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A method for extracting the parameters of a multiconductor 
transmission line 

 
 

Abstract. The paper considers linear circuits, including lumped elements and uniform multiconductor transmission lines immersed in a homogenous 
medium. The problem of extracting the line's per–unit–length parameters at a given frequency is solved using a numerical approach. The proposed 
method exploits measured input and output voltage phasors of the line operating in the circuit. The core of the method is an iterative procedure for 
solving a system of nonlinear equations obtained after some rearrangement of the standard description of the line. A numerical example was 
presented to validate the proposed solution process. 
 
Streszczenie. W artykule rozważono obwody liniowe zawierające elementy skupione oraz wieloprzewodowe linie transmisyjne umieszczone w 
ośrodku jednorodnym. Problem ekstrakcji jednostkowych parametrów, przy zadanej częstotliwości, rozwiązano za pomocą podejścia numerycznego. 
Proponowana metoda wykorzystuje pomiary wartości symbolicznych (fazorów) napięcia wejściowego i wyjściowego linii pracującej w obwodzie. 
Rdzeniem metody jest iteracyjna procedura rozwiązywania układu równań nieliniowych. Układ ten otrzymano na drodze przekształceń  
standardowego opisu linii. W celu walidacji proponowanego rozwiązania przedstawiono przykład numeryczny. (Metoda ekstrakcji parametrów 
wieloprzewodowej linii transmisyjnej). 
 

Keywords: iterative procedure, multiconductor transmission line, nonlinear equations, numerical approach, per–unit–length parameters. 
Słowa kluczowe: procedura iteracyjna, wieloprzewodowa linia transmisyjna, równania nieliniowe, podejście numeryczne, parametry 
jednostkowe.  
 
 

Introduction 
This paper deals with multiconductor transmission lines 

(MTL). It is focused on determining the per–unit–length (p–
u–l) parameter of resistance, inductance, conductance, and 
capacitance for the given line. MTLs play a significant role 
in electrical and electronic engineering due to the need to 
process high–speed signals. Numerous publications are 
devoted to modelling, diagnosing,  and analysis of MTL [1-
13]. Computation of the line parameters is a crucial step for 
the analysis of circuits, including MTLs. It has been an 
active topic over the last few years, e.g., in the references 
[1], [3], [5-6], [11]. Many research reports refer to 
determining the transmission line parameters from 
scattering parameters in the frequency domain. A vector 
network analyzer (VNA) can be used to measure scattering 
parameters. Conversion of scattering parameters to the line 
parameters is described, e.g., in the references [1], [3], [6], 
and is implemented in RF Toolbox TM in MATLAB. This 
paper proposes an entirely different approach to extracting 
transmission line parameters. The parameters are 
determined numerically considering the overall circuit, 
including the MTL. 
Let us consider (n+1)-conductor transmission line. The line 
is described in the frequency domain by the equations 
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where z  is the position in the line, ( ) ( ) ( ) T1 ... zVzVz n=V , 

( ) ( ) ( ) T1 ... zIzIz n=I  are n -dimension vectors consisting 

of phasors of the voltages between the conductors n...,,1  

and the reference conductor 0 and phasors of the currents 

flowing through the conductors n...,,1 , at the position z . 

LRZ += j , CGY += j  where j  is the imaginary 

unity, R , L ,G , and C  are symmetrical nn  matrices of 

the per–unit–length parameters having the form 
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The problem discussed in this paper is as follows: Let us 
consider a linear circuit, shown in Fig. 1, consisting of an 
MTL as well as lumped resistors, inductors, and capacitors 
whose values are known and driven by AC voltage sources.  
We wish to extract parameters of the transmission line, at 

given frequency f , on the basis of measured input and 

output voltage phasors of the line: ( ) ( ) ,...,0,...,01 nVV  
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( ) ( )lVlV n,...,1 . The problem is solved using a numerical 

method under the following four assumptions.  

 
Fig.1. A circuit containing an (n+1)-conductor transmission line 

 
1.The line, uniform and immersed in a homogenous 

medium, is characterized by the permeability 0=  and 

permittivity r= 0 . Permittivity r  and conductivity   

of the line are unknown. 

2.The matrices L ,G , and C  meet the equations [4] 

(3)                           1r== 00CLLC   

(4)                            1== 0GLLG  .  

3.Resistance of the reference conductor is equal to zero, 

i.e. 00 =r . 

4.The number of conductors of the multiconductor 
transmission line, including the reference conductor, does 
not exceed five. 

 
Preliminaries 

To derive equations involving the output voltages and 

currents (at lz = ) and the input voltages and currents (at 

0=z ) in the frequency domain, we apply the standard 

approach, as in the reference [4]. By combining (1) and (2) 
we obtain 
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Matrix equation (5) represents a system of n  coupled 

individual equations. To find the solution of this equation, it 
is decoupled using a similarity transformation. Let us 

assume that matrix ZY  has distinct eigenvalues labelled 
2
i  ( ni ...,,1= ). Then, the eigenvectors corresponding to 

these eigenvalues are linearly independent. They are used 

to create columns of a modal matrix IT  such that 
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2 ...,,diag n=γ . Hence, 
12 −= II TγTZY  and (5) 

becomes 

(7)                        
( )

( )z
z

z
II ITγT

I 12

2

2

d

d −
=  .  

After simple manipulations we obtain 
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where 

(9)                               ( ) ( )zz Im ITI
1−=   

is a vector of mode current phasors of the line. Since 
2

γ  is 

a diagonal matrix a solution of equation (8) has the form 

(10)                     ( ) BAI
γγ zz

m z ee += −
  

where A  and B  are n -dimensional vectors consisting of 

complex constants, whereas ( )zzz nγγ
e...,,ediage 1 −−−

=
γ ,  

( )zzz nγγ
e...,,ediage 1=

γ . Combining (9) and (10) gives 
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Hence, we obtain 
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From (2) and (12) we find the equation 

(13)                  ( ) ( )BATZV
γγ zz

ICz ee −= −
,  

where 
11 −−= IIC TγTYZ  is called a characteristic 

impedance matrix. We now express A  and B  in terms of 

the boundary conditions ( )0V  and ( )0I . Using (11) and 

(13) we write 

(14)        ( ) ( )BATI += I0 ,   ( ) ( )BATZV −= IC0  .  

Solving the equations (14) for A  and B  and substituting 
into (13) and (11) yields 

(15)   ( ) ( ) ( )( )0sinh0cosh 111
ITγVZTγTZV

−−− −= ICIIC zzz   

(16)   ( ) ( ) ( )( )0hcos0sinh 111
ITγVZTγTI

−−− +−= ICII zzz   

where ( )zzz nγcosh...,,γcoshdiagcosh 1=γ ,  

( )zzz nγsinh...,,γsinhdiagsinh 1=γ . For lz =  equations 

(15) and (16) lead to 

(17) ( ) ( )( ) ( ) 0=−− −−− lll ICIIC VITγVZTγTZ 0sinh0cosh 111   

(18) ( ) ( )( ) ( ) 0=−+− −−− lll ICII IITγVZTγT 0cosh0sinh 111
. 

Extracting multiconductor transmission line 
parameters 

Consider the linear circuit shown in Fig. 1, driven by AC 

voltage sources at frequency f . The transmission line will 

be replaced by input and output AC voltage sources (see 

Fig. 2) specified by phasors ( ) ( )0...,,01 nVV , ( ) ( )lVlV n...,,1  

measured in the circuit. Having these voltages the circuit 
depicted in Fig. 2 is analysed in the frequency domain using 
e.g. the modified node approach, finding current phasors 

( ) ( )0...,,01 nII , ( ) ( )lIlI n...,,1 . In consequence vectors 

( )0V , ( )lV , ( )0I , and ( )lI  which appear in (17) and (18) 
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are given, whereas the matrices CZ , IT , γ  are functions 

of unknown line parameters. Equations (3) and (4) imply 

that matrices L  and R  as well as constants r  and   

enable to find all the p–u–l parameters of the line. Since 

matrix L  is symmetric it is entirely specified by its diagonal 
elements and the elements located above the main 

diagonal. The number of these elements is 
2

2 nn
n

−
+ . The 

number of nonzero elements of the diagonal matrix R  is n  

whereas the number of the required constants ( r and  ) 

is two. Hence, the total number of the parameters and 

constants necessary to identify ( )1+n -conductor 

transmission line is 
( )

2
2

1
2 +

−
+=

nn
nm . They are labeled 

mpp ,...,1 . Table 1 presents the relations between n  and 

m . In addition the last row of this table gives the 

corresponding values of n4  what will be exploited in the 

sequel. 

 
Fig. 2. Model of the circuit shown in Fig. 1 

 
Table 1. Relations between the numbers n and m 

n 2 3 4 5 

m 7 11 16 22 

4n 8 12 16 20 

 

Values of the parameters mpp ,...,1  vary immensely, 

e.g. some of them can be equal 100 whereas others 10-9. In 
consequence round off errors and deterioration of the 
accuracy arise while running the computation process 
described in the sequel. Therefore the parameters will be 
scaled, to reduce the differences between them, according 

to the equations iii xsp = , mi ,...,1= , where ix  are 

auxiliary parameters forming vector  T1 ... mxx=x , 

whereas mss ,...,1  are scaling factors. Thus, equations (17) 

and (18) can be written as 
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Although the functions ( )xγ , ( )xTI , and ( )xZC  do not 

have explicit analytical form, they can be calculated for 
given component values of vector x  using the formulas 

derived in previous section. Thus (19) and (20) represent 

a system of n2  individual equations in m  unknown 

parameters and they can be presented in compact form 

(21)                                      ( ) 0=xf   

where  T1 mxx=x , ( ) ( ) ( ) T21 xxxf nff = ,     

 T00=0 . Generally, system of nonlinear equations can 

be solved using some optimization methods, simplicial 
algorithm, or homotopy approach. In this paper equation 
(21) will be solved using an iterative method described in 

the sequel. Let 
( )k
x  be the vector x  at k -th iteration. To 

calculate 
( )1+k
x  at ( )1+k -st iteration the function ( )xf  is 

approximated by the first two terms of a Taylor series 
expansion 

(22)                 ( ) ( )( ) ( )( ) ( )( )kkk
xxxJxfxg −+=   

where ( )( )k
xJ  is the mn2  Jacoby matrix at 

( )k
xx = . Let 

( )1+k
x  meet the equation 

( )( ) 0=+1k
xg . Then combining this 

equation and equation (22) we write 

(23)                 
( )( ) ( )( ) ( )( )kkkk

xfxxxJ −=−+1
 , 

where ( )xf  and ( )xJ  are complex and vector x  is real. 

Equation (23) can be written in the form 
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The equation consists of n4  individual real equations in 

m  real unknowns being the components of vector 
( )1+k
x . 

We assume that nm 4  what according to Table 1 means 

that the number of the line conductors ( )1+n  does not 

exceed five. To solve equation (24) for 
( )1+k
x  we can use 

the normal equation method 

(25)       ( )( ) ( )( ) ( )( ) ( )( ) ( )( )kkkkkk
xbxBxxxBxB

T1T =−+  .  

Equation (25) represents system of m  individual linear 

algebraic equations in m  unknowns 
( ) ( ) ( )11

2
1

1 ...,,, +++ k
m

kk xxx  

at ...,2,1,0=k . The determinant of matrix 
( )( ) ( )( )kk

xBxB
T

 

is greater than or equal to zero [10]. When  it equals zero, 
the iteration method fails. If the determinant is close to zero 
the method may not converge. To omit this drawback we 
modify iteration equation (25) as in [10] 
(26)  

( )( ) ( )( )  ( )( ) ( )( ) ( )( )kkkkkkk
xbxBxxxBxB

T1T
e =−+

+−
1  

 

where   and   are positive constants selected on the 

basis of numerical experiments (see next section). As k  

increases the diagonal elements of the matrix 1
k −e  

decrease and tend to zero for large value of k . In 

consequence equation (26) approaches equation (25).To 
explain in detail how the method developed in this section 
works we consider, without any loss of generality, a circuit 
including 3-conductor transmission line. The line is specified 
by the matrices  
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cc
C  and the constants r  and  . The 

unknown variables in equation (21) are: 1
1
11 rsx −= , 

2
1
22 rsx −= , 11

1
33 lsx −= , 22

1
44 lsx −= , 12

1
55 lsx −= , 

rsx = −1
66 , = −1

77 sx . They are components of vector x . 

 
Outline of the computation process 
1. Measure input and output voltage phasors of the line at 

given frequency. 
2. Replace the transmission line by the input and output 

voltage sources as shown in Fig. 2 and analyse the 
obtained circuit to find the input and output current 
phasors. 

3. Pick an initial guess 
( )0
x  and perform the iteration 

process specified by formula (26). For given k - th 

iteration 
( )k
x  matrix 

( )( )kxB  and vector 
( )( )kxb  (see 

(25)) are calculated as described in step 4. 
4. We find  
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( )( ) ( )( ) ( )( )kkk
xLxRxZ += j ,  

( )( ) ( )( ) ( )( )kkk
xCxGxY += j  . 

For matrix 
( )( ) ( )( )kk

xZxY  there are calculated 

eigenvalues ( )( ) ( )( )kn
k

xx
22

1 ...,,  , and matrices 
( )( )kI xT , 

( )( )lk
xγcosh , 

( )( )lk
xγsinh  and after that ( )( )kC xZ . 

Next we find 
( )( )kxf  and 

( )( )kxJ , create equation (26) 

and solve it for 
( )1+k
x . The elements of matrix 

( )( )kxJ  

are determined using the incremental method. Having 
( )( )kxf  and 

( )( )kxJ  we find 
( )( )kxb  and 

( )( )kxB . 

5. The iteration process is running until 
( ) ( )

−+ kk
xx

1
 

and 
( )( ) +1k
xf , where   and   are the 

convergence tolerances. Next we find the actual 
parameters using the inverse scaling 

( ) ( )11
111 ,..., ++ == k

mmm
k xspxsp  and using equations (3) 

and (4) calculate the remaining line parameters. If the 
above inequalities do not hold in some number of 

iterations IN  (say 100I =N ) the computation process 

is terminated. In such case we can pick a different initial 
guess and repeat the procedure. 

 
Numerical example 

Proposed method was implemented in MATLAB 
environment. To illustrate the method a circuit including 3-
conductor transmission lines shown in Fig. 3 was 

considered. Values of the lumped elements are indicated in 
the figure. The constants which appear in the iteration 

formula (26) are 005.0= , 5.0=  and the chosen 

frequency is MHz100=f . The input and output voltage 

phasors of the line were obtained by simulation of the 
circuit. 

 
Example 

Consider the circuit shown in Fig. 3 where the 3-

conductor transmission line has length m4.0=l  and 

amplitude of the power supplied voltage source is 5 V. We 
take into account three sets of values of the transmission 
line parameters summarized in Table 2. Proposed method 

uses the parameters 11 rp = , 22 rp = , 113 lp = , 224 lp = , 

125 lp = , rp =6 , =7p . 

 
Fig.3. Circuit including 3-conductor TL 

 
Table 2. Parameters of the line of Fig. 3 

Transmission line 
parameters 

True values of the line parameters 

Case 1 Case 2 Case 3 

 mΩ1r  0.8 50 5 

 mΩ2r  0.6 50 5 

 mH11l  4.2·10-7 3.8·10-7 7·10-7 

 mH22l  4·10-7 3.6·10-7 7.6·10-7 

 mH12l  3.1·10-8 1.1·10-8 3.1·10-8 

r  2.2 3.6 4.6 

 mS  0.026 0.05 0.13 

 mS11g  0.0722 0.1604 0.2243 

 mS22g  0.0761 0.1696 0.2058 

 mS12g  0.0061 0.0051 0.0095 

 mF11c  5.40·10-11 1.02·10-10 7.02·10-11 

 mF22c  5.69·10-11 1.08·10-10 6.44·10-11 

 mF12c  4.54·10-12 3.22·10-12 2.98·10-12 

The scaling factors are: 11 =s , 12 =s , 7
3 10−=s , 

7

4 10−=s , 
7

5 10−=s , 16 =s , 
2

7 10−=s . In each of the three 

cases we applied the method nine times starting with nine 
initial guesses. Thus, we performed 27 numerical 
experiments. Any of the initial guesses is created by picking 
first some initial values of the line parameters and next 
scaling them using the scaling factors defined above. The 
initial p–u–l parameters of resistances and inductances and 

constants r  and   according to the pattern 

 0000000
1.0 rlllrr , where 101

0
 r , 

608
1010

−−
 l , 51

0
 r , 1.001.0

0
  and next, 

after scaling, the initial guess is obtained. Every time the 
computation process is convergent and gives, after 
rescaling, the line parameters which are the same as the 
actual ones presented in Table 2. The number of the 
iterations is less than 30. All the 27 numerical experiments 
with different initial guesses gave correct transmission line 
parameters.  

We investigate, in the simulation way,  the influence of 
the measuring instrument accuracy on the results provided 
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by the method using the circuit shown in Fig. 3. We 
consider various accuracies of the voltage amplitude 
measurement and the phase measurement. Since any 
phasor is specified by its amplitude and phase, any 
measurement is characterized by a pair of amplitude and 
phase accuracies. We considered 10 pairs of the 
measurement accuracies. Sixty experiments were carried 
out. The voltage phasors were obtained by correcting the 
simulated values according to the assumed accuracy. The 
method found the solutions in 85% experiments  and failed 
in 15% experiments. In all the 51 cases the p–u–l 

parameters of inductance and resistance 2r  as well as 

constants   and   given by the method are close to the 

true values. Relative errors of the p–u–l parameters of 

inductance do not exceed   5.5%, of resistance 2r  do not 

exceed 7.7 % while the relative errors of constants r  and 

  do not exceed 0.4%. Only the p–u–l resistance 1r  

calculated by the method in 20 out of 51 cases it is 
incorrect.  Assuming measurement accuracies possible in 

the laboratory e.g. pair ( )o14
10,V10

−−
  results in the 

identification of all (except one) parameters with acceptable 
accuracy. 
 
Extension of the method 

The method may be extended in straightforward manner 
to a broader class of circuits including M multiconductor 
transmission lines (see Fig. 4). Conceptually the approach 
is the same as discussed in the previous sections but the 
number of nonlinear equations increases and the method 
requires more computation power. 

 
Fig.4. Circuit including M multiconductor transmission lines 
 

Conclusion 
The paper is devoted to extracting the p–u–l parameters 

of uniform MTLs immersed in homogenous medium. This is 
crucial step for the analysis of circuits including MTLs. As 
opposed to the known methods this paper offers a 
numerical iterative method for calculating the p–u–l 
parameters. The method is preceded by a simulation test in 
the frequency domain. While running the test input and 
output voltage phasors are simulated in the circuit including 
MTLs. Numerical experiments reveal that the results given 
by the method are very close to the true values.  

The iteration process is very fast and does not require 
great computer power. Convergence of the process 
depends on the initial guess. It is selected in two steps. If 
the method does not converge in a preset number of 
iterations the computation process should be terminated 
and repeated using another initial guess. The method has 
been verified on several examples of three-, four-, and five- 
conductor TLs and a system containing three three-
conductor TLs. In 90% of cases, the correct line parameter 

values were obtained. Reducing the measurement accuracy 
(by simulation) makes some elements of the resistance 
matrix estimated less accurately or the values of these 
elements are incorrect.  This effect was not observed for 
other p-u-l parameters.  
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