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Determination of the typical course  values of aircraft 
parameters for the new measurement system in the case of 

aircraft take-off and landing 
 
 

Abstract. The measurements were carried out in a PZL 110 Koliber 150 aircraft using two specially developed measurement systems.The first system 
uses an Inertial Measurement Unit with 9 degrees of freedom (accelerometer, magnetometer, gyroscope). The second measurement system is based 
on the use of a logarithmic power detector together with an antenna and microcontroller board. An algorithm was developed that uses an artificial 
neural network with a variational autoencoder architecture with LSTM layers. Empirical relationships describing the acceleration in three axes, the 
Euler angle, and the electric scale of the electromagnetic field were observed. It has been demonstrated on the basis of the conducted research that 
the use of the developed artificial neural network model will be used to generate generalized time courses of the analyzed flight parameters. This type 
of tool has potential use in pilot training, due to critical factors occurring during the takeoff and landing phases. 
 
Streszczenie Pomiary przeprowadzono w samolocie PZL 110 Koliber  z wykorzystaniem opracowanych specjalistycznych dwóch systemów 
pomiarowych. Pierwszy system wykorzystuje jednostkę pomiaru bezwładnościowego z 9 stopniami swobody (akcelerometr, magnetometr, żyroskop). 
Drugi system pomiarowy opiera się na wykorzystaniu logarytmicznego detektora mocy wraz z anteną i płytką mikrokontrolera. Opracowano algorytm, 
który wykorzystując sztuczną sieć neuronową o architekturze wariacyjnego autoenkondera z warstwami LSTM. Zaobserwowano zalezności emiryczne 
opisujace akcelerację w trzech osiach, kąt Eulera oraz sklałaową elektryczną pola elektromagnetycznego. Wykazano na przykładzie 
przeprowadzonych badań, ze wykorzystanie opracowanego modelu sztucznej sieci neuronowej posłuży do wygenerowania uogólnionych przebiegów 
czasowych analizowanych paramety lotu. Tego typu narzędzie ma potencjalne zastosowanie w szkoleniu pilotów, ze względu na czynniki krytyczne 
występujące podczas faz startu i lądowania (Określenie typowych wartości parametrów kursu samolotu dla nowego układu pomiarowego w 
przypadku startu i lądowania samolotu). 

 
Słowa kluczowe: Sztuczna sieć neuronowa, Wariacyjny AutoEnkoder, Statek powietrzny, Inercyjna jednostka pomiarowa, Pole Elektromagnetyczne 
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Introduction 
Monitoring flight parameters is a very important research 

aspect, especially during training flights. Current pilot training 
standards lead to a continuous effort to improve the level of 
safety. For many years, various types of recording devices 
have been installed in aircraft to analyse aviation incidents. 
The European Aviation Safety Agency (EASA) recommends 
the need to conduct research into monitoring flight 
parameters. 

Such actions lead to improved safety as well as increased 
quality of training. In addition, there are also reports that the 
influence of high-frequency sounds may impair cognitive 
abilities. Large-scale electronic avionics systems are 
considered to be the source of rapidly changing fields. These 
fields are also propagated from external sources. Putting 
low-cost prototype measurement systems on aircraft allows 
for data monitoring as a common way to improve safety [1-
3]. Artificial intelligence and neural networks have great 
potential to perform detailed analyses concerning the 
recognition of aspects of flight parameters, such as: 
acceleration [4,5], Euler angles and the electric component 
of the electromagnetic field (ERMS). 
 
Materials and methods 

For Two sensor measurement systems were placed in 
the PZL 110 Koliber 150 aircraft - an inertial measurement 
system with 9 degrees of freedom and an electromagnetic 
field.  Indications from both systems were collected for the 
moment the aircraft took off and landed. Measurements were 
made under varying weather conditions with temperatures 
ranging from 18 to 24 °C and wind velocities ranging from 5 
to 29 Knots. The first developed authors system uses an 
Inertial Measurement Unit with 9 degrees of freedom 
(accelerometer, magnetometer, gyroscope). The indications 
are converted to linear acceleration with respect to the 
coordinate system and to Euler angles. The processed data 

are stored in the Data Processing Unit. A new form of the 
second measurement system was proposed  is based on the 
use of a logarithmic power detector together with an antenna 
and microcontroller board. Data from the system is stored on 
a smartphone device. This study is a continuation of the 
research described in references [6,7]. The principle of the 
system using IMU is shown in Figure 1 and the system 
measuring ERMS is shown in Figure 2. 
 

 
 

Fig. 1. Principle of the measurement system using IMU 
 

 
 

Fig. 2. Principle of the measurement system ERMS 

 

A photo of the device used to measure acceleration and 
Euler angles is shown in Figure 3a, while Figure 3b shows 
the device used to measure ERMS. 

The data were used to train the developed a generated 
artificial neural network model, on the basis of the results of 
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which typical time courses of acceleration values, Euler 
angles and electromagnetic field values were indicated for 
time series covering the moment of aircraft takeoff and 
landing. Developed algorithm can serve as a system for 
detecting irregularities in timeseries of 3-axis acceleration 
and Euler Angles and occurrences of electromagnetic field  
outliers in the takeoff and landing procedure. 
 

a) b) 

 

 
Fig. 3. a) Acceleration and Euler angles measurement device, b) 
ERMS measurement device 
 

First, in order to create a larger dataset that will allow the 
generalized signal characteristics to be determined later in 
the analysis, a generative artificial neural network model 
based on the variational autoencoder (VAE) architecture was 
developed. 

To analyze the occurrence of outliers from the 
generalized time-series for a given value, a method similar to 
Piecewise Aggregate Approximation (PPA) was used [8-10]. 
Similar to the PPA method, dimensionality reduction was 
applied by using divide the original time-series 𝑋 =
(𝑥1, … , 𝑥𝑀) into equally sized frames 𝑋′ = (𝑥1

′ , … , 𝑥2
′ ).. The 

dimension is reduced from 𝑛 to 𝑀 by using equation (1). 
 

𝑋̅𝑖 =
𝑀

𝑛
∑ 𝑥𝑗

(
𝑛
𝑀

)∙𝑖

𝑗=
𝑛
𝑁

(𝑖−1)+1

 

(1) 

 
For each frame created, the median was determined, as 

well as two intervals from the first quartile (Q1) to the third 
quartile (Q3) and from the same interval will increase by 1.5 
the inter-quartile range (IQR). The second interval is 
assumed to be the interval of acceptable values, which 
means that values outside this interval are counted as 
outliers. Figure 1 shows an example of determining the 
occurrence of outliers for an ERMS time series. 
 
Data generation with LSTM VAE with positional 
encoding 

Due to the number of samples in the data set, as well as 
the possible presence of noise, it was decided to use a 
Variational AutoEncoder (VAE) architecture. This type of 
artificial neural network model allows both the generation of 
new data based on learned features and allows the removal 
of anomalies present in the data. VAE is a type of generative 
machine learning model that combines ideas from probability 
theory and deep learning. This model uses two main 
elements in its architecture are: Encoder and Decoder. The 
Encoder is responsible for mapping the input data into a 
latent space. The Encoder generates the parameters of the 

normal distribution 𝜇 - the mean and 𝜎 - the standard 
deviation [2]. The developed model architecture uses Logn-
Short Term Memory (LSTM) layers. The LSTM is based on a 
gate mechanism that consists of the following elements [11-
12]: 

• 𝑔𝑐  - input node; 

• 𝑖𝑡 – input gate; 

• 𝑓𝑡 – forget gate; 

• 𝑜𝑡 –output gate; 

• 𝑠𝑡 – internal state. 
 

The information processing process using the LSTM 
layer was described by equations (2-7): 
 

𝑔𝑡 = 𝜙(𝑊𝑔𝑥𝑥𝑡 + 𝑊𝑔ℎℎ𝑡−1 + 𝑏𝑔) (2) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1_𝑏1) (3) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1_𝑏𝑓) (4) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜) (5) 

𝑠𝑡 = 𝑔𝑡 ⊙ 𝑖𝑡 + 𝑠𝑡−1 ⊙ 𝑓𝑡 (6) 

ℎ𝑡 = 𝜙(𝑠𝑡) ⊙ 𝑜𝑡 (7) 

where:  

 𝑡 – given time 
 𝑥 – input data; 

 𝑊 – weights created in the training process; 

 𝑏 – bias created in the training process; 

 ⊙ - pointwise multiplication. 
 

According to [13,14], a positional encoding operation was 
applied to data input to the LSTM layer to improve the 
model's ability to reproduce data. 

The developed model architecture in the encoder 
architecture first uses linear projection to increase the 
dimensionality of the data and give it positional encoding. In 
the next step, the data passes through the LSTM layer, from 
which σ and μ parameters are obtained as a result of 2 
different linear projection. Based on these parameters, the 
input values z for the decoder are sampled (Gaussian 
Distribution). In the decoder, linear projection was used in the 
first layer, followed by an LSTM layer with positional 
encoding. The tensor returned from this layer using linear 
projection is processed into a vector that is the reconstructed 
input data. The architecture in question is shown in Figure 4. 
 
 

 
Fig. 4. Architecture of the developed model 
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The sum of the Kullback-Leibler divergence (ℒ𝐾𝐿𝐷) and 

Mean Square Error (ℒ𝑀𝑆𝐸) functions for the reconstructed 
data was used as the model’s loss function. The functions 
were sequentially represented by equation (8) and (9). 
 

ℒ𝐾𝐿𝐷 = −0.5 ∙ ∑ 1 + log(𝜎) − 𝜇2 − 𝑒log (𝜎) (8) 

 

ℒ𝑀𝑆𝐸 =
1

𝑛
∑ 𝑙𝑛 , 𝑙𝑛 = (𝑥𝑛 − 𝑦𝑛)2 

(9) 

where: 
 n – number of samples; 
 𝑥𝑛 – input data at position 𝑛; 

 𝑦𝑛 – output data (reconstructed 𝑥𝑛) at position 𝑛. 
  

The use of a metric in the form of ℒ𝐾𝐿𝐷 is a form of 
regularization that forces the latent space to adopt a 
standardized shape. This prevents the occurrence of a 
degenerate distribution in the latent space. The ℒ𝑀𝑆𝐸 function 
is responsible for comparing the reconstructed values with 
the input values. 

A separate model was created for each time series. For 
signals in the form of acceleration and Euler angles, time 
series were used: 

• For landing: 3000 samples until the aircraft stops 

• In the case of takeoff: 3000 samples after the 
aircraft takes off. 

For indications from the electromagnetic field sensor, 60 
samples were used due to the different sampling frequency 
of the two systems. The indications of both systems 
correspond to a time of 1 minute. In each case, the number 
of iterations of training the model was 800. For the model that 

reconstructs the 𝐸𝑅𝑀𝑆, a lower number of model 
hyperparameters was used due to the smaller number of 
samples falling within the 1-minute time frame. The course of 
the loss function values for each of the developed models is 
shown in Figure 5. 
 

 
Fig. 5. The course of the loss function values for each of the 
developed models 
 

Each model was selected the iteration for which the 
model obtained the smallest value of the loss function. It can 
be seen from the above graph that the model did the worst in 
generalizing the values from the acceleration time courses 
on the z-axis - 𝐴𝑧. 
 
Results 

Based on the generated time courses and the actual time 
courses, “frames” were created, in which the previously 
presented values from the modified PPA method were 
determined. A single frame consists of 100 samples.In the 
case of the landing phase for the time course of the pitch 
angle values, initial larger fluctuations in the values are 
noticeable until they stabilize. For the Roll angle, the median 

values take on an uneven distribution, which is close to 0 in 
the last frame.For the Yaw angle, standardization using z-
score was applied, due to the fact that this value is dependent 
on magnetic north. The course of this value is also initially 
characterized by larger fluctuations, which cease. For the 
acceleration value, there is a noticeable increase in 
deviations around frame 19, where, on average, the moment 
of touchdown occurred, followed by the movement of the 
aircraft along a runway with a ground surface. The time 
courses with superimposed frames and box plots are shown 
in Figure 6. 
 

 
Fig. 6. The time courses with superimposed frames and box plots 
 

For 𝐸𝑅𝑀𝑆 values, a single frame consists of 10 samples. 
This is due to the sampling frequency of the device. Due to 
the small number of frames, the data for each frame is shown 
in Table 1, while the Time Course with superimposed frames 
and box plots are shown in Figure 7. 
 

 
Fig. 7. The time courses with superimposed frames and box plots for 
𝐸𝑅𝑀𝑆 
 
Table 1. Summary of values obtained for the 𝐸𝑅𝑀𝑆 time series 

Frame Q1-1.5IQR Q1 Q3 Q3+1.5IQR 

1 0.081 0.24850 0.381546 1.466 

2 0.135 0.33850 0.432120 1.723 

3 0.044 0.27775 0.302223 1.341 

4 0.039 0.25525 0.312880 0.960 

5 0.100 0.22925 0.290102 2.093 

6 0.084 0.23100 0.303155 1.283 

 

Exactly the same procedure was carried out for the 
takeoff phase. For the pitch angle, the opposite characteristic 
to the landing is noticeable. The values initially maintain a 
small variation, but in the final phase there is a larger 
deviation. In the case of the Roll angle, there is a kind of 
periodicity for the deviations, but this may be related to the 
influence of the wind. The Yaw angle again shows the 
opposite characteristics relative to the landing, initially the 
values are stable, and in the final phase there is a large 
variation. Acceleration on the x and y axes also shows an 
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inverse behavior relative to landing. In contrast, acceleration 
on the z-axis is characterized by a fairly high stability relative 
to the other time courses. The time courses with 
superimposed frames and box plots are shown in Figure 8. 

 

 
Fig. 8. The time courses with superimposed frames and box plots 
 

In the case of 𝐸𝑅𝑀𝑆, there are much larger median values 
as well as deviations during landing. The data for each frame 
is shown in Table 2, while the Time Course with 
superimposed frames and box plots are shown in Figure 9. 
 

 
Fig. 9. The time courses with superimposed frames and box plots for 
𝐸𝑅𝑀𝑆 
 
Table 2. Summary of values obtained for the 𝐸𝑅𝑀𝑆 time series 

Frame Q1-1.5IQR Q1 Q3 Q3+1.5IQR 

1 0.021 0.268 0.354469 1.391 

2 0.015 0.311 0.395217 1.835 

3 0.018 0.355 0.433751 2.613 

4 0.121 0.358 0.450375 1.965 

5 0.122 0.345 0.470388 1.834 

6 0.087 0.346 0.444413 1.431 

 

 
Fig. 10. Example of the landing technique value course 

Tests were performed to demonstrate the correctness of 
the selected model. A pilot with less experience sat behind 
the aircraft's controls, which made it possible to compare the 
results obtained from the models in order to check the 
elements requiring improvement in takeoff and landing 
techniques. An example of the landing technique value 
course is shown in Figure 10 (only values that fall outside the 
range are included).  

Based on the example, it can be concluded that the pilot 
lowered the flight too quickly, with too small an angle of Pitch. 
At the same time, the acceleration in the y-axis was too high, 
and also the course of acceleration values on the x-axis is 
out of generalized values in places. There were also 
anomalies in the EEMF values. The first occurred near the 
execution of the flare maneuver, while the next two occurred 
moments before the aircraft's touchdown. The course of the 
values in question is shown in Figure 11. 
 

 
Fig. 11. Example of the EEMF anomalies 
 

Conclusion 
A new form of the two measurement systems discussed 

was proposed. The results presented here demonstrate the 
effectiveness of the developed model of neural network 
architecture, based on a variational autoencoder (VAE) using 
LSTM layers and positional encoding. Thanks to these 
techniques, it was possible to achieve satisfactory values of 
metrics, which confirms the effectiveness of the approach 
used. 

The solution proved particularly useful in the context of 
increasing the dataset by supplementing it with generalized 
time series. By generating additional data, it was possible to 
create precise ranges of variation for specific time moments, 
especially during key flight phases such as takeoff and 
landing. A modified PPA method was used for this purpose. 

The generated data models allow efficient comparison of 
the new time courses, which in turn makes it possible to 
detect and analyze possible irregularities in the maneuvers 
performed. It has been shown that this type of solution has 
potential applications primarily in pilot training, since the 
takeoff and landing phases of an aircraft are among the most 
critical and risky. 

The developed method can significantly contribute to 
improving flight safety, especially in the context of training, 
providing a tool for early detection of deviations from the 
norm in the time courses, which can lead to better analysis 
and optimization of flight maneuvers. 
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