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New residue-to-binary converter

for moduli set {2" —1,2™,2™ 4+ 1} based on core function

Abstract. The paper presents a new algorithm for conversion from the residue number system with the base {2" — 1,2",2" + 1} to the binary system.
The converter is based on core function. The use of core function allows for simpler converter formula and thus leads to more effective converter
architecture. The conversion algorithm is presented. The architecture of a new converter is shown and its time-hardware complexity is analysed.

Streszczenie. W artykule przedstawiono nowy algorytm konwersji z systemu resztowego z bazg {2" — 1,2",2" + 1} do systemu binarnego. Konwerter
opiera sie na wykorzystaniu funkcji jgdra. Zastosowanie funkcji jagdra pozwala na uproszczong formute konwertera, a tym samym prowadzi do bardziej
efektywnej architektury konwertera. Przedstawiono nowy algorytm konwersji oraz pokazano architekture nowego konwertera i przeanalizowano jego
ztozono$c czasowo-sprzetowg. (Nowy konwerter resztkowo-binarny dla zestawu moduféw {2" — 1,2",2" + 1} na podstawie funkcji rdzeniowej)

Keywords: core function, residue number system, RNS, residue-to-binary conversion
Stowa kluczowe: funkcja jadra, resztowy system liczbowy, RNS, konwersja z RNS do systemu binarnego

Introduction

Digital signal processing (DSP) is a subarea of electrical
engineering as well as the main tool used in this area. The
DSP has been applied to improve the design of electric drives
[1-5]. For example, FFT can be used to analyze short-circuit
currents of transformers [6].

The majority of digital architectures that process signals
in real-time require the pipelined high-speed hardware
realization. Such solutions call for fine granulation of the
architecture due to the delay of the slowest block that
determines the minimum pipelining rate. One of the effective
tools for these applications where multiply-add operations
dominate is the residue number system (RNS) [7]. In this
system high speed, low-level pipelined realization of addition
subtraction and multiplication is attainable. The RNS
replaces operations in the large integer ring by a set of
operations in smaller integer rings. After converting an
integer number to RNS addition, subtraction and
multiplication can be performed independently on the
corresponding digits of the arguments without carries
between the positions of the number. However, to process
numbers in RNS they must be first converted to the RNS
representation [8]. This operation is relatively simple. An
exemplary solution is given in [8]. RNS is determined by its
base B = {m;,m,,...,m,}, where m;, i =1,..n are termed
moduli. Two types of bases are usually considered. An useful
type of the base is B; where the moduli m; are small 5-, 6-bit
numbers. The other type are bases where the moduli are akin
to the power of two. The example can be B, = {2",2" —
1,2™ + 1}. B, type base allows for greater parallelisation and
replacing multipliers by constant using small ROMs or even
logic functions that permits to avoid the delay introduced by
multipliers or greater ROMs. However, each RNS-based
architecture must contain a residue-to-binary converter
which is a pure overhead. Much work has been done to
simplify converter structures and made them hardware
efficient and pipelined. In general, the converter formula for
the B; type bases can be derived using Chinese Remainder
Theorem (CRT) [9,10,13], the MRC [11,12] or both [16] as
well as New-CRT Il [14] or core function [15]. In the case of
B, base the converter can be implemented without ROMs.
Much work as pertaining to {2™,2™ —1,2" 4+ 1} has been
done [17-27].

Recently of special interest is in {2",2" —1,2" + 1}
[25,27], due to the fact, that 2™ residue channel is simpler
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than two other channels and therefore the dynamic range
can be increased by increasing k.

In the present work a novel approach to reverse converter
design is proposed based on the use of core function. The
use of core function simplifies the converter formula. The
direct application of the core function is not effective due to
the necessity to perform division. However, it can be avoided
by the appropriate use of weights of core function as in [15].
In this paper the derivation of the reverse converter based on
core function using the Chinese Remainder Theorem for
Core Functions (CRTCF) [26] is presented. In the following
sections an introduction to RNS is provided, the properties of
modulo 2" -1 are discussed, next properties of the core
function are analyzed and finally, the derivation of the
converter formula is given, along with the converter
architecture and its evaluation and comparison.

RNS basics

RNS [7] is defined by its base B = {m;,m,, ..., m,}, i.e.
being a set of usually mutually nonnegative numbers called
moduli. The RNS number range M is expressed as M =
[, m;. M denotes the number of integers that can be
represented using the given base. If the moduli are mutually
prime, i.e. ged (m;,my) = 1for # k, j,k = 1,2,...,n then any
integer X from [0, M — 1] can be represented by a vector of n
integers (x4, xy, ..., X,), Where x; = IXImj are residues that

uniquely represent X in RNS. The arithmetic operations of
addition, subtraction and multiplication in RNS are defined as

(@) (1, %2, i X )OV1, Y20 ooos V) = (21,22, «er Z)

where z; = |x; ®yilm, i=12,..,n and & denotes an
operation of addition, subtraction or multiplication performed
in small rings R(m;) , i =1,2,...,n. The mutual primality
condition of moduli ensures that the mapping between the
ring modulo M and the sum of the rings is an isomorphism.
Such a mapping can be implemented using the Chinese
remainder theorem (CRT) or Mixed Radix Conversion
(MRC). CRT has the following form

@ X =[S MM, x|

M - . T . .

where M; =— , |Mi*| ~is the multiplicative inverse of
i i

M; modulo m;.
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Properties of modulo 2™ — 1 arithmetic

We consider here two operations that will be needed for
realization of the converter: calculation of |-Y|,»_; and
reduction modulo 2™ — 1. Let Y be represented in the binary
form as Y & (yu_1,..-,¥9) Where y;,i=0,1,..,n—1 are
digits of its binary representation. Y after sign change can be
obtained as

3 |_Y|2"—1 =2"-1- Y|2"—1

The value on the right side of (3) is one’s complement that
corresponds to the negation of all bits of Y

4) 2"=1-Y o (Jp-1, - ¥0)

The reduction modulo 2™ — 1 of an n-bit number Y, where
m > n can be performed by segmentation of an n-bit number

into k = I%J + |m|,, n-bit blocks. Finally, the reduction can be
performed as

(5) |Y|2"—1 = E§:1|Yj|2n_1
Properties of core function

For the base B = {my,m,, ..., m,;} the core function is
defined as

(6) C) = By wi ||

For the given base B the weights w;, i =1,2,...,n are
constants and have to be properly selected to obtain the
desired properties of the core function. C(X) is a step
function and if all weights are nonnegative, then it is a
nondecreasing step function and it contains the direct
positional characteristic of the number. However, in such a
case its number range may be too large. In fact, the choice
of weights w;, should be such that the minimum C,,;,, should
be close to €(0) and maximum core Cp,,, to C(M) on [0, M)
, where

(7) cM) = Z?ﬂ w; - M;

In practice, the local selectivity and the number range
must be balanced. The formula (6) can be expressed in the
more convenient form

C .
(8) €O =2 X =Ty 2 X,

It can be seen from (8) that C(X) has the linear and
nonlinear part. Equation (8) is derived form (6) and (7).
Regarding that M; = M /m;, (8) cannot be used directly since
the residues of X are available and not X itself. Moreover,
computations of the core function by (8) would require
division that is noneffective. The more suitable way is the use
of Chinese Remainder Theorem for Core Function (CRTCF)
in the following form

©) CX)=XYrix - C—r(X)-C(M)

where r(X) is the magnitude index coefficient and

C(M)<|Mi_1|mi—wi

(10) Ci=——— i=12,..,n

m;
The CRTCF can be also written as

(11) CX) =Xk % - Cilean

The correct value of C(X) cannot be obtained for these X
for which C(X) < 0 or C(X) = C(M). Such values of C(X) are

called critical cores. X using the CRTCF can be expressed
as

_ MCOO+E, Wi M| X,
- c(M)

(12) X

New conversion algorithm

In this section we shall derive the conversion formula
using (12) for B = {2 — 1,2™,2™ + 1}. We select C(M) as
(13) CM)="-1)-2"+1)=22"—1

Next we shall compute the coefficients M;

(14a) M, =2"2" + 1)
(14b) M, =(2"—1)(2" + 1)
(14c) Ms; = (2" — 1)2"

In the next step we should choose the weights w;, i =
1,2,3 so that there will be no division in (12) when computing
(10). The choice of W = (0,1,0) will make it possible.

The multiplicative inverses required in (10) have the
following values

(15a) M|, = 277
(15b) M3 |, = 2" — 1
(15c) M3 |, =271 4+ 1

Using (15) we can compute coefficients C;, i = 1,2,3 as

(2"-1)(2"+1)-2""1-0

(l6a) Cl = n_q
="+ 12"?
_ @-DE™+DE"-1)-1
(16b) C, = =
=2m—2" 41
(160) C. = @r-1)(2*+1)2" 1+1)-0
3 =

2"4+1

=@ -+ 1)
Using coefficients C;, C,, C3 from (16) we receive
C(X) = |Z?=1 Cilc(M)

x, (2" + 1)271 4 x, (220 — 21 — 1)

17 =
S +xz(221 4 2n — 2771 — 1)

22m—1

After reordering terms for x;, i = 1,2,3 we have the first
form of C(X)

(18) C(X) . |(x1 + sz + X3)22n_1
+(x1 - sz + x3)2n_1

+(=x7 — x3)|p2n_4

Moreover, using (12) and substituting M = (2" — 1)(2" + 1) -
2" M,i=123, CM)=@2"-1)-2"+1) and w=
{0,1,0}, after reduction, we obtain

(19) X =2"CX) + |X|pn

It is evident, that first term is the right-shift of the C(X) by
n-bits and addition of |X|,» is a simple concatenation.

Numerical example

In this section we shall present calculations of (15) for
two bases. The first one is B; = {2° — 1,25,25 + 1} and the
second B, = {216 — 1,216,216 + 1}. The dynamic ranges are:
M = 32736 for B; and M = 281474976645120.

For B; and X = 10253 we obtain

x; = |Xl|,s_, =31
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Xy = |X|ys = 32
X3 = |X|ys,, = 33

After inserting it in (15) we have

C(X)=|(31+2-32+33)2°
+(31—2-32+33)2*
+(=32 = 33)|510_,
= 36864 + 320 — 36],0,3 = 320

Finally, X for B is
X =32-320+ (102533, = 10253
For B, and X = 67998 we obtain

X1 = |X|y16_; = 2463
Xy = |X|516 = 2462
X3 = |X|y164, = 2461

After substituting it in (15) we get

C(X) = |(2463 + 2 - 2462 + 2461)231
+(2463 — 2 - 2462 + 2461)215
+(—2462 — 2461)],52_,
= |21148418965504 + 0 — 4923 |4304067205 = 1

Finally, X for B, is equal to
X = 216 -1+ |67998|215
= 65536 + 2462 = 67998

Converter design

In order to determine the formula for implementing the
converter, we need to group the terms from (18) for x4, x;, x3.
Ordering by individual residues we get

x 2%+ 2 +

CX) = [xy(2-2271 =221 — 1) +
x3(22n—1 + 2n—1 _ 1)

(20)
221

The terms are sums of the shifted versions of operands.
Simplifying the second term in (20) to |x, (22" — 2™ — 1)|,2n_4
we can remark that 22" —1|,2n_; =0 and —2-22""1 =
=227 thus we receive |x,(—22")|,2n_;. For the third term
x3(22""1 + 21 —1)we transform 2271 to 22" —22n-1
Due to the modulo reduction in [22" — 1 — 2271 4 2171 5,
we get |—22"1 427715, ;. Ultimately, we obtain a
relationship that will be used to design the converter

x (220 42 +
x,(=2™) +
x3(_22n—1 + 2n—1)

(21) cX) =

22n—q

The first term A: x, (22"~ + 2™1) can be realised by shifted
concatenation of x;bits. It can be remarked that there is no
overlapping of x;22""! and x;2"!. Hence, it can be used
as a single operand.

The second term B x,(—2") can be implemented as
x,(2%™ — 1 —2™) in order to avoid subtraction.

The third term x;(—22""1 + 2"~1) consists of two parts C:
x3(—22""1) and D: x32""!. Table 1 shows schema of
operands x;, x,, x5 representations for n=3. In order to avoid
negative numbers when computing €(X) in (21) we have to
replace negative terms by 22" —1—a or if a > 222 —1
then 22"*2 — 1 — g,

2 (2201 4 21 +
220 — 1 —x,2" +
x32n—1+23n—1 —1- x322n—1
+(2% = 1) — 1277 = 1pen_q o,

(22) CX) =

148

For n=3 because (22" —1)—[22"2 —1|,z2n_; =3 we
should subtract —3 from the final sum. But it can be replaced
by adding 60 to the final sum.

Table 1. Example of binary representation of residues x;,i =1,2,3
from (21) for n=3

28 | 27 | 26| 25 | 24| 23 | 22| 21| 20
A0 [ x| xd [0 [ x2[xf|x2]0 |O
Bl|O |0 |O |x % |x]|1 |1 |1
Clo [ |x|x®[1 |1 |1 |1 |1
DIO0 |0 |0 |x3 |x2|x|x2|0]0O
ElO0O |O |O |21 (1 |21 (1 |0 |O
We can see that there is no bit

%3 because the 4-bit representation has the residue equal to
28. Thus, the negation of this bit always gives 0, so X3 can
be omitted. In the Table 2 we show the binary
representations of individual operands from (22) for x = 6.

Table 2. Example of binary representation of residue values (x; =
6,x, =6,x3=6)forn=3and X =6

28 | 27 | 26 | 25 | 2% |28 |22 |21 20
AJlO]1]1|0]1|1]0|0]|O0]216
BlojJjoOjO]|]O|JO]1|1]1]1]15
ciojojo|l1|1]1|1]1]1] 63
DJo|JO|JO]J]O]1|]1|]0]0]|0]| 24
E/0O|J]O|JO]21]1|1]1]0]0] 60

Hence, we obtain for the Table 2 C(x) = €(6) = |378|¢; = 0.
Finally using (19) we obtain x = 6 at the output, that is the
correct result.

Converter architecture

The converter architecture is built of the CSA tree adder
with end-around-carry (EAC) and modulo 22" —1 carry
propagate adder (CPA). The CSA consists of three layers
that sum up the operands consisting of shifted individual bits
of the residues and inverses of selected bits as shown in
Table 1. First two layers sum up the individual terms from
(22) and the third layer is used for adding EAC bits resulting
from bits exceeding 22" — 1. The inversion of bits is the result
of the replacing subtraction modulo 22" — 1 by the negation
of the operands as in (22). In the third layer EAC bits resulting
from the reduction powers of 2 modulo 22" — 1 are added.
Finally, the CSA carry and sum vectors are added by the
CPA that performs addition of operands and recurrent carry
bit obtained as a result of the reduction modulo 22" — 1 MSB
in the CPA. In Fig. 1 discussed converter architecture for n =
3 is given.

2%l X QR X Gy xixix) x) x¢
1
Ll L
(A | [ ][R [i[F | [r]|[Frm]
[ 174 ‘2 ‘? g F o ‘ 21 add 98
e |
1 '
HA r_l};—l‘FA||HAHHA|‘FA|
2 27 B Fad T2
2 |2 | ‘l fJ?Lz
— !
|HA\|HA|\Hf\\|IHA\|HAHHA\
— [
A A A  Fa
I

Fig. 1. New converter architecture forn = 3

Evaluation and comparison
Several converter architectures have been presented
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[17-31]. We shall compare the delay and area with the
probably most effective converter given in [28].

For the new converter the approximate area can be
written as

(23) Apew = (6n+ 1)Apy

where additional Ap, represents equivalent of 2n+ 2
inverters. The delay can be expressed as

(24) thew = tiny + 3tpa + 2tcpa

We do not include the area and delay of 22" — 1 modulo
adder as in other works. We can remark that the delay
generally does not depend on n.

In Table 3 we have compared our converter architecture
with [28] and [30] because they are probably the best known
converters with respect to hardware and time complexity.
Converter from [30] does not explicitly contains the CSA that
performs the EAC that would need an additional layer. In fact
the CE converter requires additionally an equivalent of n FAs
due to AND/OR gates. The additional delay caused by one
FA is not important for pipelined implementations because in
new technologies tz, may be less than 50 ps.

Table 3. Comparison of hardware and time complexity of the
converters

Converter | FA AND/OR | XOR | Delay

[28] CE n+1| 2n—-1 2n 2tpa + 2tepa
HS 6n+1 | 2n-1 2n 2tpa + 2tcpa

+ tyux
[30] 4n 0 0 2tpa + 2tcpa
New 6n+1 |0 0 tiny + 3tra
+ 2tcpa
Summary

In this paper we presented a new algorithm of residue-to-
binary conversion based on core function and converter
architecture. The use of core function leads to more simple
conversion formulas, that also facilitate the converter design.
The converter has the comparable time-hardware complexity
with the best known converters.
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