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Comparison of Independent Component Analysis, Linear 
Regression and Adaptive Filtering for Artifact Removal in 

SSVEP Registration 
 
 

Abstract. Artifacts pose a significant challenge in the analysis of EEG signals. In this study, the authors investigated the impact of artifacts on the 
detection of steady-state visually evoked potentials (SSVEPs). The article explored various techniques for physiological artifact elimination, including 
linear regression, adaptive filters, and independent component analysis (ICA). The effectiveness of the algorithms was evaluated using classification 
accuracy as a metric. The results indicate that the most promising outcomes were achieved with independent component analysis. 
 
Streszczenie. Artefakty odgrywają znaczącą rolę w analizie sygnałów EEG. Autorzy zbadali wpływ artefaktów na detekcję potencjałów wywołanych 
SSVEP. Artykuł przedstawia różne techniki eliminacji artefaktów fizjologicznych – regresję liniową, filtrację adaptacyjną oraz analizę składowych 
niezależnych (ICA). Efektywność algorytmów została oceniona z wykorzystaniem metryki jaką była skuteczność klasyfikacji. Wyniki wskazują, że 
najbardziej obiecujące wyniki osiągnięto dzięki analizie składowych niezależnych (ICA).  
(Porównanie analizy składowych niezależnych, regresji liniowej i filtracji adaptacyjnej na użytek usuwania artefaktów w rejestracji 
SSVEP). 
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Introduction 
 Electroencephalography (EEG) is a commonly used 
method for studying brain activity in medical diagnostics. 
Unfortunately, direct analysis of EEG signals can be very 
challenging or even impossible in some cases due to the 
presence of disturbances caused by natural physiological 
activity. The disturbances in EEG signals are called 
artifacts. Electrooculographic (EOG) artifacts are caused by 
the eye movements of the subject (blinking, sideways eye 
movements, eyelid clenching). Electrocardiographic (ECG) 
artifacts result from the natural electrical activity of the heart 
muscle. The largest group of artifacts is electromyographic 
(EMG) artifacts caused by various muscle activities of the 
human body, such as swallowing or breathing. Other 
artifacts can also occur in EEG signals, such as technical 
artifacts caused by improperly placed electrodes, power 
fluctuations, or damaged measurement cables. It can be 
observed that there are numerous types of artifacts. 
Developing methods for eliminating physiological artifacts in 
EEG recordings is crucial in many research areas. 
Extracting useful information from EEG signals would allow 
for the development of highly valuable tools for brain-
computer interfaces and medical diagnosis. 
 There are many methods for artifact elimination that 
have been extensively described in the literature [1-7, 14, 
15]. The first of these methods is independent component 
analysis (ICA). The ICA method is based on decomposing 
the signal into independent components and eliminating 
those components that contain artifact-related information. 
Then, using the remaining components, the signal is 
reconstructed. The ICA method requires expert knowledge, 
as the automatic selection of artifact-containing components 
cannot always be applied [8]. Another method used for 
artifact removal is regression [9]. It involves removing 
artifacts using information from the channel (or channels) 
where the artifact is recorded. Another method for artifact 
elimination is adaptive filtering [11], which relies on 
adjusting linear filters using adaptive algorithms. Examples 
of such filters are the least mean squares (LMS) and 
recursive least squares (RLS) filters. 
 The article presents attempts to eliminate artifacts from 
real EEG signals using ICA, regression, and adaptive 

filtering. For thi Porównanie analizy składowych niezależnych, 
regresji liniowej i filtracji adaptacyjnej na użytek usuwania 
artefaktów w rejestracji SSVEP).s purpose, the authors created 
a database containing EEG signals (3 electrodes) and 
EMG/EOG signals (8 electrodes) recorded during the 
observation of a pulsating LED with frequencies of 7 and 8 
Hz for four users. Creating such a database allows for 
comparing artifact removal methods by evaluating the 
classification accuracy of SSVEPs. 
 
Materials 
 In order to assess the effectiveness of artifact removal 
methods, it was crucial to collect suitable EEG signals. To 
achieve this, an experiment was devised where volunteers 
were exposed to flashing LED stimuli while deliberately 
introducing artifacts. To record a database comprising both 
clean EEG signals and EEG signals contaminated with 
EOG and EMG artifacts, a cap and the g.tec g.USBamp 
signal amplifier were employed. The signal was recorded 
with a sampling frequency of 256 Hz. The electrodes were 
placed on the subject's head using conductive gel to ensure 
proper positioning. The study utilized three EEG electrodes 
to record brain activity - O1, Oz, O2 - and eight EMG/EOG 
electrodes for capturing the muscle and eye activity of the 
subject. The EMG electrodes were placed on the face and 
neck. The distribution of electrodes is illustrated in Figure 1. 
SSVEPs were evoked using a 1cm diameter red LED diode 
emitting pulses at a specific frequency. Frequencies of 7 Hz 
and 8 Hz were used during the registration of SSVEPs. 
These frequencies were selected because they were found 
to significantly disrupt both the EEG signal and the 
SSVEPs. The SIGLENT SDG830 function generator was 
used to generate the stimulating pulses. 
 All the studies were conducted on adult individuals 
whose age did not exceed 40 years. Written consent was 
obtained from the participants. The acquisition scenarios 
(including instructions for the participants) were created 
using the OpenVibe program. This program also allowed for 
the recording of EEG signals. It was decided to conduct 
detailed investigations on three types of artifacts - facial 
grimacing, jaw clenching, and neck tension. As a reference, 
segments of signals were recorded without any artifacts. In 
further studies, the signal was divided into one second 
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windows. Manual selection of windows with artifacts was 
performed (10 for each artifact type), as well as automatic 
selection (30 consecutive windows). Based on these 
selected windows, spectrum analysis was performed for 
windows (subsets) before and after signal cleaning. 
Example averaged spectra of the signals with selected 
artifacts for one of the users (10 subsets, SSVEP 7 Hz) are 
presented in Figure 2 
 

 
Fig. 1. Distribution of electrodes during the registration of EEG and 
EMG signals 
 

 
Fig. 2. Averaged spectra of signals with selected artifacts (for 10 
one-second windows) 

 It can be observed that the SSVEP for the second 
harmonic (14 Hz) is clearly visible in the artifact-free signal. 
However, in the presence of artifacts, the peak becomes 
much less prominent. Analyzing the occurrences of 
individual harmonics of the investigated SSVEP frequency 
will help assess the quality of the artifact removal method. 
After cleaning, the peaks should be much more visible. In 
Figure 2, the influence of the artifacts on the signal 
spectrum can be noticed. Jaw clenching was found to be 
the most disruptive type of artifact. 
 
Methods 
 To eliminate artifacts, we utilized three methods - ICA, 
regression, and adaptive filtering (LMS and RLS). These 
methods differ in their approach and operation. For 
instance, in the regression and adaptive filtering methods, 
the auxiliary EMG/EOG electrodes are defined as the 
sources of artifacts. In the case of ICA, cleaning is achieved 
by rejecting selected components of the signal, which 
requires expert knowledge.  
 The linear regression method [1, 3, 10] has been widely 
used for removing EOG artifacts in the 1990s due to its 
simplicity and low computational requirements. This method 
requires a reference channel and assumes that each EEG 
measurement channel is a combination of a clean source 
signal and a portion of the reference signal containing 

artifacts. The goal of regression is to estimate the optimal 
propagation coefficient for each electrode, allowing for 
proper artifact removal. The correction of the contaminated 
signal involves subtracting the reference signal multiplied by 
the determined propagation coefficient. As a result, we 
obtain a cleaned signal. In the case of multiple regression, 
the signals measured at individual EEG electrodes are 
influenced by more than one reference signal originating 
from EMG/EOG electrodes. During the study, all EMG/EOG 
electrodes were used as reference electrodes. The authors 
focused on cleaning the EEG signal recorded on the O1, 
Oz, and O2 electrodes. During the cleaning process, it was 
observed that applying sliding windows along the signal and 
averaging it yielded better results than cleaning the entire 
signal at once. Therefore, a window of one second length 
was selected, and it was shifted by one sample along the 
signal. Regression was performed for each window, and the 
obtained results were averaged. 
 The independent component analysis (ICA) method for 
artifact removal [1, 2, 3] involves decomposing the signal 
recorded by the electrodes into independent components, 
among which are those that correspond to the sources of 
artifacts. Then the signal is reconstructed by mixing the 
components obtained in the ICA decomposition, excluding 
the components responsible for the artifact sources. As a 
result, artifact-free signals are obtained. ICA is a method 
that requires expert knowledge. Due to the use of 11 
different electrodes, the signal was decomposed into 11 
ICA components. Subsequently, the components showing 
the highest correlation and statistical similarity to artifacts 
were discarded. For most of the cleaned EEG signal, this 
amounted to around 7 or 8 components. 
 The idea behind adaptive filtering [1, 3, 11, 16] is to 
adjust the filter coefficients based on feedback information 
about the input signal and the desired output signal. 
Adaptive filtering algorithms employ various methods and 
criteria for adapting the filter coefficients, such as 
minimizing the mean squared error using recursive methods 
(RLS filters) or gradient methods (LMS and NLMS filters). 
The most commonly used adaptive filtering algorithms are 
LMS (Least Mean Squares), RLS (Recursive Least 
Squares), and NLMS (Normalized Least Mean Squares). 
The LMS algorithm is simple but may have slower 
convergence. RLS provides faster convergence and better 
adaptation to non-stationary signals but has higher 
computational complexity due to the calculation of inverse 
matrices. Additionally, RLS may be more susceptible to 
highly interfering signals, leading to overfitting. NLMS 
normalizes weights based on the energy of the input signal, 
providing better robustness against interference. In the 
study, the focus was on RLS and NLMS filters. In the case 
of adaptive filtering, a key parameter was the selection of 
the forgetting factor μ. Small values of the forgetting factor 
result in little influence of previous samples on the current 
estimation of the RLS filter. The larger the value of μ, the 
greater the influence of previous samples on the estimation. 
In the conducted experiments, a coefficient of 0.99 was 
used. In the case of the NLMS filter, the coefficient μ 
controls the learning rate of the adaptive filter. It is a 
positive value that determines how much the current weight 
update depends on the prediction error and the norm of the 
input vector. In our case, the chosen coefficient for NLMS 
was 0.5. In both filters, reference electrodes were required, 
which were selected in the same manner as in the case of 
regression. 
 
Results and discussion 
 A major challenge in evaluating the effectiveness of 
artifact removal algorithms is that we do not know how the 



284                                                                            PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 5/2024 

signal should look after cleaning. The authors decided to 
use several measures to assess the effectiveness of artifact 
removal. The first measure was visual evaluation, where the 
presence of visible artifacts after cleaning was assessed. 
The next measure was spectral analysis concerning the 
quality of evoked potential identification and the statistics for 
the cleaned signals (mean, standard deviation, minimum 
/maximum values, and skewness). The final measure of 
assessing the effectiveness of signal cleaning was the 
accuracy of SSVEPs classification using the cleaned signal 
segments. Linear discriminant analysis (LDA) was used for 
this purpose. Based on these measures, an attempt was 
made to identify the most effective artifact removal method. 
For the purpose of visualization, the focus was on jaw 
clenching.  This artifact is particularly difficult to remove, as 
it disrupts the signal across a wide frequency range and 
varies in character depending on the individual user. Figure 
3 illustrates the effect of cleaning a segment of the actual 
signal (REAL) contaminated with the jaw clenching artifact. 
The application of each described method (REG, ICA, 
NLMS, and RLS) is shown. The quality of cleaning can be 
compared by analyzing the temporal waveforms of the 
signals. For some methods (ICA, RLS), a smoothing effect 
on the signal waveform during the occurrence of the artifact, 
i.e., between 14.5 and 15.5 seconds, is observed. This 
suggests effective artifact removal using these methods, but 
further confirmation of their effectiveness requires 
evaluation using other metrics as well. 
 For comparative purposes, statistics of the signal were 
also calculated before cleaning and after applying the 
cleaning methods. Table 1 presents the statistical values for 
the cleaned signal segments shown in Figure 3. The data in 
Table 1 confirm the observations made during the analysis 
of the temporal waveforms. The ICA method significantly 
reduced the amplitude of the analyzed signal (from the 
maximum value 55.6 μV to 20.0 μV). Additionally, the 
standard deviation was reduced (from 11.82 to 5.94). The 
skewness of the signal remained unchanged. In the case of 
the NLMS method, a reduction in standard deviation is 
evident (from 11.82 to 8.13). 
 

 
Fig. 3. Temporal waveforms comparison of selected signal cleaning 
methods for the jaw clenching artifact 

Table 1. Cleaned signal statistics for electrode O1 

 
Clearing method 

Real Regression ICA NLMS RLS 
Mean 0.19 0.25 -0.04 0.15 -0.04 
Std 11.82 9.09 5.94 8.13 7.50 

Min 
-

41.32 
-35.38 

-
16.97 

-34.33 -33.86 

Max 55.59 32.08 19.98 41.19 35.15 
Skew 0.07 -0.07 -0.03 0.05 -0.11 

 
 The spectra of the signals were computed, and then the 
classification of 1-second segments was performed for each 

artifact and the actual signal. For classification purposes, 
the FFT bins for 7 Hz and 8 Hz were selected. The LDA 
algorithm was used for classification. The classification 
accuracy results for individual windows were averaged and 
presented in a bar graph shown in Figure 4. 
 

 
Fig. 4. Comparison of the average classification accuracy of LDA 
for SSVEPs in signals cleaned using different artifact removal 
methods 

 The graph in Figure 4 confirms the superior 
performance (highest classification accuracy) of the ICA 
method compared to the classification accuracies in the 
actual signal (REAL). The accuracy increased for each type 
of artifact and SSVEP (signal without artifacts). The highest 
increase in classification accuracy after the cleaning was 
observed for the facial grimace artifact, with an increase 
from 0.6 before signal cleaning to 1 after signal cleaning. 
Improvement or maintenance of accuracy was also 
observed for the RLS method (most notably for SSVEP, 
increasing from 0.7 to 0.8) and linear regression (jaw 
clenching, increasing from 0.65 to 0.7). However, in the 
case of the NLMS method, a decrease in accuracy 
compared to the actual signal was observed for two artifacts 
(facial grimace, decreasing from 0.6 to 0.55, and neck 
tension, decreasing from 0.6 to 0.5). Figure 5 presents the 
spectra of the signals cleaned using ICA (the spectra before 
cleaning are visible in Figure 2). It is noticeable that the 
SSVEP peaks are enhanced, which contributed to the 
improvement in the classification accuracy of the evoked 
potentials compared to the actual signal before cleaning. 
There is also a significant reduction in the amplitude of the 
spectral peaks associated with the jaw clenching artifact, 
indicating its effective removal. In the case of other artifacts, 
the difference is smaller but still noticeable.  
 The effects of successful artifact removal using ICA are 
noticeable. In other studies [12, 13], the method also 
yielded satisfactory results. However, it is difficult to directly 
compare them as the authors used different equipment and 
focused on different types of artifacts. 
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Fig. 5. Averaged spectra of selected artifacts (from Figure 2) after 
cleaning (for 10 one-second windows) 

Conclusions 
 Different artifact removal methods were tested, including 
linear regression, ICA, and two types of adaptive filters - 
RLS and NLMS. Some of the artifact removal methods, 
although eliminating disturbances associated with artifacts, 
also led to a decrease in the classification accuracy of 
evoked potentials, indicating the removal of essential 
information. The conducted research indicates that the most 
effective method in terms of SSVEP classification is ICA. 
However, it requires expert knowledge regarding the 
studied artifacts and is computationally complex. 
Nevertheless, it allows for signal cleaning from all 
electrodes, which can be useful in certain applications. The 
NLMS method proved to worsen the classification accuracy 
for artifacts related to facial grimacing and neck tension. On 
the other hand, the RLS filter performed significantly better, 
showing an improvement in SSVEP classification accuracy 
for each artifact. In the case of linear regression, 
improvement was observed for neck tension and jaw 
clenching artifacts, while the classification accuracy for 
facial grimacing artifact remained unchanged. In terms of 
speed and simplicity, the RLS adaptive filter proved to be 
the best method. In ongoing work, the authors are exploring 
the use of CNNs to remove EMG/EOG artifacts. 
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