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High order Sliding control with High order observer applied on a 
bioreactor 

 
 

Abstract. The present paper provides a comparison between two different control strategies applied to a bioreactor system: A high-order sliding 
controller with a super-twist observer and a classic sliding control with a sliding observer. The performance of the two controllers is evaluated under 
different conditions, both with and without state perturbations, with a clear superiority for high order sliding control which eliminates chattering while 
maintaining performance. The results of this study are of great interest, as they offer insight into the efficacy of both control strategies in practical 
applications where the High Order Sliding Controller with the Super-Twist Observer provide an excellent response with an optimal control signal . 
Furthermore, the presented data demonstrates the response of the bioreactor system to the both controllers, providing valuable information for 
further research in this field. 
 
Streszczenie. Niniejsza praca badawcza zawiera porównanie dwóch różnych strategii sterowania zastosowanych w systemie bioreaktora: 
regulatora przesuwnego wysokiego rzędu z obserwatorem superskrętnym i klasycznego sterowania przesuwnego z obserwatorem przesuwnym. 
Wydajność tych dwóch kontrolerów jest oceniana w różnych warunkach, zarówno z zakłóceniami stanu, jak i bez, z wyraźną przewagą sterowania 
przesuwnego wysokiego rzędu, które eliminuje drgania przy zachowaniu wydajności. Wyniki tego badania są bardzo interesujące, ponieważ dają 
wgląd w skuteczność obu strategii kontroli w praktycznych zastosowaniach. Ponadto przedstawione dane obrazują reakcję układu bioreaktora na 
działanie obu regulatorów, dostarczając cennych informacji do dalszych badań w tym zakresie. (Sterowanie przesuwne wysokiego rzędu z 
obserwatorem wysokiego rzędu zastosowanym w bioreaktorze) 
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Słowa kluczowe: Kontrola przesuwania, Obserwator przesuwania, Kontrola wysokiego poślizgu, Super-Twist Observer, Bioreaktor 
 
 

Introduction 
Bioreactors are widely used in various industrial 

applications, especially in the biotechnology fields, to 
facilitate different biological reactions in a liquid medium, 
such as the stirred tank bioreactor (CTS). These systems 
are characterized by non-linear dynamics, which requires 
the use of advanced control strategies to achieve optimal 
performance. 

Previous research has investigated various control 
techniques for the bioreactor systems, including sliding 
mode control [1,2,3], adaptive sliding mode control [4], 
model predictive control [5], and fuzzy logic control [6]. 
These techniques have shown promise in achieving optimal 
performance in bioreactor systems, but the effectiveness 
can vary depending on the specific system and control 
objectives. For example, [7] showed that the sliding mode 
control with a linear observer can effectively regulate the 
temperature of a bioreactor system, while [8] demonstrated 
the effectiveness of the sliding mode control for glucose 
concentration control in a fed-batch bioreactor. In the 
contrast, [9] used a model predictive control to optimize the 
production of the bio-products in a fed-batch bioreactor. The 
work in this paper is in line with the sliding mode control for 
what presents the robustness combined with a sliding mode 
observer taking advantage of its convergence in finite time, 
valuable for the control of nonlinear systems; however this 
type of control presents a major handicap which limits its 
application in practice, namely the phenomenon of 
chattering. This represents the main motivation of our work, 
the best candidate to retain the robustness of sliding mode 
control by eliminating chattering, while maintaining 
performance is undoubtedly high order sliding control 
combined with supertwist observer. 

In this research paper, we present a comparison 
between two different control strategies applied to a SISO 
bioreactor system: A classic sliding control with a sliding 
observer and a high-order sliding controller combined with a 
super-twist observer. Our results demonstrate that the High-
Order Sliding Controller with the super-twist observer 
performs better than the classic Sliding Control with a 
classical sliding observer, providing an optimal control 
signal for the system. Moreover, the use of high-order 

sliding controllers reduces the chattering, which is often 
present in sliding controllers, without sacrificing 
performance. To provide a better understanding of the 
system dynamics, we present the non-linear model of the 
reactor. 

This research paper is organized as follows: in section 
II, we discuss previous studies on control techniques for 
bioreactor systems. In section III, we describe the control 
law for the classic sliding Control with a classic sliding 
observer and the high-order sliding controller with a super-
twist observer. We also present the performance of the 
observers for both controllers. In section IV, we present the 
results of the controllers, including the control signal and the 
performance of the system with and without perturbations. 
Finally, in section V, we conclude our findings and discuss 
the implications for future research 
 
Plant model 
Basically, a bioreactor is a tank in which several reactions 
occur simultaneously in a liquid medium. A standard 
schematic diagram of a completely mixed continuous stirred 
tank (CTS) bioreactor, with the dynamic model of the 
baker’s yeast production process in a fed-batch reactor is 
shown in Fig.1. 

 
 

Fig/ 1 Fed-batch Fermentor 
 
This dynamic model relies on the existence of three limit 
physiological states of biomass: 
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Fig. 2 Schema of reaction

 
 

E: Ethanol, S: Substrate (glucose), X: Biomass. 
These physiological states correspond respectively to the 

glycemia fermentation, the respiration of the glucose and 
the respiration of the ethanol. The expressions of the kinetic 
model correspond to the aerobic growth, in the absence of 
other limitations than that of the substrate. The state vector 
x is of dimension 7. It is formed by concentrations (g/l) of 
Ethanol E, yeasts, glucose S, acetate A and the volume V 
of the reactor liquid. 

 
The dynamic model of the reactor is represented by the 

following nonlinear system: 
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The input to be controlled is the glucose feed rate u=Fin 

The output is the glucose concentration in the fermenter 
 y= S                 
 R1, R2 and R3 are biomass production rates defined by 
 

(2) 
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R4, R5, R6, R7, R8 and R9: the transition rates from one state 
to another one defined by: 
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The rates R1,R2,...,R9 are expressed in g/(l.h), the 
dimensionless coefficients  α  and Φ are defined  as  
follows:  
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Control Theory 
 The super-twisting controller is used for systems of 

relative degree. In other words it can be used instead of a 
standard 1-sliding-mode controller in order to avoid the 
chattering. However for relative degree2 systems a 2-sliding 
controller, like a twisting one, is needed to stabilize system 

in finite time. In order to avoid the use of 


 measurements, 
a differentiator (observer) is needed. The differentiator 
needed here has to feature robust exact differentiation with 
finite-time convergence in the absence of the measurement 
noise. 
Let the input signal f(t) be a function defined on 

 0, consisting of a bounded Lebesgue-measurable noise 

with unknown features and an unknown base 
signal  0f t with the first derivative having a known global 

Lipschitz constant L > 0.The problem is to find real-time 

robust estimations of  0f t and  0f t


which are exact in the 

absence of measurement noise. Consider the auxiliary 

system 0z v  where v is a control input.  

Let  0 0 0z f t    and let the task be to keep 0 0   in 

a 2-Sliding mode. In that case 0 0 0 


  , which means 

that  0 0z f t and 0f v


 .The system can be rewritten 

as: 

 
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,f t v f L
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                     

The global closed loop of this scheme is restricted to 
stability of output error because the relative order of the 
system is 1, the resulting sliding motion then evolves on a 
reduced order manifold of dimension (n - 1) which is related 
to dynamic of zeros manifold, since the system is minimum 
phase then this manifold is stable. 
The function

0f
 can be not smooth, but its 

derivative
0f

  exists almost everywhere due to the Lipschitz 

property of
0f

 . A modification of the super-twisting 

controller: 
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Is applied here, the medication is needed.  

For neither
  0f t


nor v is bounded. The resulting form of the 

differentiator is: 
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Where, both v and z1 can be taken as the differentiator 
outputs. 
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Super-Twisting Observer  
One of the popular second-order sliding mode algorithms 
which offer a finite reaching time and which can be used for 
sliding mode based observation is the super-twisting 
algorithm considered previously. The proposed super-
twisting observer has the form: 
 

(6)  
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Where 1 2z and z  are the state estimates, while the 

correction variables 1 2and  are output error injections 

of the form. 
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Taking
  1 1 2 21 2z x z and z x z     

   
us obtains the error 

equations: 
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Where 
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Suppose that the system states are bounded, then the 
existence of a constant f  is ensured, such that the 

inequality 

 21 2, , ,F t x x z f   

Holds for any possible t, x1, x2 and 2 22sup .z x  

According to principle of first order differentiator, the 

parameters of observer and could be selected 

As  1/2

1 2 1 2,    where 1,1; 1,5;a f and a f a a     

Convergence of the observer states  1 2,z z  to the system 

state variables (x1,x2)occurs in finite time, [theory ref] 
 
Second Order Sliding Mode Control 

The second order sliding control (r = 2) (called 2-sliding) 
allows to eliminate or to reduce the chattering phenomenon. 
Its main purpose is to generate a second order sliding mode 
on a selected sliding surface S(t, x). This can be done by 
imposing: 
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applied to this new second order system. Therefore, we 
obtain the finite time convergence of S(t,x) and of its 
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The second derivative of S(t, x) is written as: 
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This gives: 
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Suppose that: 
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Consider now the new system in which state variables are 

the sliding function S(t, x) and its derivative  , .S t x


which 

are noted respectively by y1(t, x) and y2(t, x): 
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Using eqs. (7) and (8), we obtain: 
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The system described by (9) is a second order one. We 
propose for this new system a new sliding function: 
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Application to bioreactor system 
The dynamic model of the reactor is represented by the 
following nonlinear system, in the state space, affine with 
respect to the control input: 

With  1 2 3

T
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5inU F and y S x  
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(11)    
Relative Degree of the System:  In the present case, the Lie 
derivatives of the output y=S=h(x)=x5  are: 
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The relative degree of system is thus r =1. 
 
Second Order sliding mode control for bioreactor 
 
Synthesis of the control law: 
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The new system defined by the sliding surface and his 
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We propose for this new system a new sliding function: 
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Super-Twisting Observer for bioreactor 
The Super-Twisting Observer for bioreactor is given by: 
With: 
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Let 
Assumption 1:The system model is minimum phase. 

Assumption 2: 5max 0.M Mh with     

Theorem:  
The closed loop with bioreactor model given by the 

equations (11), second order sliding mode control given by 

    ,tu M sign t x dt  with the choice of 

7

0 0

5

1
in

z
M c with c

S x
 



 
 
 


where  ,t x is given by (12) and 

supertwist observer given by (13), are globally asymptotically 
stable if the assumption 1 and 2 are satisfied and the 
following condition: 

0 Mc     

Proof: 
The global closed loop of this scheme is restricted to the 

stability of the output error, because the relative order of the 
system is 1, the resulting sliding motion then evolves on a 
reduced order manifold of dimension (n- 1) which is related 
to the dynamic of zeros manifold, since the system is 
minimum phase [11], then this manifold is stable and 
assumption1 are satisfied. 

The assumption 2 is satisfied by the stabilization of 
observer by second order sliding mode control in the 
closed loop, so the dynamic of observer are bounded. 

1. Stability of output error : 

(1)   Let 
5 55 5y re z y and x x z    

       
 

And define as Lyapunov function: 
 

(2) 
21

2 yV e
                                                          

 

From Super Twist Observer we have: 
(3) 

   
   2 6 3 1/21 5 2 5 5

5 5 55 5
7

, , ,

0.14 0.5
in t

R x z z R x z S x
z u x z sign x z

z


        
 

  
  



                                                                                        

 
With (1) and (3) the derivative of V is given by: 
(4) 

     1/2
5

5 5 5 5

7

in
y y y r y rt

S x
V e e e z y e h u x sign x y

z


                 
   




                                                                                         

 

Where     2 6 31 5 2 5
5

, , ,

0.14 0.5

R x z z R x z
h   

  
 

Since  

 (5)      ,tu M sign t x dt                                          

And  

(6)                  5
5 5

7

, in
r rt

S x
t x h u y x y

z
 

      
 

 

Let 





5

5 5 55 5

y

r r y

ex

x y x z z y x e       


 

Then  
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(7)      5
5 5

7

, in
r yt

S x
t x h u y x e

z
  

      
 

    

 

Substitute (5) and (7) in (4) give: 
(8) 

 

 

5 5
5 5 5

7 7

1/ 2

5 5

in in
r y

y

r

t
S x S x

h M sign h u y x e dt
z zV e

x sign x y

 









 
     





     
          

  
 

  
 

 

Choosing 

7 7

0 0

5 5

1
in in

z z
M c with c M

S x S x
   

 

 
 
 

 
, and 

We have 

    , ,sign t x dt t x dt   if

   , 1 1 , 0t x and t x      
 

If the state x of system is far from slide surface, then 

 , 1t x  is verified, 

And if the state x thanks to control is in a neighborhood of 
slide surface then for a system with a relative order equal 

to 1 with respect to  ,t x  there exist positive constant 

S0,such that in a neighborhood   0,t x S  with S0= 1 

then  1 , 0t x   is verified.  

Apply this result to (8) gives: 

       

       

    

1/2
5

5 5 5 5 50
7

1/2
5

5 5 5 5 50
7

5
5 50 0 0

7

in
y r y r

in
y r y r

in
y r

t

t

t

S x
V e h c h u y x e dt x sign x y

z

S x
V e h c h u y x e dt x sign x y

z

S x
V e h c h u dt c y dt c x

z

  

  



  

  

 

             
   

             
   

        
  












  1/2

5 5 50 y rdt c e dt x x y 
 

   
 

  
 

We now that the sliding mode occurs in  5 0x  , then from 
equation of observer we have: 

        
1/2

5 5
5 5 5 5 5

7 7

in int t
S x S x

z h u x sign x h u
z z


            

   


 
And so, 







  


55 0 0 0

55 0 0 0

55 0 0 0

55 0 0

2
50 0

y r y r

y r y r

y y y r y y y r

y y r y y y r

y y y y y r

V e h c z dt c y dt c e dt y

V e h c z c y c e dt y

V e h c e z c e y c e e dt e y

V e h c e z y c e e dt e y

V c e c e e dt e h e y











  

 

 

 

 

 
     

 
      
 

    

    

    

  

















 

We have the regulation scheme, so 0ry


  then 

2
50 0y y y yV c e c e e dt h e



     

With assumption 
5max 0M Mh with     

2
0 0 00y y y MV c e c e e dt if c 



       

Then  0,ye   in virtue of (6) and  5 0.x 
 


55 50r y rx y x e x y      Globally asymptotically. 

Stability of global closed loop dynamic. 
Since the bioreactor are minimum phase and supertwist 
observer is finite time convergent error, the separation 
principle in nonlinear system allow us then to conclude to 
global stability of closed loop dynamic. 

 

Simulation results 
This section presents simulation results for the bioreactor 
regulation using the high-order sliding mode controller with 
a super-twist observer and the classic sliding mode 
controller with a sliding observer under state under state 
perturbations. The responses of the bioreactor system for 
both controllers are compared, assessing their performance 
in maintaining desired setpoints and minimizing deviations. 
The control signal is included to validate the proposed 
control scheme's optimality. Additionally, a comparison of 
estimated states from both observers reveals insights into 
the accuracy and reliability of state estimation. 
 

 
Figure 3 response of the bioreactor controlled by the high order 
sliding mode controller and supertwist observer with state 
perturbation 

 
Figure 4 response of the bioreactor for the classic sliding mode 
controller and sliding observer with state perturbation 

 
 

Figure 5 States of the bioreactor for the classic sliding mode 
controller and sliding observer with state perturbation 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 4/2024                                                                             191 

 
Fig.6 States of the bioreactor controlled by the high order sliding 
mode controller and supertwist observer with state perturbation 

 
Table 1 variance of the control signal and the MSE 

 Classic Sliding High order sliding 
Variance of the 
control signal  

Var= 0.0177 Var=0.0167 

M-S of error mse=3.8658
e-05 

mse= 8.0748e-
06 

MSE: mean suared error 
 
For the high order sliding mode response , we have a 
smooth control signal with the absence of chattering, which 
is always present for the  sliding control, this phenomena is 
eliminated for this controller with guaranteeing a good 
performances(time response,steady state error...), in 
contrast for the classic sliding mode control where the 
chattering is always  present, and the performances are not 
satisfying. 
Despite the presence of disturbances on the states, the 
system operates effectively and in good performances, this 
confirms the robustness of this controller. 
For the state observer  we have an excellent estimation for 
both observers : high order sliding mode and classic order 
sliding mode, but for the classic one we have bad 
estimation for some states where all the estimated states of 
high order sliding observer were identifiable as the orginal 
states. 
 
Conclusion  
 The bioreactor being a system of relative degree 1, 
allowed us to be satisfied with the second order sliding 
control as well as the supertwist observer, the results of 
simulations showed that their application to the control of 

the system of the bioreactor give excellent results 
compared to to those of the classical sliding mode control 
with the classical sliding mode observer, the elimination of 
chattering is visible even in the presence of disturbances on 
the state and the performances are satisfactory. 
The bioreactor being a minimum phase system, the other 
states considered as internal dynamics are bounded as 
shown by the simulation results for the two control 
schemes. 

The results obtained show that the high order sliding control 
with the supertwist observer offers a promising solution for 
the control of bioreactor systems. 
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