation of the
architecture due to the delay of the slowest block that
determines the minimum pipelining rate. One of the effective
tools for these applications where multiply-add operations
dominate is the residue number system (RNS) [7]. In this
system high speed, low-level pipelined realization of addition
subtraction and multiplication is attainable. The RNS
replaces operations in the large integer ring by a set of
operations in smaller integer rings. After converting an
integer number to RNS addition, subtraction and
multiplication can be performed independently on the
corresponding digits of the arguments without carries
between the positions of the number. However, to process
numbers in RNS they must be first converted to the RNS
representation [8]. This operation is relatively simple. An
exemplary solution is given in [8]. RNS is determined by its
base 𝐵 = {𝑚1, 𝑚2, … , 𝑚𝑛}, where 𝑚𝑖, 𝑖 = 1, . . 𝑛 are termed
moduli. Two types of bases are usually considered. An useful
type of the base is 𝐵1 where the moduli 𝑚𝑖 are small 5-, 6-bit
numbers. The other type are bases where the moduli are akin

to the power of two. The example can be 𝐵2 = {2𝑛, 2𝑛 −
1, 2𝑛 + 1}. 𝐵1 type base allows for greater parallelisation and
replacing multipliers by constant using small ROMs or even
logic functions that permits to avoid the delay introduced by
multipliers or greater ROMs. However, each RNS-based
architecture must contain a residue-to-binary converter
which is a pure overhead. Much work has been done to
simplify converter structures and made them hardware
efficient and pipelined. In general, the converter formula for
the 𝐵1 type bases can be derived using Chinese Remainder
Theorem (CRT) [9,10,13], the MRC [11,12] or both [16] as
well as New-CRT II [14] or core function [15]. In the case of
𝐵2 base the converter can be implemented without ROMs.

Much work as pertaining to {2𝑛, 2𝑛 − 1, 2𝑛 + 1} has been
done [17-27].

Recently of special interest is in {2𝑛, 2𝑛 − 1, 2𝑛 + 1}
[25,27], due to the fact, that 2𝑛 residue channel is simpler

than two other channels and therefore the dynamic range

can be increased by increasing 𝑘.
In the present work a novel approach to reverse converter

design is proposed based on the use of core function. The
use of core function simplifies the converter formula. The
direct application of the core function is not effective due to
the necessity to perform division. However, it can be avoided
by the appropriate use of weights of core function as in [15].
In this paper the derivation of the reverse converter based on
core function using the Chinese Remainder Theorem for
Core Functions (CRTCF) [26] is presented. In the following
sections an introduction to RNS is provided, the properties of
modulo 2𝑛 − 1 are discussed, next properties of the core
function are analyzed and finally, the derivation of the
converter formula is given, along with the converter
architecture and its evaluation and comparison.

RNS basics
 RNS [7] is defined by its base 𝐵 = {𝑚1, 𝑚2, … , 𝑚𝑛}, i.e.
being a set of usually mutually nonnegative numbers called

moduli. The RNS number range 𝑀 is expressed as 𝑀 =
∏ 𝑚𝑖

𝑛
𝑖=1 . 𝑀 denotes the number of integers that can be

represented using the given base. If the moduli are mutually

prime, i.e. 𝑔𝑐𝑑 (𝑚𝑗 , 𝑚𝑘) = 1 for ≠ 𝑘, 𝑗, 𝑘 = 1,2, … , 𝑛 then any

integer 𝑋 from [0, 𝑀 − 1] can be represented by a vector of 𝑛

integers (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖 = |𝑋|𝑚𝑗 are residues that

uniquely represent 𝑋 in RNS. The arithmetic operations of
addition, subtraction and multiplication in RNS are defined as

(1) (𝑥1, 𝑥2, … , 𝑥𝑛)⨁(𝑦1, 𝑦2, … , 𝑦𝑛) = (𝑧1, 𝑧2, … , 𝑧𝑛)

where 𝑧𝑖 =  |𝑥𝑖  ⨁𝑦𝑖|𝑚𝑖

, 𝑖 = 1,2, … , 𝑛  and ⨁ denotes an

operation of addition, subtraction or multiplication performed
in small rings 𝑅(𝑚𝑖) , 𝑖 = 1,2, … , 𝑛. The mutual primality
condition of moduli ensures that the mapping between the
ring modulo 𝑀 and the sum of the rings is an isomorphism.
Such a mapping can be implemented using the Chinese
remainder theorem (CRT) or Mixed Radix Conversion
(MRC). CRT has the following form

(2) 𝑋 = |∑ 𝑀𝑖
𝑛
𝑖=1 |𝑀𝑖

−1|
𝑚𝑖

𝑥𝑖|
𝑀

where 𝑀𝑖 =
𝑀

𝑚𝑖
 , |𝑀𝑖

−1|
𝑚𝑖

 is the multiplicative inverse of

𝑀𝑖 modulo 𝑚𝑖.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025 147

Properties of modulo 𝟐𝒏 − 𝟏 arithmetic
We consider here two operations that will be needed for

realization of the converter: calculation of |−𝑌|2𝑛−1 and
reduction modulo 2𝑛 − 1. Let 𝑌 be represented in the binary

form as 𝑌 ↔ (𝑦𝑛−1, … , 𝑦0) where 𝑦𝑖 , 𝑖 = 0,1, … , 𝑛 − 1 are

digits of its binary representation. 𝑌 after sign change can be
obtained as

(3) |−𝑌|2𝑛−1 = |2𝑛 − 1 − 𝑌|2𝑛−1

The value on the right side of (3) is one’s complement that
corresponds to the negation of all bits of 𝑌

(4) 2𝑛 − 1 − 𝑌 ↔ (𝑦̅𝑛−1, … , 𝑦̅0)

The reduction modulo 2𝑛 − 1 of an n-bit number 𝑌, where
𝑚 > 𝑛 can be performed by segmentation of an n-bit number

into 𝑘 = ⌊
𝑚

𝑛
⌋ + |𝑚|𝑛 n-bit blocks. Finally, the reduction can be

performed as

(5) |𝑌|2𝑛−1 = ∑ |𝑌𝑗|
2𝑛−1

𝑘
𝑗=1

Properties of core function
 For the base 𝐵 = {𝑚1, 𝑚2, … , 𝑚𝑛} the core function is
defined as

(6) 𝐶(𝑋) = ∑ 𝑤𝑖 ⌊
𝑋

𝑚𝑖
⌋𝑛

𝑖=1

For the given base 𝐵 the weights 𝑤𝑖, 𝑖 = 1,2, … , 𝑛 are
constants and have to be properly selected to obtain the
desired properties of the core function. 𝐶(𝑋) is a step
function and if all weights are nonnegative, then it is a
nondecreasing step function and it contains the direct
positional characteristic of the number. However, in such a
case its number range may be too large. In fact, the choice
of weights 𝑤𝑖, should be such that the minimum 𝐶𝑚𝑖𝑛 should

be close to 𝐶(0) and maximum core 𝐶𝑚𝑎𝑥 to 𝐶(𝑀) on [0, 𝑀)
, where

(7) 𝐶(𝑀) = ∑ 𝑤𝑖 ⋅ 𝑀𝑖

𝑛
𝑖=1

 In practice, the local selectivity and the number range
must be balanced. The formula (6) can be expressed in the
more convenient form

(8) 𝐶(𝑋) =
𝐶(𝑀)

𝑀
⋅ 𝑋 − ∑

𝑤𝑖

𝑚𝑖

𝑛
𝑖=1 ⋅ |𝑋|𝑚𝑖

It can be seen from (8) that 𝐶(𝑋) has the linear and
nonlinear part. Equation (8) is derived form (6) and (7).

Regarding that 𝑀𝑖 = 𝑀/𝑚𝑗, (8) cannot be used directly since

the residues of 𝑋 are available and not 𝑋 itself. Moreover,
computations of the core function by (8) would require
division that is noneffective. The more suitable way is the use
of Chinese Remainder Theorem for Core Function (CRTCF)
in the following form

(9) 𝐶(𝑋) = ∑ 𝑥𝑖 ⋅ 𝐶𝑖

𝑛
𝑖=1 − 𝑟(𝑋) ⋅ 𝐶(𝑀)

where 𝑟(𝑋) is the magnitude index coefficient and

(10) 𝐶𝑖 =
𝐶(𝑀)⋅|𝑀𝑖

−1|
𝑚𝑖

−𝑤𝑖

𝑚𝑖
 , 𝑖 = 1,2, … , 𝑛

The CRTCF can be also written as

(11) 𝐶(𝑋) = |∑ 𝑥𝑖
𝑛
𝑖=1 ⋅ 𝐶𝑖|𝐶(𝑀)

The correct value of 𝐶(𝑋) cannot be obtained for these 𝑋

for which 𝐶(𝑋) < 0 or 𝐶(𝑋) ≥ 𝐶(𝑀). Such values of 𝐶(𝑋) are

called critical cores. 𝑋 using the CRTCF can be expressed
as

 (12) 𝑋 =
𝑀⋅𝐶(𝑋)+∑ 𝑤𝑖

𝑛
𝑖=1 ⋅𝑀𝑖⋅|𝑋|𝑚𝑖

𝐶(𝑀)

New conversion algorithm
 In this section we shall derive the conversion formula
using (12) for 𝐵 = {2𝑛 − 1, 2𝑛, 2𝑛 + 1}. We select 𝐶(𝑀) as

(13) 𝐶(𝑀) = (2𝑛 − 1) ⋅ (2𝑛 + 1) = 22𝑛 − 1

Next we shall compute the coefficients 𝑀𝑖

(14a) 𝑀1 = 2𝑛(2𝑛 + 1)

(14b) 𝑀2 = (2𝑛 − 1)(2𝑛 + 1)
(14c) 𝑀3 = (2𝑛 − 1)2𝑛

In the next step we should choose the weights 𝑤𝑖, 𝑖 =
1,2,3 so that there will be no division in (12) when computing

(10). The choice of 𝑊 = (0,1,0) will make it possible.
 The multiplicative inverses required in (10) have the
following values

(15a) |𝑀1
−1|𝑚1

= 2𝑛−1

(15b) |𝑀2
−1|𝑚1

= 2𝑛 − 1

(15c) |𝑀3
−1|𝑚1

= 2𝑛−1 + 1

Using (15) we can compute coefficients 𝐶𝑖, 𝑖 = 1,2,3 as

(16a) 𝐶1 =
(2𝑛−1)(2𝑛+1)⋅2𝑛−1−0

2𝑛−1

 = (2𝑛 + 1)2𝑛−1

(16b) 𝐶2 =
(2𝑛−1)(2𝑛+1)(2𝑛−1)−1

2𝑛

= 22𝑛 − 2𝑛 + 1

(16c) 𝐶3 =
(2𝑛−1)(2𝑛+1)(2𝑛−1+1)−0

2𝑛+1

 = (2𝑛 − 1)(2𝑛−1 + 1)

Using coefficients 𝐶1, 𝐶2, 𝐶3 from (16) we receive

 𝐶(𝑋) = |∑ 𝐶𝑖
3
𝑖=1 |

𝐶(𝑀)

(17) = |
𝑥1(2𝑛 + 1)2𝑛−1 + 𝑥2(22𝑛 − 2𝑛 − 1)

+𝑥3(22𝑛−1 + 2𝑛 − 2𝑛−1 − 1)
|

22𝑛−1

After reordering terms for 𝑥𝑖, 𝑖 = 1,2,3 we have the first

form of 𝐶(𝑋)

(18) 𝐶(𝑋) = |(𝑥1 + 2𝑥2 + 𝑥3)22𝑛−1
+(𝑥1 − 2𝑥2 + 𝑥3)2𝑛−1

 +(−𝑥2 − 𝑥3)|22𝑛−1

Moreover, using (12) and substituting 𝑀 = (2𝑛 − 1)(2𝑛 + 1) ⋅
2𝑛 , 𝑀𝑖 , 𝑖 = 1,2,3 , 𝐶(𝑀) = (2𝑛 − 1) ⋅ (2𝑛 + 1) and 𝑤 =
{0,1,0} , after reduction, we obtain

(19) 𝑋 = 2𝑛𝐶(𝑋) + |𝑋|2𝑛

It is evident, that first term is the right-shift of the 𝐶(𝑋) by

n-bits and addition of |𝑋|2𝑛 is a simple concatenation.

Numerical example
 In this section we shall present calculations of (15) for

two bases. The first one is 𝐵3 = {25 − 1, 25, 25 + 1} and the

second 𝐵4 = {216 − 1,216, 216 + 1}. The dynamic ranges are:

𝑀 = 32736 for 𝐵3 and 𝑀 = 281474976645120.
 For 𝐵3 and 𝑋 = 10253 we obtain

 𝑥1 = |𝑋|25−1 = 31

148 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025

 𝑥2 = |𝑋|25 = 32

 𝑥3 = |𝑋|25+1 = 33

After inserting it in (15) we have

𝐶(𝑋) = |(31 + 2 ⋅ 32 + 33)29
+(31 − 2 ⋅ 32 + 33)24

+(−32 − 33)|210−1

= |36864 + 320 − 36|1023 = 320

Finally, 𝑋 for 𝐵3 is

 𝑋 = 32 ⋅ 320 + |10253|32 = 10253

For 𝐵4 and 𝑋 = 67998 we obtain

 𝑥1 = |𝑋|216−1 = 2463

 𝑥2 = |𝑋|216 = 2462

 𝑥3 = |𝑋|216+1 = 2461

After substituting it in (15) we get

𝐶(𝑋) = |(2463 + 2 ⋅ 2462 + 2461)231
+(2463 − 2 ⋅ 2462 + 2461)215

+(−2462 − 2461)|232−1

= |21148418965504 + 0 − 4923|4294967295 = 1

Finally, 𝑋 for 𝐵4 is equal to

 𝑋 = 216 ⋅ 1 + |67998|216
= 65536 + 2462 = 67998

Converter design
 In order to determine the formula for implementing the
converter, we need to group the terms from (18) for 𝑥1, 𝑥2, 𝑥3.
Ordering by individual residues we get

(20) 𝐶(𝑋) = |

𝑥1(22𝑛−1 + 2𝑛−1) +

𝑥2(2 ⋅ 22𝑛−1 − 2 ⋅ 2𝑛−1 − 1) +

𝑥3(22𝑛−1 + 2𝑛−1 − 1)

|

22𝑛−1

The terms are sums of the shifted versions of operands.

Simplifying the second term in (20) to |𝑥2(22𝑛 − 2𝑛 − 1)|22𝑛−1

we can remark that |22𝑛 − 1|22𝑛−1 = 0 and −2 ⋅ 22𝑛−1 =
−22𝑛, thus we receive |𝑥2(−22𝑛)|22𝑛−1. For the third term

𝑥3(22𝑛−1 + 2𝑛−1 − 1) we transform 22𝑛−1 to 22𝑛 − 22𝑛−1.

Due to the modulo reduction in |22𝑛 − 1 − 22𝑛−1 + 2𝑛−1|22𝑛−1

we get | − 22𝑛−1 + 2𝑛−1|22𝑛−1. Ultimately, we obtain a
relationship that will be used to design the converter

 (21) 𝐶(𝑋) = |

𝑥1(22𝑛−1 + 2𝑛−1) +

𝑥2(−2𝑛) +

𝑥3(−22𝑛−1 + 2𝑛−1)

|

22𝑛−1

The first term A: 𝑥1(22𝑛−1 + 2𝑛−1) can be realised by shifted

concatenation of 𝑥1bits. It can be remarked that there is no

overlapping of 𝑥122𝑛−1 and 𝑥12𝑛−1. Hence, it can be used
as a single operand.
 The second term B 𝑥2(−2𝑛) can be implemented as

𝑥2(22𝑛 − 1 − 2𝑛) in order to avoid subtraction.

 The third term 𝑥3(−22𝑛−1 + 2𝑛−1) consists of two parts C:

𝑥3(−22𝑛−1) and D: 𝑥32𝑛−1. Table 1 shows schema of
operands 𝑥1, 𝑥2, 𝑥3 representations for n=3. In order to avoid

negative numbers when computing 𝐶(𝑋) in (21) we have to

replace negative terms by 22𝑛 − 1 − 𝑎 or if 𝑎 ≥ 22𝑛+2 − 1

then 22𝑛+2 − 1 − 𝑎.

(22) 𝐶(𝑋) = ||

𝑥1(22𝑛−1 + 2𝑛−1) +

22𝑛 − 1 − 𝑥22𝑛 +

𝑥32𝑛−1+23𝑛−1 − 1 − 𝑥322𝑛−1

+(22𝑛 − 1) − |23𝑛−1 − 1|22𝑛−1

||

22𝑛−1

For 𝑛 = 3 because (22𝑛 − 1) − |22𝑛+2 − 1|22𝑛−1 = 3 we

should subtract −3 from the final sum. But it can be replaced

by adding 60 to the final sum.

Table 1. Example of binary representation of residues 𝒙𝒊, 𝒊 = 𝟏, 𝟐, 𝟑
from (21) for n=3

 28 27 26 25 24 23 22 21 20
A 0 𝑥1

2 𝑥1
1 𝑥1

0 𝑥1
2 𝑥1

1 𝑥1
0 0 0

B 0 0 0 𝑥̅2
2 𝑥̅2

1 𝑥̅2
0 1 1 1

C 0 𝑥̅3
2 𝑥̅3

1 𝑥̅3
0 1 1 1 1 1

D 0 0 0 𝑥3
3 𝑥3

2 𝑥3
1 𝑥3

0 0 0
E 0 0 0 1 1 1 1 0 0

We can see that there is no bit

x̅3
3 because the 4-bit representation has the residue equal to

28. Thus, the negation of this bit always gives 0, so x̅3
3 can

be omitted. In the Table 2 we show the binary
representations of individual operands from (22) for 𝑥 = 6.

Table 2. Example of binary representation of residue values (𝒙𝟏 =
𝟔, 𝒙𝟐 = 𝟔, 𝒙𝟑 = 𝟔) for 𝒏 = 𝟑 and 𝑿 = 𝟔

 28 27 26 25 24 23 22 21 20
A 0 1 1 0 1 1 0 0 0 216
B 0 0 0 0 0 1 1 1 1 15
C 0 0 0 1 1 1 1 1 1 63
D 0 0 0 0 1 1 0 0 0 24
E 0 0 0 1 1 1 1 0 0 60

Hence, we obtain for the Table 2 𝐶(𝑥) = 𝐶(6) = |378|63 = 0.

Finally using (19) we obtain 𝑥 = 6 at the output, that is the
correct result.

Converter architecture
 The converter architecture is built of the CSA tree adder

with end-around-carry (EAC) and modulo 22𝑛 − 1 carry
propagate adder (CPA). The CSA consists of three layers
that sum up the operands consisting of shifted individual bits
of the residues and inverses of selected bits as shown in
Table 1. First two layers sum up the individual terms from
(22) and the third layer is used for adding EAC bits resulting

from bits exceeding 22𝑛 − 1. The inversion of bits is the result

of the replacing subtraction modulo 22𝑛 − 1 by the negation
of the operands as in (22). In the third layer EAC bits resulting

from the reduction powers of 2 modulo 22𝑛 − 1 are added.
Finally, the CSA carry and sum vectors are added by the
CPA that performs addition of operands and recurrent carry

bit obtained as a result of the reduction modulo 22𝑛 − 1 MSB
in the CPA. In Fig. 1 discussed converter architecture for 𝑛 =
3 is given.

Fig. 1. New converter architecture for 𝑛 = 3

Evaluation and comparison
 Several converter architectures have been presented

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025 149

[17-31]. We shall compare the delay and area with the
probably most effective converter given in [28].
 For the new converter the approximate area can be
written as

(23) 𝐴𝑛𝑒𝑤 = (6𝑛 + 1)𝐴𝐹𝐴

where additional 𝐴𝐹𝐴 represents equivalent of 2𝑛 + 2
inverters. The delay can be expressed as

(24) 𝑡𝑛𝑒𝑤 = 𝑡𝑖𝑛𝑣 + 3𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴

We do not include the area and delay of 22𝑛 − 1 modulo
adder as in other works. We can remark that the delay

generally does not depend on 𝑛.
 In Table 3 we have compared our converter architecture
with [28] and [30] because they are probably the best known
converters with respect to hardware and time complexity.
Converter from [30] does not explicitly contains the CSA that
performs the EAC that would need an additional layer. In fact

the CE converter requires additionally an equivalent of 𝑛 FAs
due to AND/OR gates. The additional delay caused by one
FA is not important for pipelined implementations because in
new technologies 𝑡𝐹𝐴 may be less than 50 𝑝𝑠.

Table 3. Comparison of hardware and time complexity of the
converters

Converter FA AND/OR XOR Delay

[28] CE
 HS

4𝑛 + 1
6𝑛 + 1

2𝑛 − 1
2𝑛 − 1

2𝑛
2𝑛

2𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴
2𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴

+ 𝑡𝑀𝑈𝑋

[30] 4𝑛 0 0 2𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴

New 6𝑛 + 1 0 0 𝑡𝑖𝑛𝑣 + 3𝑡𝐹𝐴

+ 2𝑡𝐶𝑃𝐴

Summary
 In this paper we presented a new algorithm of residue-to-
binary conversion based on core function and converter
architecture. The use of core function leads to more simple
conversion formulas, that also facilitate the converter design.
The converter has the comparable time-hardware complexity
with the best known converters.

Authors: dr hab. inż. Maciej Czyżak, Akademia Nauk Stosowanych
w Elblągu, Instytut Informatyki Stosowanej im. K. Brzeskiego, ul.
Wojska Polskiego 1, Elbląg, E-mail: m.czyzak@ans-elblag.pl; dr inż.
Robert Smyk, Wydział Elektrotechniki i Automatyki, Politechnika
Gdańska, ul. Narutowicza 11/12, Gdańsk, E-mail:
robert.smyk@pg.edu.pl .

REFERENCES
[1] Sozański K., Digital signal processing in power electronics control

circuits, 2 ed., Springer Verlag London Ltd, 2017.
[2] Rebizant W., Szafran J., Wiszniewski A., Digital signal processing

in power systems protection and control (Signals and
Communication Technology), Springer Verlag London Ltd, 2011.

[3] Barzegaran M.R., Youssef T. A, Berzoy A., Mohammed O.A.,
Electric machine drive design improvements through control and
digital signal processing techniques, IEEE Transactions on
Energy Conversion, 30, (3), 1255-1264, 2015.

[4] Moynihan F., Fundamentals of DSP-based control for ac
machines, Analog Devices, vol. 34, 2000.

[5] Toliyat, H.A., Campbell S.G., DSP-Based electromechanical
motion control, CRC Press, 20003.

[6] Czyżak, M., Digital structures for high-speed digital signal
processing, Wyd. Pol. Gdańskiej, 2013.

[7] Mohan, P.A., Residue Number Systems: Algorithms and
Architectures (2016). Springer Science & Business Media.

[8] Smyk, R., Czyżak, M., High-speed binary-to-residue converter
design Using 2-bit segmentation of the input word (2022).
Scientific Journal of Gdynia Maritime University, 42-56.

[9] Piestrak, S. J., Design of high-speed residue-to-binary number
system converter based on Chinese remainder theorem (1994).

In Proceedings 1994 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, 508-511.

[10] Czyżak, M., An improved high-speed residue-to-binary
converter based on the Chinese Remainder Theorem (2007).
Pomiary Automatyka Kontrola, 53(4), 72-73.

[11] Chakraborti, Soundararajan, and Reddy. An implementation of
mixed-radix conversion for residue number applications. IEEE
Transactions on Computers (1986): 762-764.

[12] Miller, D. F., McCormick W. S., An arithmetic free parallel mixed-
radix conversion algorithm, IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing (45), (1998),
158-162.

[13] Van Vu, Efficient implementations of the Chinese remainder
theorem for sign detection and residue decoding. IEEE
Transactions on Computers (1985): 646-651.

[14] Wang, Y., Residue-to-binary converters based on new Chinese
remainder theorems (2000). IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 47(3), 197-
205.

[15] Czyżak, M., RNS reverse converter based on core function,
SPETO (2008): 141-142.

[16] Huang, C., A fully parallel mixed-radix conversion algorithm for
residue number applications. IEEE Transactions on
computers100.4 (1983): 398-402.

[17] Bernardson, P., Fast memoryless, over 64 bits, residue-to-
binary convertor (1985). IEEE Transactions on Circuits and
Systems, 32(3), 298-300.

[18] Ibrahim, K.M., Saloum, S.N., An efficient residue to binary
converter design (1988). IEEE Transactions on Circuits and
Systems, 35(9), 1156–1158.

[19] Sweidan, A., Hiasat, A., A new efficient memoryless residue to
binary converter (1988). IEEE Transactions on Circuits and
Systems, 35(11), 1441–1444.

[20] Dhurkadas, A., Comments on" An efficient residue-to-binary
converter design" by KM Ibrahim and SN Saloum, (1990). IEEE
Transactions on Circuits and Systems, 37(6), 849-850.

[21] Piestrak, S. J., A high-speed realization of a residue to binary
number system converter (1995). IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, 42(10),
661-663.

[22] Dhurkadas, A., Comments on "A high speed realization of a
residue to binary number system converter" (1998). IEEE
Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, 45(3), 446-447.

[23] Wang, Y., Residue-to-binary converters based on new Chinese
remainder theorems (2000). IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 47(3), 197-
205.

[24] Wang, Z., Jullien, G.A., Miller, W.C., An improved residue-to-
binary converter (2000). IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 47(9), 1437–
1440.

[25] Patronik, P., Piestrak, S. J., Design of Reverse Converters for
General RNS Moduli Sets, (2014). IEEE Transactions on
Circuits and Systems I: Regular Papers, 61(6), 1687-1700.

[26] Miller, D.D., Altschul, R.E., King J.R., Polky, J.N., Analysis of the
residue class core function of Akushskii, Burcev, Pak, in
Residue Number System Arithmetic: Modern Applications in
Digital Signal Processing, Aug. 1986, 390-401.

[27] Patronik, P., Piestrak, S.J., Design of reverse converters for the

general 3-moduli set { 2𝑘 , 2𝑛 − 1, 2𝑛 + 1}, EURASIP Journal on
Advances in Signal Processing, (2023), 2023-92.

[28] Piestrak, S. J., A high-speed realization of a residue to binary
number system converter (1995). IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, 42(10),
661-663.

[29] Wang, Y., Song, X., Aboulhamid, M., Shen, H., Adder based
residue to binary number converters for (2n − 1, 2n , 2n + 1).
(2002). IEEE Transactions on Signal Processing, 50(7), 1772–
1779.

[30] Wang, Z., Jullien, G.A., Miller, W.C., An improved residue-to-
binary converter (2000). IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 47(9), 1437–
1440.

[31] Ibrahim, K.M., Saloum, S.N., An efficient residue to binary
converter design (1988). IEEE Transactions on Circuits and
Systems, 35(9), 1156–1158.

