
146                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025 

1. Maciej CZYŻAK1, 2. Robert SMYK2 

ANS w Elblagu (1), Politechnika Gdańska (2) 
ORCID: 2. 0000-0001-9365-4633 

 
doi:10.15199/48.2025.03.35 

 

New residue-to-binary converter  
for moduli set  {𝟐𝒏 − 𝟏, 𝟐𝒏, 𝟐𝒏 + 𝟏} based on core function 

 
 

Abstract. The paper presents a new algorithm for conversion from the residue number system with the base  {2𝑛 − 1, 2𝑛 , 2𝑛 + 1} to the binary system. 
The converter is based on core function. The use of core function allows for simpler converter formula and thus leads to more effective converter 
architecture. The conversion algorithm is presented. The architecture of a new converter is shown and its time-hardware  complexity is analysed. 
 
Streszczenie. W artykule przedstawiono nowy algorytm konwersji z systemu resztowego z bazą {2𝑛 − 1, 2𝑛, 2𝑛 + 1}  do systemu binarnego. Konwerter 
opiera się na wykorzystaniu funkcji jądra. Zastosowanie funkcji jądra pozwala na uproszczoną formułę konwertera, a tym samym prowadzi do bardziej 
efektywnej architektury konwertera. Przedstawiono nowy algorytm konwersji oraz pokazano architekturę nowego konwertera i przeanalizowano jego 
złożoność czasowo-sprzętową. (Nowy konwerter resztkowo-binarny dla zestawu modułów {𝟐𝒏 − 𝟏, 𝟐𝒏, 𝟐𝒏 + 𝟏}  na podstawie funkcji rdzeniowej) 
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Introduction 
Digital signal processing (DSP) is a subarea of electrical 
engineering as well as the main tool used in this area. The 
DSP has been applied to improve the design of electric drives 
[1-5]. For example, FFT can be used to analyze short-circuit 
currents of transformers [6].  

The majority of digital architectures that process signals 
in real-time require the pipelined high-speed hardware 
realization. Such solutions call for fine granulation of the 
architecture due to the delay of the slowest block that 
determines the minimum pipelining rate. One of the effective 
tools for these applications where multiply-add operations 
dominate is the residue number system (RNS) [7]. In this 
system high speed, low-level pipelined realization of addition 
subtraction and multiplication is attainable. The RNS 
replaces operations in the large integer ring by a set of 
operations in smaller integer rings. After converting an 
integer number to RNS addition, subtraction and 
multiplication can be performed independently on the 
corresponding digits of the arguments without carries 
between the positions of the number. However, to process 
numbers in RNS they must be first converted to the RNS 
representation [8]. This operation is relatively simple. An 
exemplary solution is given in [8]. RNS is determined by its 
base 𝐵 = {𝑚1, 𝑚2, … , 𝑚𝑛}, where 𝑚𝑖, 𝑖 = 1, . . 𝑛 are termed 
moduli. Two types of bases are usually considered. An useful 
type of the base is 𝐵1 where the moduli 𝑚𝑖 are small 5-, 6-bit 
numbers. The other type are bases where the moduli are akin 

to the power of two. The example can be 𝐵2 = {2𝑛, 2𝑛 −
1, 2𝑛 + 1}.  𝐵1 type base allows for greater parallelisation and 
replacing multipliers by constant using small ROMs or even 
logic functions that permits to avoid the delay introduced by 
multipliers or greater ROMs. However, each RNS-based 
architecture must contain a residue-to-binary converter 
which is a pure overhead. Much work has been done to 
simplify converter structures and made them hardware 
efficient and pipelined. In general, the converter formula for 
the 𝐵1 type bases can be derived using Chinese Remainder 
Theorem (CRT) [9,10,13], the MRC [11,12] or both [16] as 
well as New-CRT II [14] or core function [15]. In the case of 
𝐵2 base the converter can be implemented without ROMs. 

Much work as pertaining to {2𝑛, 2𝑛 − 1, 2𝑛 + 1} has been 
done [17-27]. 

Recently of special interest is in {2𝑛, 2𝑛 − 1, 2𝑛 + 1} 
[25,27], due to the fact, that 2𝑛 residue channel is simpler 

than two other channels and therefore the dynamic range 

can be increased by increasing 𝑘.  
In the present work a novel approach to reverse converter 

design is proposed based on the use of core function. The 
use of core function simplifies the converter formula. The 
direct application of the core function is not effective due to 
the necessity to perform division. However, it can be avoided 
by the appropriate use of weights of core function as in [15]. 
In this paper the derivation of the reverse converter based on 
core function using the Chinese Remainder Theorem for 
Core Functions (CRTCF) [26] is presented. In the following 
sections an introduction to RNS is provided, the properties of 
modulo 2𝑛 − 1 are discussed, next properties of the core 
function are analyzed and finally, the derivation of the 
converter formula is given, along with the converter 
architecture and its evaluation and comparison.  
 
RNS basics 
 RNS [7] is defined by its base 𝐵 = {𝑚1, 𝑚2, … , 𝑚𝑛}, i.e. 
being a set of usually mutually nonnegative numbers called 

moduli. The RNS number range 𝑀 is expressed as 𝑀 =
∏ 𝑚𝑖

𝑛
𝑖=1 . 𝑀 denotes the number of integers that can be 

represented using the given base. If the moduli are mutually 

prime, i.e. 𝑔𝑐𝑑 (𝑚𝑗 , 𝑚𝑘)  = 1 for ≠ 𝑘, 𝑗, 𝑘 = 1,2, … , 𝑛 then any 

integer 𝑋 from [0, 𝑀 − 1] can be represented by a vector of 𝑛 

integers (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖 = |𝑋|𝑚𝑗  are residues that 

uniquely represent 𝑋 in RNS. The arithmetic operations of 
addition, subtraction and multiplication in RNS are defined as 
 
(1)   (𝑥1, 𝑥2, … , 𝑥𝑛)⨁(𝑦1, 𝑦2, … , 𝑦𝑛) = (𝑧1, 𝑧2, … , 𝑧𝑛)       
 
where 𝑧𝑖 =  |𝑥𝑖  ⨁𝑦𝑖|𝑚𝑖

, 𝑖 = 1,2, … , 𝑛   and ⨁ denotes an 

operation of addition, subtraction or multiplication performed 
in small rings 𝑅(𝑚𝑖) , 𝑖 = 1,2, … , 𝑛. The mutual primality 
condition of moduli ensures that the mapping between the 
ring modulo 𝑀 and the sum of the rings is an isomorphism. 
Such a mapping can be implemented using the Chinese 
remainder theorem (CRT) or Mixed Radix Conversion 
(MRC). CRT has the following form 
 

(2)   𝑋 = |∑ 𝑀𝑖
𝑛
𝑖=1 |𝑀𝑖

−1|
𝑚𝑖

𝑥𝑖|
𝑀

   

 

where 𝑀𝑖 =
𝑀

𝑚𝑖
 , |𝑀𝑖

−1|
𝑚𝑖

 is the multiplicative inverse of 

𝑀𝑖  modulo 𝑚𝑖. 
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Properties of modulo 𝟐𝒏 − 𝟏 arithmetic 
We consider here two operations that will be needed for 

realization of the converter: calculation of |−𝑌|2𝑛−1 and  
reduction modulo 2𝑛 − 1. Let 𝑌  be represented in the binary 

form as  𝑌 ↔ (𝑦𝑛−1, … , 𝑦0)  where 𝑦𝑖 , 𝑖 = 0,1, … , 𝑛 − 1 are 

digits of its binary representation. 𝑌 after sign change can be 
obtained as 
 
(3)   |−𝑌|2𝑛−1 = |2𝑛 − 1 − 𝑌|2𝑛−1  

 
The value on the right side of (3) is one’s complement that 
corresponds to the negation of all bits of 𝑌 

 

(4)   2𝑛 − 1 − 𝑌 ↔ (𝑦̅𝑛−1, … , 𝑦̅0)  
 

The reduction modulo 2𝑛 − 1 of an n-bit number 𝑌, where 
𝑚 > 𝑛 can be performed by segmentation of an n-bit number 

into 𝑘 = ⌊
𝑚

𝑛
⌋ + |𝑚|𝑛 n-bit blocks. Finally, the reduction can be 

performed as 
 

(5)   |𝑌|2𝑛−1 = ∑ |𝑌𝑗|
2𝑛−1

𝑘
𝑗=1    

 

Properties of core function 
 For the base 𝐵 = {𝑚1, 𝑚2, … , 𝑚𝑛}  the core function is 
defined as  
 

(6)   𝐶(𝑋) = ∑ 𝑤𝑖 ⌊
𝑋

𝑚𝑖
⌋𝑛

𝑖=1  

 

For the given base 𝐵 the weights 𝑤𝑖, 𝑖 = 1,2, … , 𝑛 are 
constants and have to be properly selected to obtain the 
desired properties of the core function. 𝐶(𝑋)  is a step 
function and if all weights are nonnegative, then it is a 
nondecreasing step function and it contains the direct 
positional characteristic of the number. However, in such a 
case its number range may be too large. In fact, the choice 
of weights 𝑤𝑖, should be such that the minimum 𝐶𝑚𝑖𝑛 should 

be close to 𝐶(0)  and maximum core 𝐶𝑚𝑎𝑥 to 𝐶(𝑀)  on [0, 𝑀) 
, where  

            
(7)   𝐶(𝑀) = ∑ 𝑤𝑖 ⋅ 𝑀𝑖

𝑛
𝑖=1   

 

 In practice, the local selectivity and the number range 
must be balanced. The formula (6) can be expressed in the 
more convenient form 
 

(8)   𝐶(𝑋) =
𝐶(𝑀)

𝑀
⋅ 𝑋 − ∑

𝑤𝑖

𝑚𝑖

𝑛
𝑖=1 ⋅ |𝑋|𝑚𝑖

 

 

It can be seen from (8) that 𝐶(𝑋) has the linear and 
nonlinear part. Equation (8) is derived form (6) and (7). 

Regarding that 𝑀𝑖 = 𝑀/𝑚𝑗,  (8) cannot be used directly since 

the residues of 𝑋 are available and not 𝑋 itself. Moreover, 
computations of the core function by (8) would require 
division that is noneffective. The more suitable way is the use 
of Chinese Remainder Theorem for Core Function (CRTCF) 
in the following form 
  
(9)   𝐶(𝑋) = ∑ 𝑥𝑖 ⋅ 𝐶𝑖

𝑛
𝑖=1 − 𝑟(𝑋) ⋅ 𝐶(𝑀)  

 

where 𝑟(𝑋) is the magnitude index coefficient and  
 

(10)  𝐶𝑖 =
𝐶(𝑀)⋅|𝑀𝑖

−1|
𝑚𝑖

−𝑤𝑖

𝑚𝑖
 , 𝑖 = 1,2, … , 𝑛  

 

The CRTCF can be also written as 
 

(11)  𝐶(𝑋) = |∑ 𝑥𝑖
𝑛
𝑖=1 ⋅ 𝐶𝑖|𝐶(𝑀) 

 
The correct value of 𝐶(𝑋) cannot be obtained for these 𝑋 

for which 𝐶(𝑋) < 0 or 𝐶(𝑋) ≥ 𝐶(𝑀). Such values of 𝐶(𝑋) are 

called critical cores. 𝑋 using the CRTCF can be expressed 
as 
 

 (12)  𝑋 =
𝑀⋅𝐶(𝑋)+∑ 𝑤𝑖

𝑛
𝑖=1 ⋅𝑀𝑖⋅|𝑋|𝑚𝑖

𝐶(𝑀)
  

 
New conversion algorithm  
 In this section we shall derive the conversion formula 
using (12) for 𝐵 = {2𝑛 − 1, 2𝑛, 2𝑛 + 1}. We select 𝐶(𝑀) as 
 

(13)       𝐶(𝑀) = (2𝑛 − 1) ⋅ (2𝑛 + 1) = 22𝑛 − 1  
 

Next we shall compute the coefficients 𝑀𝑖  
 

(14a)   𝑀1 = 2𝑛(2𝑛 + 1)  

(14b)   𝑀2 = (2𝑛 − 1)(2𝑛 + 1)   
(14c)   𝑀3 = (2𝑛 − 1)2𝑛   
 

In the next step we should choose the weights 𝑤𝑖, 𝑖 =
1,2,3  so that there will be no division in (12) when computing 

(10). The choice of 𝑊 = (0,1,0) will make it possible.  
 The multiplicative inverses required in (10) have the 
following values 
 

(15a)   |𝑀1
−1|𝑚1

= 2𝑛−1  

(15b)    |𝑀2
−1|𝑚1

= 2𝑛 − 1    

(15c)   |𝑀3
−1|𝑚1

= 2𝑛−1 + 1  
 

Using (15) we can compute coefficients 𝐶𝑖, 𝑖 = 1,2,3 as 
 

(16a)  𝐶1 =
(2𝑛−1)(2𝑛+1)⋅2𝑛−1−0

2𝑛−1
    

       = (2𝑛 + 1)2𝑛−1 
 

(16b)  𝐶2 =
(2𝑛−1)(2𝑛+1)(2𝑛−1)−1

2𝑛  

= 22𝑛 − 2𝑛 + 1 
 

(16c)  𝐶3 =
(2𝑛−1)(2𝑛+1)(2𝑛−1+1)−0

2𝑛+1
     

                                 = (2𝑛 − 1)(2𝑛−1 + 1) 
 

Using coefficients 𝐶1, 𝐶2, 𝐶3 from (16) we receive 
 

           𝐶(𝑋) = |∑ 𝐶𝑖
3
𝑖=1 |

𝐶(𝑀)
 

(17)             = |
𝑥1(2𝑛 + 1)2𝑛−1 + 𝑥2(22𝑛 − 2𝑛 − 1)

+𝑥3(22𝑛−1 + 2𝑛 − 2𝑛−1 − 1)
|

22𝑛−1

  
After reordering terms for 𝑥𝑖, 𝑖 = 1,2,3 we have the first 

form of 𝐶(𝑋) 
 

(18)   𝐶(𝑋) = |(𝑥1 + 2𝑥2 + 𝑥3)22𝑛−1 
+(𝑥1 − 2𝑥2 + 𝑥3)2𝑛−1 

            +(−𝑥2 − 𝑥3)|22𝑛−1                     
 

Moreover, using (12) and substituting 𝑀 = (2𝑛 − 1)(2𝑛 + 1) ⋅
2𝑛  , 𝑀𝑖 , 𝑖 = 1,2,3 ,  𝐶(𝑀) = (2𝑛 − 1) ⋅ (2𝑛 + 1) and 𝑤 =
{0,1,0} , after reduction, we obtain 
 

(19)    𝑋 = 2𝑛𝐶(𝑋) + |𝑋|2𝑛 
 

It is evident, that first term is the right-shift of the 𝐶(𝑋) by 

n-bits and addition of |𝑋|2𝑛 is a simple concatenation. 
 
Numerical example  
 In this section we shall present calculations of (15) for 

two bases. The first one is 𝐵3 = {25 − 1, 25, 25 + 1} and the 

second 𝐵4 = {216 − 1,216, 216 + 1}. The dynamic ranges are: 

𝑀 = 32736 for 𝐵3 and 𝑀 = 281474976645120. 
 For 𝐵3 and 𝑋 = 10253 we obtain 
 

   𝑥1 = |𝑋|25−1 = 31 
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   𝑥2 = |𝑋|25 = 32 

   𝑥3 = |𝑋|25+1 = 33 
 

After inserting it in (15) we have 
 

𝐶(𝑋) = |(31 + 2 ⋅ 32 + 33)29 
+(31 − 2 ⋅ 32 + 33)24 

+(−32 − 33)|210−1 

= |36864 + 320 − 36|1023 = 320 
 

Finally, 𝑋  for 𝐵3 is 
 

      𝑋 = 32 ⋅ 320 + |10253|32 = 10253 
 

For 𝐵4 and 𝑋 = 67998 we obtain 
 

   𝑥1 = |𝑋|216−1 = 2463 

   𝑥2 = |𝑋|216 = 2462 

   𝑥3 = |𝑋|216+1 = 2461 
 

After substituting it in (15) we get 
 

𝐶(𝑋) = |(2463 + 2 ⋅ 2462 + 2461)231 
+(2463 − 2 ⋅ 2462 + 2461)215 

+(−2462 − 2461)|232−1 

= |21148418965504 + 0 − 4923|4294967295 = 1 
 

Finally, 𝑋 for 𝐵4 is equal to 

 𝑋 = 216 ⋅ 1 + |67998|216   
= 65536 + 2462 = 67998   

 
Converter design 
 In order to determine the formula for implementing the 
converter, we need to group the terms from (18) for 𝑥1, 𝑥2, 𝑥3. 
Ordering by individual residues we get 
 

(20)  𝐶(𝑋) = |

𝑥1(22𝑛−1 + 2𝑛−1) +

𝑥2(2 ⋅ 22𝑛−1 − 2 ⋅ 2𝑛−1 − 1) +

𝑥3(22𝑛−1 + 2𝑛−1 − 1)

|

22𝑛−1

 

 

The terms are sums of the shifted versions of operands. 

Simplifying the second term in (20) to |𝑥2(22𝑛 − 2𝑛 − 1)|22𝑛−1   

we can remark that |22𝑛 − 1|22𝑛−1 = 0 and −2 ⋅ 22𝑛−1 =
−22𝑛, thus we receive |𝑥2(−22𝑛)|22𝑛−1. For the third term 

𝑥3(22𝑛−1 + 2𝑛−1 − 1) we transform 22𝑛−1 to 22𝑛 − 22𝑛−1.  

Due to the modulo reduction in |22𝑛 − 1 − 22𝑛−1 + 2𝑛−1|22𝑛−1 

we get | − 22𝑛−1 + 2𝑛−1|22𝑛−1. Ultimately, we obtain a 
relationship that will be used to design the converter 
 

 (21)       𝐶(𝑋) = |

𝑥1(22𝑛−1 + 2𝑛−1) +

𝑥2(−2𝑛) +

𝑥3(−22𝑛−1 + 2𝑛−1)

|

22𝑛−1

    

 

The first term A: 𝑥1(22𝑛−1 + 2𝑛−1) can be realised by shifted 

concatenation of 𝑥1bits. It can be remarked that there is no 

overlapping of   𝑥122𝑛−1 and 𝑥12𝑛−1. Hence, it can be used 
as a single operand.  
 The second term B 𝑥2(−2𝑛) can be implemented as 

𝑥2(22𝑛 − 1 − 2𝑛) in order to avoid subtraction. 

 The third term 𝑥3(−22𝑛−1 + 2𝑛−1) consists of two parts C: 

𝑥3(−22𝑛−1) and D: 𝑥32𝑛−1. Table 1 shows schema of 
operands 𝑥1, 𝑥2, 𝑥3 representations for n=3. In order to avoid 

negative numbers when computing 𝐶(𝑋) in (21) we have to 

replace negative terms by 22𝑛 − 1 − 𝑎 or if 𝑎 ≥ 22𝑛+2 − 1 

then 22𝑛+2 − 1 − 𝑎. 
 

(22)   𝐶(𝑋) = ||

𝑥1(22𝑛−1 + 2𝑛−1) +

22𝑛 − 1 − 𝑥22𝑛 +

𝑥32𝑛−1+23𝑛−1 − 1 − 𝑥322𝑛−1

+(22𝑛 − 1) − |23𝑛−1 − 1|22𝑛−1

||

22𝑛−1

   

For 𝑛 = 3 because (22𝑛 − 1) − |22𝑛+2 − 1|22𝑛−1 = 3 we 

should subtract −3 from the final sum. But it can be replaced 

by adding 60 to the final sum.  
 
Table 1. Example of binary representation of residues 𝒙𝒊, 𝒊 = 𝟏, 𝟐, 𝟑 
from (21) for n=3 

 28 27 26 25 24 23 22 21 20 
A 0 𝑥1

2 𝑥1
1 𝑥1

0 𝑥1
2 𝑥1

1 𝑥1
0 0 0 

B 0 0 0 𝑥̅2
2 𝑥̅2

1 𝑥̅2
0 1 1 1 

C 0 𝑥̅3
2 𝑥̅3

1 𝑥̅3
0 1 1 1 1 1 

D 0 0 0 𝑥3
3 𝑥3

2 𝑥3
1 𝑥3

0 0 0 
E 0 0 0 1 1 1 1 0 0 

 

We can see that there is no bit  

x̅3
3 because the 4-bit representation has the residue equal to 

28.  Thus, the negation of this bit always gives 0, so x̅3
3 can 

be omitted. In the Table 2 we show the binary 
representations of individual operands from (22) for 𝑥 =  6. 
 
Table 2. Example of binary representation of residue values (𝒙𝟏 =
𝟔, 𝒙𝟐 = 𝟔, 𝒙𝟑 = 𝟔) for 𝒏 = 𝟑 and 𝑿 = 𝟔 

 28 27 26 25 24 23 22 21 20  
A 0 1 1 0 1 1 0 0 0 216 
B 0 0 0 0 0 1 1 1 1 15 
C 0 0 0 1 1 1 1 1 1 63 
D 0 0 0 0 1 1 0 0 0 24 
E 0 0 0 1 1 1 1 0 0 60 

 

Hence, we obtain for the Table 2 𝐶(𝑥) = 𝐶(6) = |378|63 = 0. 

Finally using (19) we obtain 𝑥 = 6 at the output, that is the 
correct result. 
 
Converter architecture 
 The converter architecture is built of the CSA tree adder 

with end-around-carry (EAC) and modulo 22𝑛 − 1 carry 
propagate adder (CPA). The CSA consists of three layers 
that sum up the operands consisting of shifted individual bits 
of the residues and inverses of selected bits as shown in 
Table 1. First two layers sum up the individual terms from 
(22) and the third layer is used for adding EAC bits resulting 

from bits exceeding 22𝑛 − 1. The inversion of bits is the result 

of the replacing subtraction modulo 22𝑛 − 1 by the negation 
of the operands as in (22). In the third layer EAC bits resulting 

from the reduction powers of 2 modulo 22𝑛 − 1 are added. 
Finally, the CSA carry and sum vectors are added by the 
CPA that performs addition of operands and recurrent carry 

bit obtained as a result of the reduction modulo 22𝑛 − 1 MSB 
in the CPA. In Fig. 1 discussed converter architecture for 𝑛 =
3 is given. 
 

 
Fig. 1. New converter architecture for 𝑛 = 3 
 
Evaluation and comparison  
 Several converter architectures have been presented  
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[17-31]. We shall compare the delay and area with the 
probably most effective converter given in [28].  
 For the new converter the approximate area can be 
written as 
 

(23)   𝐴𝑛𝑒𝑤 = (6𝑛 + 1)𝐴𝐹𝐴  
 

where additional 𝐴𝐹𝐴 represents equivalent of 2𝑛 + 2 
inverters. The delay can be expressed as 
 

(24)   𝑡𝑛𝑒𝑤 = 𝑡𝑖𝑛𝑣 + 3𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴  
 

We do not include the area and delay of 22𝑛 − 1 modulo 
adder as in other works. We can remark that the delay 

generally does not depend on 𝑛.  
 In Table 3 we have compared our converter architecture 
with [28] and [30] because they are probably the best known 
converters with respect to hardware and time complexity. 
Converter from [30] does not explicitly contains the CSA that 
performs the EAC that would need an additional layer. In fact 

the CE converter requires additionally an equivalent of 𝑛 FAs 
due to AND/OR gates. The additional delay caused by one 
FA is not important for pipelined implementations because in 
new technologies 𝑡𝐹𝐴 may be less than 50 𝑝𝑠. 
 
Table 3. Comparison of hardware and time complexity of the 
converters 

Converter FA AND/OR XOR Delay 

[28] CE 
       HS 

4𝑛 + 1 
6𝑛 + 1 

2𝑛 − 1 
2𝑛 − 1 

2𝑛 
2𝑛 

2𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴 
2𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴

+ 𝑡𝑀𝑈𝑋 

[30] 4𝑛 0 0 2𝑡𝐹𝐴 + 2𝑡𝐶𝑃𝐴 

New 6𝑛 + 1 0 0 𝑡𝑖𝑛𝑣 + 3𝑡𝐹𝐴

+ 2𝑡𝐶𝑃𝐴 
 

Summary  
 In this paper we presented a new algorithm of residue-to-
binary conversion based on core function and converter 
architecture. The use of core function leads to more simple 
conversion formulas, that also facilitate the converter design. 
The converter has the comparable time-hardware complexity 
with the best known converters. 
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