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Streszczenie. Artykuł ten przedstawia szczegółową ocenę wydajności różnych architektur sztucznej inteligencji do klasyfikacji otworów wiertniczych 
w płytach wiórowych laminowanych. Badanie obejmuje własną sieć neuronową konwolucyjną (CNN), pięciokrotną sieć CNN, VGG19, pojedyncze i 
pięciokrotne VGG16, zespół sieci CNN, VGG19 i 5xVGG16, oraz transformery wizyjne (ViT). Wydajność każdego modelu mierzono i porównywano 
na podstawie dokładności klasyfikacji. Modele transformatorów wizyjnych, szczególnie model B_32 trenowany przez 8000 epok, wykazały wyższą 
skuteczność, osiągając dokładność 71.14%. Pomimo tego osiągnięcia, badanie podkreśla potrzebę równoważenia wydajności modelu z innymi 
aspektami, takimi jak zasoby obliczeniowe, złożoność modelu i czas szkolenia. Wyniki zwracają uwagę na znaczenie starannego doboru i 
dopracowania modelu, kierując się nie tylko wskaźnikami wydajności, ale także konkretnymi wymaganiami i ograniczeniami zadania i kontekstu. 
Studium stanowi solidną podstawę do dalszych badań nad innymi modelami opartymi na transformatorach oraz zachęca do głębszych badań nad 
dopracowaniem modeli w celu w pełni wykorzystania potencjału tych architektur SI w zadaniach klasyfikacji obrazów. (Nowatorskie podejście z 
wykorzystaniem transformatorów wizyjnych (VIT) do klasyfikacji otworów wierconych w płytach wiórowych pokrytych melaminą) 
 
Abstract. This paper presents a comprehensive performance evaluation of various AI architectures for a classification of holes drilled in melamine 
faced chipboard, including custom Convolutional Neural Network (CNN-designed), five-fold CNN-designed, VGG19, single and five-fold VGG16, an 
ensemble of CNN-designed, VGG19, and 5xVGG16, and Vision Transformers (ViT). Each model's performance was measured and compared 
based on their classification accuracy, with the Vision Transformer models, particularly the B_32 model trained for 8000 epochs, demonstrating 
superior performance with an accuracy of 71.14%. Despite this achievement, the study underscores the need to balance model performance with 
other considerations such as computational resources, model complexity, and training times. The results highlight the importance of careful model 
selection and fine-tuning, guided not only by performance metrics but also by the specific requirements and constraints of the task and context. The 
study provides a strong foundation for further exploration into other transformer-based models and encourages deeper investigations into model 
fine-tuning to harness the full potential of these AI architectures for image classification tasks.  
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Introduction 
The process of manufacturing furniture involves intricate 

and precision-demanding steps. One such critical stage is 
drilling holes in melamine faced chipboard, where errors 
can lead to significant financial losses due to reduced 
product quality. Traditionally, the condition of the drill is 
manually monitored to identify the optimal moment for 
replacement, thus ensuring consistently high product 
quality. While manual monitoring offers some control, it is 
not sufficiently efficient. As such, there is a pressing need 
for a more automated, accurate, and efficient solution. 

In the pursuit of this solution, tool condition monitoring 
(TCM) methodologies have been developed to evaluate and 
assess the state of various utensils, including drills. Such 
methods often require a multitude of diverse sensors to 
collect data, which is subsequently used to diagnose the 
drill’s condition [7]. While these approaches can produce 
accurate results, they often necessitate extensive 
preprocessing, and mistakes at any stage can compromise 
the final result. Moreover, these solutions can be costly and 
complex to implement and maintain. Despite the advanced 
features generated from the vast array of registered signals, 
the accuracy of such solutions rarely surpasses 90% [3], 
[4]. 

The incorporation of machine learning algorithms into 
the wood industry is a growing trend. For example, 
algorithms have been developed to recognize wood 
species based on macroscopic texture images [2]. When 
using image-based samples, convolutional neural 
networks (CNN) are often applied [1], [5], [6], [8], [9], 
[17], [18]. However, their application often encounters 
obstacles such as the requirement of large datasets and 
the need for close cooperation with manufacturers to 
ensure task specificity, among other factors. Considering 
these limitations, this work presents a novel approach 
applying Vision Transformers for classifying holes drilled in 
melamine faced chipboard. This approach attempts to 

mitigate the complexities and enhance the adaptability of 
the system to specific manufacturing requirements. The 
primary enhancement lies in the elimination of complex 
equipment, reducing the requirement to a camera that 
captures images of the drilled holes. These images form 
the basis for assessing the drill’s condition. Prior research, 
which tested various algorithms such as CNNs, transfer 
learning, and data augmentation methodologies, confirmed 
that this approach can accurately predict the state of the 
drill based solely on images, while improving overall 
prediction accuracy [5], [6], [8], [9]. Given the state of 
the art in the field of artificial intelligence, this paper 
makes use of Vision Transformers (ViT), a revolutionary 
architecture that is currently considered a benchmark in the 
field. Unlike traditional convolutional neural networks, which 
process image data in a local and hierarchical manner, 
Vision Transformers treat image data as a sequence of 
patches and leverage self-attention mechanisms to capture 
global dependencies. This technique has shown 
unprecedented success in various image classification 
tasks, outperforming established CNN architectures on 
multiple benchmarks. In this paper, we demonstrate the 
applicability and effectiveness of Vision Transformers in the 
context of classifying holes drilled in melamine faced 
chipboard, aiming to further advance tool condition 
monitoring practices. 

 

Data Set 
The dataset comprises images of holes drilled during 

the experiment. The images were collected in collaboration 
with the Institute of Wood Sciences and Furniture at the 
Warsaw University of Life Sciences. A standard CNC 
vertical machining centre, Busellato Jet 100, Thiene, Italy, 
was used for the drilling process. The material drilled was a 
standard laminated chipboard (U511SM – Swiss Krono 88 
Group), typically used in the furniture industry, with 
dimensions of 2500x300x18. A 12mm Faba WP-01 drill with 
a tungsten carbide tip was utilized. 
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Five different drills were used during the drilling process. 
Each drill underwent cycles of operation, and the external 
corner wear parameter was monitored between cycles. This 
allowed for assigning appropriate classes (Green, Yellow, 
Red) to the obtained images based on the level of drill 
wear. Images produced by each drill were stored 
separately, preserving the order of creation to reflect the 
gradual deterioration of drill condition. This could serve as 
additional information during the learning process. Table 1 
provides details about the data acquisition process and final 
corner wear measurements for each drill at the end of the 
last drilling cycle. 
 

Table 1. Sample counts for each class before and after data 
augmentation. Values in each cell are presented in following order: 
Green, Yellow, Red. 

No. of drill Original  Augmented Total 
1 840/420/406 840/840/840 2,520 
2 840/700/280 840/840/840 2,520 
3 700/560/420 700/700/700 2,100 
4 840/560/280 840/840/840 2,520 
5 560/560/560 560/560/560 1,680 

 

Mentioned three classes correspond to the condition of the 
drill used to make the holes: 
 Green class: good condition, where the drill is new and 

not yet worn, can be further used. 
 Yellow class: worn condition, where the drill is used and 

may require manual evaluation to determine if it is still 
good enough for production. 

 Red class: requiring replacement, where the drill is used 
to a point of being unusable and should be replaced 
immediately. 

 

 
 
Figure.1. Evaluation of drill wear - Three classes of drill hole 
conditions in laminated chipboard: a) green class: hole made by a 
new, unworn drill, b) yellow class: hole made by a used drill, 
requiring manual evaluation for further use, c) red class: hole made 
by a drill that is too worn for use and needs immediate 
replacement. 
 

Vision Transformer model 
 Convolutional Neural Networks (CNNs) have 
traditionally been the go-to models for computer vision 
tasks due to their ability to exploit local correlations in data, 
thanks to their convolutional nature. However, their 
efficiency can be undermined when the tasks require 
understanding the global context of an image or when the 
data lacks the aforementioned local correlation, due to 
which the CNN’s hierarchical structure might introduce 
unnecessary inductive bias. 
 The Vision Transformer (ViT) model, introduced by 
Google Research [10]-[16], presents a departure from the 
typical CNNs by adopting a transformer architecture, 
originally de- signed for natural language processing tasks. 
Transformers rely on self-attention mechanisms, providing a 
better under- standing of global context as every part of the 
input contributes to the final representation of every other 
part. 
 

Advantages of ViT: 
 ViTs possess several advantages over CNNs: 
 Global Context Understanding: ViTs are more capable of 

understanding the global context in images as they are 

not restricted to local features. 
 Parameter Efficiency: ViTs often require fewer 

parameters than CNNs for similar performance, which 
can lead to more efficient models. 

 Transfer Learning: ViTs can leverage the benefits of 
transfer learning better, due to their capability to learn 
from both vision and language domains. 

 

Disadvantages of ViT: 
 Despite their advantages, ViTs also have some 
limitations: 
 Computational Requirements: ViTs are often more 

computationally intensive than CNNs, especially for 
larger inputs. This might be a limiting factor for real-time 
applications or for deployments on devices with limited 
computational power. 

 Training Data: ViTs typically require more training data to 
outperform CNNs. This might be a constraint when only 
limited labeled data are available. 

In consideration of these factors, the decision to utilize 
ViT for our study was informed by the global nature of our 
task, where understanding the entire context of each image 
is crucial. Furthermore, given that we have a sufficiently 
large dataset for training, the advantages of using ViT 
outweigh the potential drawbacks. 

 
Numerical Experiments 

 We used transfer learning on the Vision Transformer 
(ViT) models, utilizing a range of pretrained models: R_Ti 
_16, S_32, B_32, R26_S_32, B_16, and S_16 [10]-[16]. 

The performance of each pretrained model was 
assessed in terms of mean accuracy, standard deviation of 
accuracy, and model size. The models were trained at 
different learning rates and over different numbers of 
epochs. The complete results of these experiments are 
presented in Table II. 

Upon analysis of the experimental results, it can be 
observed that the model B 32, with a learning rate of 0.003 
and trained over 8000 epochs, achieved the highest mean 
accuracy of 71.14% with a standard deviation of 0.35%. 
This model also had a size of 398 MiB. 

When considering the balance between computational 
re- sources (model size and training time) and performance, 
the S 16 model also demonstrated impressive results. It 
achieved a mean accuracy of 70.54% with a standard 
deviation of 0.47%, trained with a learning rate of 0.01 over 
4000 epochs, with a comparatively smaller model size of 
115 MiB. 

These experiments highlight the impact of different 
training parameters and model architectures on the 
performance of ViT models for the given task. 

 
Table 2. Results of numerical experiments: Comparative 
Performance Metrics of Pretrained ViT Models. 
Pretrained 

model 
name 

Learning 
rate 

Epochs Mean 
Acc 

Std Acc Model Size 

R_Ti_16 0.003 500 65.68% 1.14% 40 MiB 
R_Ti_16 0.003 1000 64.90% 1.13% 40 MiB 
R_Ti_16 0.003 2000 67.16% 0.35% 40 MiB 

S_32 0.003 500 64.54% 1.21% 118 MiB 
S_32 0.003 1000 68.06% 0.25% 118 MiB 
B_32 0.003 500 65.60% 0.87% 398 MiB 
B_32 0.003 1000 68.04% 0.98% 398 MiB 
B_32 0.01 2000 68.55% 0.32% 398 MiB 
B_32 0.003 4000 70.96% 0.22% 398 MiB 
B_32 0.003 8000 71.14% 0.35% 398 MiB 

R26_S_32 0.003 500 65.08% 0.97% 170 MiB 
R26_S_32 0.003 1000 67.99% 0.71% 170 MiB 

B_16 0.003 500 67.14% 1.52% 391 MiB 
B_16 0.003 1000 68.69% 0.44% 391 MiB 
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B_16 0.01 1000 69.18% 0.53% 391 MiB 
B_16 0.003 2000 70.00% 0.48% 391 MiB 
S_16 0.003 500 66.71% 0.32% 115 MiB 
S_16 0.003 1000 68.49% 0.27% 115 MiB 
S_16 0.01 2000 69.83% 0.17% 115 MiB 
S_16 0.03 2000 68.72% 0.95% 115 MiB 
S_16 0.003 4000 69.54% 0.41% 116 MiB 
S_16 0.01 4000 70.54% 0.47% 115 MiB 

 
Numerical Experiments Using Different AI Architectures 

The dataset comprises images of holes drilled during the 
experiment. The images were collected in collaboration with 
the Institute of Wood Sciences and Furniture at the Warsaw 
University of A wide array of machine learning models, 
including various artificial intelligence architectures, were 
applied in the numer- ical experiments conducted during 
this study. The primary fo- cus was on the assessment of 
their ability to perform accurate classifications and the 
results are compiled in Table 3. 

The models under investigation included a self-designed 
Convolutional Neural Network (CNN-designed), five-fold 
implementation of the CNN-designed model (5xCNN-
designed), VGG19, single and five-fold VGG16, an 
ensemble of CNN-designed, VGG19, and 5xVGG16 
models, and the Vision Transformer (ViT) models. 

The CNN-designed model and its five-fold counterpart 
were developed specifically for this task, adopting unique 
design principles derived from the nature of the data and the 
specifics of the classification problem. 

The VGG models were implemented following their 
original design principles but were fine-tuned to the task at 
hand. Both the single and the five-fold VGG16 models were 
used, and an ensemble model was also implemented for a 
more diversified approach. 

The Vision Transformer (ViT) models, a more recent 
development in the field of AI, were also used in the 
experiments. These models are based on the transformer 
architecture, which has shown exceptional performance in 
various machine learning tasks. Various configurations and 
training epochs of the ViT models were used in the 
numerical experiments. 
The parameters and configurations for each model were 
meticulously selected and fine-tuned during preliminary 
testing and validation stages to optimize performance. The 
models were then trained on the same dataset to ensure a 
fair comparison of their performance. 

Following the training phase, the models were evaluated 
on a test set, and their performance was assessed based 
on classification accuracy. The results of these experiments 
provide an in-depth understanding of how each model 
performs, allowing for a comprehensive comparison of 
different AI architectures. 

 
Table 3. Classification results for chosen algorithms. 

# Model  Accuracy 
1 CNN-designed 69.78% 
2 5xCNN-designed 67.35% 
3 VGG19 66.77% 
4 5xVGG16 67.13% 
5 10xVGG16 66.98% 
6 Ensemble (1,3,4) 69.26% 
7 Vision Transformers 71.14% 

 
Discussion 
 The experimental results achieved during the 
performance evaluation phase offer several insightful 
takeaways, especially when the performance of Vision 
Transformer (ViT) models is juxtaposed with the 
performances of other AI modelling approaches. The 
performance comparison is presented in Table 3. 

Considering the highest accuracy, ViT models outperform 
the rest of the models with an accuracy of 71.14%. 
Specifically, the B_32 model trained for 8000 epochs 
demonstrated the best performance among the pre-trained 
models used in this study. The ensemble approach 
combining CNN-designed, VGG19, and 5xVGG16 also 
resulted in high accuracy, but it was still lower than the top-
performing ViT model. 

The comparison also illustrates that the CNN-designed 
model and its five-fold implementation rendered decent 
performances with accuracies of 69.78% and 67.35% 
respectively. Nevertheless, their performances were not up 
to par with the B_ 32 ViT model. 

For the VGG models, both single and five-fold VGG16 
delivered similar results, and the performance was further 
improved when they were used in an ensemble with CNN- 
designed model, yet the results were less satisfactory than 
the ones obtained using ViT models. 

This comparative evaluation thus accentuates the 
superior capability of ViT models for the task in focus. 
Despite using other high-performing AI models like CNN 
and VGG, the study confirmed the efficiency and 
effectiveness of pre-trained ViT models, especially with a 
large number of training epochs. In conclusion, while ViT 
models have proven to be a robust solution in this context, 
their use should be carefully assessed based on the 
available resources and the specific requirements 
of the task at hand. 
 
Conclusion 
 This study presented an in-depth comparison of 
several AI architectures, including a custom 
Convolutional Neural Network (CNN-designed), five-fold 
CNN-designed, VGG19, single and five-fold VGG16, an 
ensemble of CNN-designed, VGG19, and 5xVGG16, and 
the Vision Transformers (ViT) for a classification task. This 
assortment of models allowed us to examine the 
advantages and disadvantages of each, using their 
performance on the same task as a point of comparison. 
Across the board, it was the ViT models, specifically 
the B_32 model trained for 8000 epochs, that outperformed 
all others, achieving an accuracy of 71.14%. The ViT 
models’ success underscores the potential of transformer-
based models in image classification tasks, a domain 
traditionally dominated by convolutional-based approaches. 
Despite this success, it is worth noting that the high 
performance of ViT models also came with increased model 
complexity and potentially longer training times, 
emphasizing the trade-offs often encountered in model 
selection. 

The CNN-designed models and their five-fold 
counterparts also demonstrated respectable performance, 
highlighting the effectiveness of custom models tailored to a 
particular task. Meanwhile, the performance of the VGG 
models and ensemble model, although commendable, was 
still outclassed by the ViT models. The ensemble approach 
did demonstrate that combining models can yield higher 
performance, but not necessarily surpass the best individual 
models in this experiment. 
 To conclude, these experiments underline the 
importance of model selection and fine-tuning in achieving 
optimal performance. While the ViT models demonstrated 
superior performance in this study, it is critical to consider 
other factors, such as computational resources, model 
complexity, and training times. Indeed, the choice of model 
should be guided not only by performance metrics but also 
by the specific requirements and constraints of the task and 
context. Future work may include the exploration of other 
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transformer-based models or further fine-tuning of the 
models studied here. 
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