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Abstract. To conduct exact performance investigations and control studies on solar PV systems, it is necessary to extract relevant circuit model 
characteristics. In this work, we have proposed for the identification of the parameters of the single-diode model of the amorphous PV module, a 
numerical modeling approach presented by the determinist based on the “Levenberg–Marquardt (LM)” gradient descent, combined with the 
intelligent method based on artificial neural networks (ANN) taking into account the variation of the solar radiation and the temperature of the cell, in 
real working conditions. 
 

Streszczenie. Aby przeprowadzić dokładne badania wydajności i badania kontrolne systemów fotowoltaicznych, konieczne jest wyodrębnienie 
odpowiednich charakterystyk modelu obwodu. W pracy tej zaproponowaliśmy do identyfikacji parametrów modelu jednodiodowego amorficznego 
modułu PV podejście modelowania numerycznego zaprezentowane przez deterministę w oparciu o opadanie gradientowe „Levenberga-Marquardta 
(LM)” w połączeniu z inteligentna metoda oparta na sztucznych sieciach neuronowych (ANN) uwzględniająca zmienność promieniowania 
słonecznego i temperatury ogniwa w rzeczywistych warunkach pracy. (Technika sztucznych sieci neuronowych do szacowania parametrów 
modułu słonecznego z amorficznego krzemu) 
 
Keywords: Parameters estimation; ANN model; Levenberg–Marquardt method; Performance I–V curves. 
Słowa kluczowe: Estymacja parametrów; model ANN; metoda Levenberg-Marquardt; Krzywe wydajności I – V. 
 
 
Introduction 

It is necessary to choose a model that closely simulates 
the characteristics of solar modules; in which to measure a 
PV system's performance under different operating 
conditions  [1,2], a mathematical model of the system 
requires a set of lumped circuit parameters of its PV 
modules. Unfortunately, PV module manufacturers do not 
always offer these characteristics directly or completely. As 
a result, numerous various parameter extraction 
approaches have been developed and tested in the 
literature [3-5],  with varying degrees of complexity and 
accuracy. A model is known to be accurate if it fits I-V data 
measured under all operating conditions. Numerical or 
analytical methods are used to classify these methods. In 
most cases, numerical methods generate a set of equations 
that can be solved using numerical or iterative procedures 
[6]. Over the years, many models have been introduced - 
among the most popular are the single diode [7] and the 
two diode model [8]. The latter, although computationally 
more comprehensive, is preferable because its I-V 
characteristics closely resemble the behavior of a physical 
module [9]. 

The Newton-Raphson equation can be used to 
calculated the parameters of the two-diode model. only a 
few papers are reported to go along this approach, due to 
the complexity of the two-diode model (which necessitates 
the solution of seven parameters) [10–13].  

The algorithms used to extract the parameter from solar 
PV models have been compared by certain researchers. 
For example, Appelbaum and Peled [14] have extracted the 
single-diode solar cell model's parameters using the 
experimental I-V characteristics of Si and Multi-junction 
solar cells. Three distinct optimization techniques were 
used for the extraction: the Newton-Raphson method, the 
Levenberg-Marquardt algorithm, and the genetic algorithm. 
This was done to see which technique provided the best 
data-to-model fitting. Their findings showed that the 
Newton-Raphson approach is the most effective for 
extracting the parameters. 

On the other hand, In the absence of a direct 
mathematical equation between environmental 

circumstances and electrical parameters, the artificial neural 
network (ANN) appears to be a suitable way for modeling 
this implicit nonlinear relationship. The ability of this 
technology to forecast the outcome of data exploitation is 
one of its distinguishing features. As a result, the 
information is carried by weights, which indicate the values 
of connections between neurons [15]. The ANN's 
functioning necessitates the use of a learning algorithm to 
ensure that the error generated at the network output is 
minimized. 

Multilayer Perceptrons (MLP) are the most common 
type of ANNs in literature, despite being one of the oldest 
networks [16,17].  An MLP with a single hidden layer may 
estimate any continuous function [18]. They are typically 
employed to address problems involving supervised 
learning, in which they practice on a collection of input-
output pairs and learn to model the relationship between 
those inputs and outputs [19]. Once the ANN has been 
created and trained using the measured I-V curves, the 
shape parameters and I-V curve are predicted using only 
solar irradiance and temperature, without the need to solve 
any nonlinear implicit equations.  

The numerical method described in the first section of 
this study is straightforward and quick, although it relies on 
parameters taken from the curve I(V) supplied by the 
designers of PV modules under standard test conditions 
(STC) (temperature T = 25 °C and irradiance G = 1000 
W/m2). Data sheets are used to present these statistics. 
The unavailability of these datasheets is a drawback of the 
numerical method. 

In this research, we proposed the identification of the 
parameters of the single-diode model of the amorphous PV 
module, a numerical modeling approach presented by the 
determinist based on the “Levenberg–Marquardt (LM)” 
gradient descent, combined with the intelligent method 
based on artificial neural networks (ANN). 

As a result, we used a modeling approach based on 
artificial intelligence, namely artificial neural networks 
(ANN), to generate the curve I(V) under STC condition. The 
ANN model that reproduced the behavior of an amorphous 
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silicon PV module (QS-60DGF) in STC was developed in 
the second phase of this work.  

The suggested work is expected to be particularly 
valuable for designers of PV systems and developers that 
require simple, fast, and accurate PV module model 
simulators.  
 
Materials and Methods 
PV module models 

An electrical circuit with a single diode (fig.1) is 
considered as the equivalent photovoltaic cell in the present 
article.  

 
 

Fig.1. PV-cell equivalent-circuit models: single-diode model. 
 

This model's output current equation for the I-V 
characteristic is as follows [20]: 
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wWhere: Iph – Photocurrent; Is - Cell saturation current; Rsh - 

Shunt resistance; Rs - Series resistance; a - Ideal factor of 
the PV diode; VT - the thermal voltage (VT=Ns.k.T/q); Ns - 

Number of cells in series; q - Electron charge (1.60281×10-19 
C); k - Boltzmann’s constant=1.38066×10-23 J/K; T - Cell 
operating temperature    
 
Parameter identification process 
Principle of optimization 

In order to identify the intrinsic parameters Rs; Rsh; Iph; 
Is and a of characteristic I(V), we adjusted the model of 
Equation (1) as well as possible to the experimental data 
(IPV -VPV), by minimizing the squared errors between the 
theoretical and experimental curves. 

Therefore, the objective function used in the 
optimization process is the sum of squared errors (SSE), 
which is given as [20]: 
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where: i  PVmesI : presents the ith measured value of the 

IPV,  : Error between i  PVmesI  and IPV calculated by 

 ),V ,(I f PVPV   from Equation (1), N: number of 

measuring points, θ: Vector of the five intrinsic parameters 
Rs; Rsh; Iph; Is and a. 

 
The minimum of SSE leads to five optimal values of the 

parameters θ. 
The minimization of objective function cannot be 

performed analytically intuitively due to the strong IPV (VPV) 
characteristic nonlinearity. Indeed, it will be noted that the 
solar cell model has a double non-linearity. The first is 
inherent in Equation (1) itself, while the second is structural 
parameters Rs and a. Therefore, numerical methods for 
nonlinear regression based on the principle of least squares 
are more suitable for minimizing this function. 

Levenberg–Marquardt method 
The LM method is an iterative technique that locates a 

local minimum of a multivariate function expressed as the 
sum of the squares of several real-valued nonlinear 
functions. It has become a standard technique for nonlinear 
least squares problems. The LM method can be considered 
as a combination of the “steepest descent” and “Gauss-
Newton” methods [21, 22]. When the current solution is far 
from a local minimum, the algorithm behaves like a steepest 
descent method. Then, once the calculated values become 
in close proximity to the final solution, it behaves like a 
Gauss-Newton method and exhibits a fast convergence rate 
[20]. The automatic commutation between the two methods 
(steepest descent and Gauss-Newton) is ensured by the 
control parameter λ called "damping factor". Thus, the 
parameters θ = f (Iph, Is, a, Rs, Rsh) to be identified are 
updated at each iteration according to the following 
expression [20]: 
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Where,   is the error between the measured current and 
that calculated using Equation (2), 

J is the Jacobean matrix 
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derivatives of the function  ),V ,(I f PVPV   as a function of 

each parameter of the vector θ and I is the identity matrix. 
 
Results and discussion 
Characterization of the amorphous PV module (QS-
60DGF) by the Levenberg-Marquardt method 

This section presents a method for estimating the 
parameters of a PV module in its equivalent circuit. The 
data needed to estimate the parameters are based on 
weather conditions and electrical parameters estimated by 
the Levenberg-Marquardt algorithm (LM) method for 
different radiations and temperatures. 

First, the V-I curves are obtained from the exposure to 
the real condition. For the measurement of the V-I curves, 
the external measurements of V-I curves of the amorphous 
PV module (QS-60DGF) were carried out on the ground of 
the Research Unit in Renewable Energies in the Saharan 
Environment (URERMS) in the south-west of the Algeria for 
one year using the software and hardware of EKO 
instruments (plotter MP-160 I – V) (fig.2). 
 

 
 
Fig.2. Software and hardware of EKO instruments (plotter MP-160 I 
– V). 
 

Our choice is to carry on the PV module amorphe (QS-
60DGF) just because of the availability of a database (Table 
1). 
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Table 1 Electrical parameters of the PV module QS-60DGF 
Parameters     Thin-Film a-Si 

(QS-60DGF) 

Maximum power Pm (W) 60 
Open Circuit Voltage Voc  (V) 80.3 

Short Circuit Current Isc    (A) 1.22 

Voltage At Maximum Power Vmp (V) 62.3 

Current At Maximum Power Imp  (A) 0.96 

PV module dimensions D (mm) 1404*794*35 
 

To create the LM method we used 36 different curves 
(Table 2), associating each value of G (w/m2) and T (°C) a 
V-I curve. We would like to point out that the number of all 
data is 2313 practical measurements for all illuminance 
values used. 
 
Table 2 Database used  of G and T for the 36 curves used 

I (V) 
Curve 

G 
(w/m2) 

T(C°) I (V) 
Curve 

G 
(w/m2) 

T(C°) 

1 905 31.2 19 924.5 39.2 
2 918.3 31.8 20 1442.4 38.4 
3 927.4 34.9 21 1036.4 40.9 
4 1101.5 34.6 22 636.2 37.9 
5 707.3 36.2 23 1212.6 40.2 
6 1341 34.7 24 783.9 38.7 
7 506 34.9 25 852.3 37.2 
8 615.9 35 26 935.5 37.9 

9 515.2 35.7 27 1230.5 40.8 
10 1159.8 35.5 28 1018 38.4 
11 1100.7 36.9 29 1387 37.1 
12 1060 38.1 30 1332.5 38 
13 1260.5 35.7 31 939.5 39.7 
14 1485.2 37.6 32 746.8 37.3 
15 1074 .2 36 33 1157.2 37.5 
16 783.7 38.4 34 1081.5 37.7 
17 630 38.1 35 679 37.3 
18 1364.5 35.7 36 792.5 34.5 

 
It can be deduced that the V-I curves of ML are very 

similar to the real V-I curves with a very small error (Fig 3). 
This method is going to be a very useful method for 
designers of photovoltaic systems. 

The results of the estimation of the parameters of 
amorphous PV module (QS-60DGF) by the proposed LM 
method at different environmental conditions are shown in 
Table 3. 

A more comprehensive comparison is presented in 
Table .4, which shows the estimated value and relative 
error for each significant point for different environmental 
conditions. The proposed LM method has small relative 
errors, however, the proposed method has better 
performance for Isc and Voc parameters. 

 
 

 
Table 3 Estimated parameters of PV module (QS-60GDF) under different conditions. 

Real condition 
 

LM Method  
 

G (W/m2) T (°C) Iph IS a Rs Rsh 
905 31.2 1.188 4.6748 ×10-4 3.8373 0.2182 771.3574 

615.9 35 1.271 3.1305×10-4 3.5704 0.9303 625.2568 
792.5 34.5 1.231 7.5251×10-4 3.9779 0.8367 986.7084 

1036.4 40.9 1.325 6.6614×10-4 3.7737 0.1323 778.9268 
 
Table 4 The estimated significant points of the PV module (QS-60GDF) under different conditions. 

 LM Method  
 

Parameters G (W/m2) 615.9 792.5 905 1036.4 
T (°C) 35 34.5 31.2 40.9 

Pm Valeur estimé 59.149 56.575 55.755 61.178 
Erreur relative 0.491 1.097 0.588 0.376 

Imp Valeur estimé 1.015 0.992 0.957 1.066 
Erreur relative 1.601 1.743 2.243 3.595 

Vmp Valeur estimé 58.29 57.03 58.26 57.39 
Erreur relative 2.033 2.795 2.770 3.806 

Isc Valeur estimé 1.268 1.230 1.188 1.325 
Erreur relative 0.078 0.726 0.251 0.450 

Voc Valeur estimé 77.829 77.384 78.045 76.816 
Erreur relative 0.129 0.220 0.177 0.159 

(a) 
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(b)  

 

(c)  
 

(d)  
Fig.3  Performance of the LM method obtained under different operating conditions. 
 

 
Fig.4. Regression curves of training, validation, and testing data 

Of course, the most important thing is to validate the 
proposed method with experimental data. 

An important tool for the validation is a plot of the 
outputs against the desired outputs, figure 4 represent the 
plots of the training, validation, and testing of our data. 

The solid line represents the best fit linear regression 
(R) line between outputs and targets. The R value is an 
indication of the relationship between the outputs and 
targets. If R = 1, this indicates that there is an exact linear 
relationship between outputs and targets. 
The training , validation, and testing data show R values 
that greater than 0.9, it can be observed that the proposed 
method has high accuracy. 
 
Estimation of Parameters of PV Module (QS-60DGF) at 
STC by ANN Method 

This part presents a method to estimate the parameters 
of a model PV module at standard condition using artificial 
neural networks; more specifically, the multilayer perceptron 
concept is used. The data needed to estimate the 
parameters are based on meteorological conditions and 
electrical parameters estimated by the LM method for 
different radiations and temperatures. The MLP (Multi Layer 
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Perceptron) type neural network with two hidden layers and 
the learning method chosen was the backpropagation. 

 The proposed method is illustrated in Figure.5. 

 
    Input layer               Hidden layers                Output layer 
 
Fig.5.  Proposed ANN estimation method. 
 

Proposed ANN method validation   
In this section, a comparison of the parameter 

estimation with two other methods cited in the literator 
(Villalva and Esram models) [23, 24] based on the one-
diode model (1D).This model is based on the assumption 
that the slope of the I -V curve at Voc and Isc is controlled 
by the series and shunt resistance, respectively, with further 
simplifications assuming that Iph is short equivalent to the 
circuit current and Rs, Rsh and a can be obtained by 
simultaneously solving the equations [24, 25]. The 
simultaneous equation can be solved with the Newton-
Raphson technique using the symbolic function fsolve. 

The results of the parametric estimation of the three 
models are presented in Table 5, which shows that there is 
a difference between the parameters obtained. 
 
Table 5 Estimated electrical parameters of PV module (QS-60GDF) 
by different models under STC condition 

 
parameter  

 Estimated values 
1D (Esram)  
Model 

1D (Villalva) 
Model 

Proposed ANN 
Model 

Iph 1.220      1.245 1.1971 
Is 2.6318×10-5 1.0898×10-9 4.4980×10-4 
a 2.9101 1.5 3.5451 
Rs 0.4523 5.980 0.4922 
Rsh 379.855 290.247 594.116 

 
 

The model validity proposed for the QS-60DGF 
amorphous PV module was verified by a more exhaustive 
comparison between the values estimated at different 
conditions by the ANN model and the two other analytical 
models cited in the literator with the experimental values. 

Figure 6 shows the IV characteristics of the amorphous 
PV module obtained by the three models after fitting the 
curve with the curve measured at solar radiation of 1000 
W/m2 and 800W/m2 and at an ambient temperature of 25 °C  

 This figure illustrates an excellent agreement between 
the measurements and the output of the proposed ANN 
model. On the other hand, the model of Esram provides 
results very close to the experimental values under 
standard STC conditions, whereas in low radiation (800 
W/m2), the precision of this model is reduced, as for the 
model of Villalva, it is less precise in all cases. 

Table.6  presents the estimated value and the relative 
error (RE) for each significant point (the maximum power of 
the photovoltaic module Pm, the open-circuit voltage Voc 
and the short-circuit current Isc) obtained with the ANN 
model and the other two analytical models. For the Villalva 
and Esram analytical models, the relative errors in the 
power prediction are approximately 4% and 5.5% 
respectively at 800 W/m2. However, the absolute power 
error by the ANN model is 0.006%. The comparison 
between the measured values and the simulation results of 
the PV characteristics showed that the ANN model has a 
better correlation with the input data and a lower relative 
error. 

 
 
Fig.6.  I-V characteristics of the QS-60DGF PV module by the three 
models for different radiations 

 
 
Table 6  Relative errors of the characteristics of the QS-60DGF PV module by the three models. 

Irradiance at 25°C  
(W/m2) 

Parameter 1D 
(Villalva) Model 

1D 
(Esram) Model 

ANN 
Model 

RE [%] 
(Villalva) 

RE [%] 
(Esram) 

RE [%] 
(ANN) 

 
1000  

Pm 
VOC  
ISC  
 

59.811 
79.410 
1.220 

59 .802 
80.300 
1.220 

60.068 
80.300 
1.220 

0.315 
1.108 
0.000 
 

0.330 
0.000 
0.000 

0.113 
0.000 
0.000 

 
800  

Pm 
VOC  
ISC   

45.534 
78.265 
0.976 

44.875 
78.229 
0.976 

47.493 
79.5 
0.977 

4.118 
1.553 
0.204 

5.506 
1.598 
0.204 

0.006 
0.000 
0.102 

 
 
Conclusion  

This paper described the modeling of an amorphous 
silicon PV module (QS-60DGF) using MLP-type neural 
networks at the level of the Renewable Energies Research 
Unit in the Saharan Environment (URERMS) in southern 
Algeria. for a year and for various values of illumination and 
temperature to estimate the five parameters of the 
equivalent model of a diode based on meteorological 
parameters. G, T, and V are the network inputs, whereas 
Iph, Is, a, Rs, and Rsh are the estimated parameters. 

The combining Levenberg-Marquardt (LM) and neural 
networks  MLP type leads to precise parameters of a single 
diode model. This high accuracy was revealed after 
comparing the results obtained with those of other 
previously reported methods. Moreover, it was confirmed 
when the fitted IPV (VPV) values matched the experimental 
data significantly. 

The specific values of the five electrical parameters of 
the solar cell obtained by the Levenberg-Marquardt 
algorithm are very close to the experimental values, due to 
the ability of this algorithm to combine the characteristics of 
the steepest regression algorithm and the Gauss-Newton 
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algorithm, which ensures the maximum minimization of the 
mean square error. Secondly, the MLP neural networks is 
implemented to estimate the parameters of the PV module 
in the standard condition(STC), and, therefore, know its 
electrical characteristics.The results reveal that neural 
network modeling agrees well with experimental data, and 
the curves created are essentially fixed, with low errors 
(less than 0,01%). 

The fundamental superiority of the proposed method is 
due to the black box's data-based property, and the specific 
explanation is that we can estimate the output current 
directly from a new temperature and a new radiation using 
an ANN formed and constructed from abundant data, where 
the weight factors and biases are calculated automatically. 

On the other hand, a comparison of the parameter 
estimation with the Esram and Villalva approachs (a model 
diode) was presented, with the results showing that the 
ANN method gave greater values for Rsh, a, and that the 
value of Rs is tiny when compared to the other methods, 
although Iph's findings for all methods are similar. 

As a consequence,  this paper can provides 
researchers, engineers and investors in the related field 
with an overview of the different solar cell parameters 
extraction methods; which would be very useful for the 
future. 
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