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Abstract. Recently, the power loss issue has emerged as a critical challenge, causing significant disruptions in the nation's infrastructure, economy, 
and daily lives of its citizens. Despite being a rapidly developing country with a growing demand for electricity, frequent instances of power loss and 
interruption have resulted in severe consequences such as reduced productivity, financial losses, compromised public safety, and increased 
inconvenience to individuals and businesses. Due to that reason, this study proposes the Evolutionary Particle Swarm Optimization (EPSO) 
algorithm which is a hybrid optimization technique that combines the principles of Evolutionary Programming (EP) and Particle Swarm Optimization 
(PSO) to solve optimization problems by reducing the power losses under Distribution Network Reconfiguration (DNR). Moreover, the consideration 
of load variants involved in DNR while validating the voltage profile improvement with the best load weightage has been made concurrently. A 
detailed performance analysis is carried out on IEEE 33-bus test systems to demonstrate the effectiveness of the proposed method. Through 
simultaneous optimization, it was found that power loss reduction was achieved after conducting power DNR in a radial network connection. 
Furthermore, the test result also indicated that the EPSO algorithm produced better results in terms of convergence time compared to the 
conventional PSO algorithm. 
 
Streszczenie. Ostatnio problem utraty mocy stał się krytycznym wyzwaniem, powodującym znaczne zakłócenia w krajowej infrastrukturze, 
gospodarce i codziennym życiu obywateli. Pomimo tego, że jest to kraj szybko rozwijający się o rosnącym zapotrzebowaniu na energię elektryczną, 
częste przypadki utraty i przerw w dostawie energii powodują poważne konsekwencje, takie jak zmniejszenie produktywności, straty finansowe, 
zagrożenie bezpieczeństwa publicznego oraz zwiększone niedogodności dla osób fizycznych i przedsiębiorstw. Z tego powodu w niniejszym 
badaniu zaproponowano algorytm Evolutionary Particle Swarm Optimization (EPSO), który jest hybrydową techniką optymalizacji, która łączy w 
sobie zasady programowania ewolucyjnego (EP) i optymalizacji roju cząstek (PSO) w celu rozwiązania problemów optymalizacyjnych poprzez 
zmniejszenie strat mocy w warunkach Rekonfiguracja sieci dystrybucyjnej (DNR). Co więcej, równolegle uwzględniono warianty obciążenia 
związane z DNR podczas walidacji poprawy profilu napięcia przy najlepszym obciążeniu. Szczegółowa analiza wydajności jest przeprowadzana na 
systemach testowych IEEE 33-bus, aby wykazać skuteczność proponowanej metody. Dzięki jednoczesnej optymalizacji stwierdzono, że redukcję 
strat mocy uzyskano po przeprowadzeniu zasilania DNR w promieniowym połączeniu sieciowym. Ponadto wynik testu wskazał również, że algorytm 
EPSO dał lepsze wyniki pod względem czasu zbieżności w porównaniu z konwencjonalnym algorytmem PSO. (Badanie wariantu obciążenia w 
ramach rekonfiguracji sieci dystrybucyjnej przy użyciu algorytmu EPSO) 
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Introduction 

Distribution systems should be operated at minimum 
cost, subject to constraints such as radial configuration, 
serving all loads, operating within the capacity limits of 
lines, transformers, and equipment, effective coordination of 
overcurrent protective devices, and maintaining voltage 
magnitudes within specified limits [1]. Energy losses are a 
significant and necessary aspect of electricity. It is critical to 
reliably and precisely define energy losses across long time 
periods that vary from one day to many months. However, 
calculating energy losses is difficult owing to somewhat 
imprecise baseline information on original electric power 
demands. Calculating the loss of energy in low-voltage 
distribution systems is especially difficult owing to partly 
unknown starting information regarding the original electric 
power demands, which makes an exact evaluation of these 
losses challenging [2]. Moreover, distribution network 
reconfiguration is a crucial aspect of power system 
operation and management in order to improve the overall 
performance and efficiency of the distribution network [3]–
[5]. It involves altering the network topology by adjusting the 
status of switches by switching them on or off. There are 
two types of switches: sectionalizing switches and tie 
switches [6]–[7]. By adjusting the status of switches, it will 
be possible to optimise power flow, reduce power losses, 
and improve the voltage profile.  

However, numerous constraints need to be fulfilled 
when reconfiguring the distribution network, such as radial 
network constraints, node voltage constraints and load 
variant constraints [8]–[10].  Furthermore, several heuristic 
methods have been utilized as optimization strategies to 
address the challenge of local minima issues. This involves 
changing the states of switches, and toggling them between 
open and closed positions, in order to perform the 

reconfiguration of the distribution network [11]–[13]. For 
example, Grasshopper Optimization Algorithm (GOA) being 
used to minimize power losses while considering the 
constraints of the system structure, ensuring an efficient 
reduction in power loss [14].  

In addition, a Particle Swarm Optimization (PSO) 
algorithm have been widely used in distribution networks 
reconfiguration in order to minimize power losses during 
blackout [15]–[17]. Furthermore, Particle Swarm 
Optimization (PSO) algorithm also being used to improve 
voltage profile and minimize power losses of the system 
[18]–[23] After a long period of time, algorithms like the one 
being developed now, Evolutionary Particle Swarm 
Optimisation (EPSO), were increasingly widely used. 
Numerous studies on the use of the EPSO algorithm in 
distribution network reconfiguration to address the problem 
of power loss have been published [24]–[28]. However, 
fewer of them consider the variants of load, especially 
during heavy tiding of the DG, EV, and smart grid system to 
the distribution network. Hence, in this study, PSO and 
EPSO's performance has been compared to demonstrate 
the distribution system losses that are most optimal while 
considering the weightage of load in the network system. 
The arrangement of the paper is as follows; Section 2 
presents the formulation, constraints, and method to 
achieve the objective function, and Section 3 discusses the 
test system. Meanwhile, Section 4 demonstrates the results 
and discussion while the last section will be the conclusion 
for the paper presentation.  
 
Formula formulation and cpntraints 
Load Flow Formula 
 In order to evaluate the objective function of the 
problem, load flow equation was developed as follows; 
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Real Power Loss: 
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Reactive Power Loss: 
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Where: 𝑆௜ =Complex power at bus I; 𝐼௜=Complex power at 
bus I; 𝑉௜ =Sending voltage at bus I; 𝑅௜ାଵ, 𝑋௜ାଵ =Resistance 
and reactance at branch (i+1); 𝑃௜ାଵ, 𝑄௜ାଵ =Active and 
reactive power at branch (i+1); 𝑃௟௢௦௦, 𝑄௟௢௦௦ =Active and 
reactive power loss at bus I; n=total number of branches; 𝑘௜ 
= The variables representing the topology status of the 
branches can be defined as 1 indicating a closed circuit and 
0 indicating an open circuit. 
 

PSO algorithm equation 
PSO algorithm equation was developed as follows: 
Particle Velocity update: 
(8) 𝑉௝
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Particle Position update: 
(9) 𝑋௝
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Where:  𝑉௝
௞=particle j velocity in k-th iteration; 𝑋௝

௞=particle j 
position in iteration k-th iteration; 𝑟ଵ 𝑎𝑛𝑑 𝑟ଶ = uniformly 
distributed random numbers in the interval [0,1]; 𝜔=inertia 
weight; 𝐶ଵ 𝑎𝑛𝑑 𝐶ଶ ൌ constants that defined weightage factor 
of random acceleration terms; 𝑃௕௘௦௧,௝

௞ =best value of fitness 

function obtained by particle j in k-th iteration; 𝐺௕௘௦௧,௝
௞ =best 

value among the fitness value;  
 
EPSO algorithm equation 
 EPSO algorithm equation was developed as follows: 
Weighting function: 
(11) 𝜔௜௞

∗ ൌ ൫𝜔௜௞ ൅ 𝜏ᇱ𝑁ሺ0,1ሻ൯ 
 

Global best function: 
(12) 𝐺௕௘௦௧

∗ ൌ ൫𝐺௕௘௦௧ ൅ 𝜏ᇱ𝑁ሺ0,1ሻ൯ 
 

where the random variable N(0,1) follows a Gaussian 
distribution with a mean of 0 and variance of 1 and the 
parameters 𝜏ᇱ  , which govern the learning process, can 
either be fixed or treated as strategic parameters that are 
also subject to mutation 
 

Radial Network Constraint  
Radial Network structure was composed in considering in 
the distribution network. 
 

Node Network Constraint  
(13) 𝑉௠௜௡ ൑ 𝑉௕௨௦ ൑ 𝑉௠௔௫ 
where the minimum voltage is 0.95 and the maximum 
voltage is 1.05(±5%) 

Load Variant Constraint  
(14) 𝑃௦௜ ൒ 𝑃஽௜ ൅ ∑ ൫𝑥௜௝𝑃௜௝൯௝∈ఉ್೔

 

where 𝑃௦௜ is active power supply by substation, 𝑃஽௜ is active 
power demand at node i, 𝛽௕௜ represents set of nodes, and 
𝑥௜௝ represents number of circuit that can be reconfigured on 
branch ij.  
 Flow of the EPSO implementation is as follows. 
Fitness Calculation. A population of particles is initially 
created with random positions and velocities in the solution 
space. Each particle that satisfies the given constraints 
undergoes power flow analysis, and the total power loss is 
computed using the Newton-Raphson load flow program. 
Find Pbest and Gbest. Throughout the search process, 
the two best values are continually updated and recorded. 
These values are associated with the best solution 
achieved by each particle, maintaining the path of its 
coordinates in the solution space. The first value, denoted 
as Pbest, represents the best solution found by an 
individual particle. The second value, Gbest, represents the 
overall best solution discovered by any particle thus far. 
Pbest and Gbest correspond to the generation of tie-
switches and the associated power loss. 
New Velocity and Position. During this step, the velocity 
and position of the particles are updated by applying 
equations (8) and (9).  The velocity of a particle indicates 
the movement of switches. Additionally, the total power loss 
of all switches is calculated by utilizing the new position, 
Xnew. 
Combination and Tournament Selection. Once the new 
position Xnew is obtained, the corresponding fitness value 
(total power loss) is determined using this new position. 
Subsequently, the new position Xnew is combined with the 
old position set X. The combined set of positions is then 
subjected to a tournament, where each position competes 
against others randomly. During this tournament, a position 
earns a score if its fitness is superior to that of other 
contenders. The selection strategy employed in this process 
is based on a priority selection strategy. To implement this 
strategy, both the old position set X and the new position 
Xnew are sorted in descending order based on their power 
loss values in the system. 
Convergence Test. The new position set will undergo 
convergence testing. If convergence is not achieved, the 
process will be repeated. 

 
Fig. 1. IEEE 33-bus test radial distribution system 
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3.0 Test System 
 In accordance with Fig. 1, this study is applicable to the 
IEEE 33 bus test system with a radial distribution system. 
The IEEE 33 bus system consists of one feeder, 32 typically 
closed switches, and five normally open switches situated 
on branches 33, 34, 35, 36, and 37. The total optimization 
variable is represented by the combination of 5 switches for 
33 bus system. The system's total load is 3,715kW, and the 
base apparent power is set at 100MVA. The calculation for 
maximum and minimum voltages for each bus are set in per 
unit systems. 
 
Results and analysis 
 The simulation results were obtained using MATLAB 
software, and data was collected for three types of loads: 
low impedance, normal impedance, and high impedance. 
The normal impedance load was based on the standard 
parameters of the IEEE 33 bus circuit. The low impedance 
load was derived by doubling the standard parameters, 
while the high impedance load was obtained by multiplying 
the standard parameters by two. A total of 10 results were 
collected for each load type. However, in order to optimize 
the system, the three outcomes with the lowest power loss 
were chosen for each of the low impedance load, normal 
impedance load, and high impedance load case studies. 
These outcomes, referred to as Case 1, Case 2, and Case 
3, were selected. There are 5 opening switches in each 
case for every different impedance load study as 
demonstrated in Table 1 and Table 2, respectively.  
 Furthermore, by comparing the performance of the PSO 
and EPSO algorithms, the voltage profile improvement was 
examined, and the obtained output is presented in Fig. 2 
and Fig. 3, accordingly.  It was observed that high load 
impedance draws a lower voltage profile while lower is vice 
versa for both optimizations’ algorithms. The results of the 
case study for normal load conditions by using PSO are 
presented in Table 1 shows that, Case 1 draws a power 
loss of 211.3 kW, while Case 2 and Case 3 exhibit slightly 
lower power losses at 206.3 kW and 199.6 kW, 
respectively. The loss reduction percentages for Case 2 
and Case 3 are 2.37% and 3.25%, respectively, compared 
to Case 1. However, for EPSO implementation as in Table 
2, the power loss for Case 1 is measured at 129.8 kW, 
followed by 125.2 kW in Case 2 and 115.2 kW in Case 3. 
The loss reduction percentages are 3.54% for Case 2 and 
7.98% for Case 3 compared to Case 1. The convergence 
time for optimization ranges from 24.4 seconds in Case 1 to 
24.1 seconds in Case 2 and further reduces to 22.3 
seconds in Case 3. The switches involved in the 
optimization process differ across the cases, with specific 
combinations used for each case. 
 
Table 1. PSO algorithm applied to low, normal and high impedance 
load 

Type of load Items Case 
1 

Case 
2 

Case 
3 

Low 
impedance 

load 

Power loss (kW) 192.6 189.4 183.2 
Loss reduction 

(%) 
- 1.66 3.27 

Convergence 
time (s) 

48.2 46.4 44.4 

Switches 19,21,
4,9,28 

6,9,13,
26,33 

5,6,9,1
3,29 

Normal 
impedance 

load 

Power loss (kW) 211.3 206.3 199.6 
Loss reduction 

(%) 
- 2.37 3.25 

Convergence 
time (s) 

53.5 51.1 48.8 

Switches 3,8,13,
25,27 

9,19,2
1,23,3

1 

6,9,18,
24,33 

High 
impedance 

load 

Power loss (kW) 255.6 248.3 246.9 
Loss reduction 

(%) 
- 2.86 0.56 

Convergence 
time (s) 

61.3 61.1 58.5 

Switches 7,11,2
5,27,2

9 

3,7,9,2
2,32 

4,6,9,1
2,33 

 
Table 2. Results of EPSO algorithm applied to low, normal and high 
impedance load 

Type of load Items Case 
1 

Case 
2 

Case 
3 

Low 
impedance 

load 

Power loss (kW) 102.3 95.2 92.1 
Loss reduction 

(%) 
- 6.9 3.26 

Convergence 
time (s) 

21.2 20.3 18.5 

Switches 3,8,10,
21,26 

6,8,12,
26,29 

4,7,9,2
8,31 

Normal 
impedance 

load 

Power loss (kW) 129.8 125.2 115.2 
Loss reduction 

(%) 
- 3.54 7.98 

Convergence 
time (s) 

24.4 24.1 22.3 

Switches 2,4,9,1
3,27 

5,12,1
7,19,2

1 

4,7,9,1
4,32 

High 
impedance 

load 

Power loss (kW) 147.7 141.1 132.5 
Loss reduction 

(%) 
- 4.47 6.09 

Convergence 
time (s) 

38.2 35.1 33.6 

Switches 4,20,2
1,12,3

3 

2,4,10,
13,26 

5,9,14,
23,26 

 

 
Fig. 2. Voltage profile of each load condition against bus by using 
PSO algorithm 

 
Fig. 3. Voltage profile of each load condition against bus by using 
PSO algorithm 
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 Based on Fig. 4, it can be observed that the initial circuit 
has a power loss of 250.6 kW. Implementing the PSO 
algorithm results in a reduction of power loss to 215.24 kW. 
However, further improvements are achieved with the 
EPSO algorithm, which significantly reduces the power loss 
to 87.07 kW. Comparing the power losses, the PSO 
algorithm achieves a decrease of 35.36 kW compared to 
the initial circuit, while the EPSO algorithm demonstrates 
remarkable performance with a substantial reduction of 
163.53 kW, surpassing both the initial circuit and the PSO 
algorithm. Additionally, the EPSO algorithm exhibits a 
notable improvement of 128.17 kW in power loss reduction 
compared to the PSO algorithm. These results highlight the 
effectiveness of the EPSO algorithm in minimizing power 
losses and its potential for significant energy efficiency 
improvements.  
 

 
Fig. 4. Comparison of average power losses between PSO and 
EPSO 

 
Fig. 5. Comparison of average convergence time between PSO 
and EPSO 

 
Fig. 6. Comparison of average profile voltage of each bus between 
PSO and EPSO 
 
 Referring to Fig. 5, it can be observed that the EPSO 
algorithm achieves convergence in 26.41 seconds, whereas 
the PSO algorithm requires 52.59 seconds. Comparing the 
convergence times, it is evident that the EPSO algorithm 
demonstrates significantly faster convergence than the PSO 
algorithm, taking less than half the time. This indicates the 

efficiency of the EPSO algorithm in quickly finding optimal 
solutions, which can be advantageous in time-critical 
scenarios and real-time optimization applications. 
Therefore, in terms of convergence time, the EPSO 
algorithm outperforms the PSO algorithm, providing faster 
convergence and more efficient optimization. Based on Fig. 
6, it is evident that the average profile voltage of each bus 
in the PSO algorithm is lower compared to the EPSO 
algorithm. This suggests that the EPSO algorithm performs 
better in maintaining higher profile voltages at each bus. 
According to the power loss, convergence time, and profile 
voltage analyses, the EPSO algorithm emerges as superior 
to the PSO algorithm, exhibiting improved performance in 
all three aspects. 
CONCLUSION 
 In summary, the results obtained from the case study 
reveal the effectiveness of the EPSO algorithm compared to 
the PSO algorithm in terms of power loss reduction, 
convergence time, and profile voltage maintenance under 
various of load conditions. For power loss reduction, the 
EPSO algorithm outperforms the PSO algorithm 
significantly. In terms of convergence time, the EPSO 
algorithm. This faster convergence indicates the efficiency 
of the EPSO algorithm in finding optimal solutions more 
quickly. Regarding the profile voltage, the EPSO algorithm 
maintains higher average profile voltages at each bus 
compared to the PSO algorithm. This suggests that the 
EPSO algorithm is more effective in preserving voltage 
levels throughout the distribution network. Future work can 
be done by considering other types of load such as EV 
charging under those stated conditions. 
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