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Abstract. The process of calibrating force-torque sensors with high precision is quite time-consuming and necessitates dismantling the system in 
which the sensor is utilized. This paper proposes method to calibrate six-axis, low-cost force-torque sensors that can be performed in situ and online 
i.e., without removing the sensor from the manipulator and directly by algorithm implemented on manipulator controller. This approach is validated by 
comparing the results obtained by calibrations carried out using the presented online method and the offline method utilizing a calibration jig.  
 
Streszczenie. Skalowanie czujników siła-moment jest procesem czasochłonnym, wymagającym odmontowania czujnika od manipulatora. 
W artykule zaproponowano metodę skalowania sześcioosiowych, nisko kosztowych FTS, która jest wykonywana w czasie rzeczywistym, bez 
konieczności demontażu czujnika. Wyniki skalowania uzyskane za pomocą przedmiotowej metody zostały zweryfikowane na drodze porównania 
z wynikami skalowania zrealizowanymi metodą offline z wykorzystaniem specjalnego przyrządu kalibracyjnego.. (Skalowanie online 
tensometrycznego czujnika siła/moment dedykowanego dla zastosowań do prostych interakcji człowiek-manipulator). 
 
Słowa kluczowe: czujnik siła/moment, skalowanie online, metoda najmniejszych kwadratów, czujnik nisko kosztowy 
Keywords: Force Torque Sensor, Online Calibration, Least Squares Method, Low-Cost sensor 
 
 
Introduction 
 The six-axis Force Torque Sensor (FTS) exhibits the 
capacity to concurrently measure three axial forces (Fx, Fy, 
Fz) and torques (Mx, My, Mz) exerted upon it. This type of 
sensor is widely utilized across diverse fields, with a 
prominent presence in robotics. However, the acquisition of 
a highly accurate FTS entails a cost that proves excessively 
burdensome for numerous applications. Furthermore, 
certain applications do not require a high level of precision 
[1]. For instance, when executing tasks such as manually 
guiding the manipulator's end-effector or detecting external 
impacts experienced by the manipulator during human –
robot interaction, a relative error of 10% is deemed 
permissible. 
 In general, the six-axis FTSs can be categorized into 
two types based on the relationship between applied 
force/torque and the resulting measuring bridges output 
signals values [2]: mechanically coupled sensors and 
mechanically decoupled sensors. Mechanically coupled 
sensors generate an output signal in multiple bridge circuits 
when a pure force/torque component is applied, requiring 
calibration using a complicated calibration matrix. On the 
other hand, mechanically decoupled sensors selectively 
respond in their bridge circuit output to specific force or 
torque components. Compared to mechanically coupled 
sensors, mechanically decoupled sensors offer easier 
sensor calibration and maintenance since their output 
signals are physically decoupled. 
 The mechanical decoupling strategy is followed by many 
researchers as described, e.g. in [2-5]. A new structure of a 
sensing element and placement of strain gauges is 
proposed in [2-4]. In [5] a Finite Element Method (FEM) is 
used to evaluate the coupling terms and minimize them by 
changing geometric parameters of the underlying Computer 
Aided Design (CAD) model. In a different context, FEM is 
used to analyze stress-strain relations in [6]. In [1] the 
authors point that mechanical decoupling, i.e. modifying the 
mechanical construction of the sensor and strain gauges’ 
placement, can lead to satisfactory results. However, 
production of sophisticated shapes of a sensing element 
can be expensive. Therefore, it is more economical to apply 
software decoupling. Software decoupling strategies vary 
from simple models, such as linear Least Squares Method 
(LSM), to more advanced nonlinear ones, like Support 
Vector Machines [7] and Neural Networks (NNs) [8]. In [8] 

authors claim that the nonlinear model based on NNs 
performs better as LSM. However, while NNs can be 
trained offline, they are infeasible for online calibration. The 
LSM is applied in [9] for the in situ calibration, i.e. 
decoupling. 
 This article presents an online, in-situ method used for 
calibration of cost-effective six-axis force-torque sensor. 
The FTS, which incorporates the Maltese cross design, 
plays a crucial role as an integral component within the 
Robot Interaction Module (RIM), which is utilized in human-
robot interaction applications. Our approach does not 
require any usage of a dynamical model of the manipulator. 
This method, addressing the needs of regular calibration 
[9], particularly offset removal, just before using FTS, can 
be conducted without the necessity of disassembling the 
sensor from the manipulator. Its implementation can utilize 
a standard manipulator controller without the need to collect 
and process a large amount of experimental measurement 
data beforehand. The calibration outcomes achieved 
through this approach are compared to those obtained 
using the classical method that relies on conducting offline 
measurement experiments with a specialized calibration jig. 
While the latter technique offers higher accuracy, it is more 
time-consuming and necessitates the disassembly of the 
FTS sensor, its repeated assembly (in various 
configurations) on the calibration jig, and the collection and 
resource-intensive processing of measurement data. 
 
Sensor structure and strain gauges arrangement 
 The force/torque sensor, whose calibration is the subject 
of this article is the main component of the robot interactive 
module. The structure of the RIM is shown in Fig. 1(a), 
while the mechanical structure of the FTS itself is depicted 
in Fig. 1(b). The sensor is constructed as a modified 
Maltese cross made of aluminum alloy. It consists of an 
outer ring and a hexahedral hub connected by four elastic 
beams. Loads are applied to the sensor through an end-
effector adapter attached to the hub. The outer ring is firmly 
fixed to the manipulator wrist via a mounting flange. In order 
to enhance sensitivity of horizontal lateral forces Fy and Fz 
the connection between cross elastic beam and the outer 
ring is equipped with additional compliant beams (see 
Fig. 1 (b)). On the opposite sides of the cross beams, pairs 
of strain gauges are attached, forming 8 half Wheatstone 
bridges. The sensor coordinate system was selected such 
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that the X-axis is orthogonal to the sensor's plane, while the 
Y and Z axes align with the symmetry axes of the cross 
beams. 
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Fig. 1. Robot interaction module structure (a) RIM assembly  
(b) FTS structure and coordinates 
 
 The simplified measurement system, employed for 
acquiring measurement signals from the strain gauge half-
bridges, is depicted in Fig. 2. This system (with exception of 
strain gauges) is implemented in the printed circuit board  
(PCB) mounted alongside the FTS sensor (see Fig. 1(a)). 
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Fig. 2. FTS measurement circuit 
 
 The output (unbalanced) voltage from each of the 
bridges shown in Fig. 2 is first filtered by an RC anti-aliasing 
filter, then amplified 128 times, converted to a 24-bit digital 
signal and further filtered by the digital filter of a ΣΔ analog 
to digital converter (ADC). Subsequently, these signals are 
transmitted at a rate of 1 kHz to the STM32 microcontroller, 
where they undergo validation and additional conditioning, 
including offset removal upon request. The signals are then 
transformed into forces and torques by multiplying their 
values with the calibration matrix. The calculated 
measurement values are then transmitted to the master 
controller of the manipulator via Ethernet. 
 
Mathematical model of the sensor 
 The mathematical model which represents the 
calculation of force-torque (also called wrench W) 
measurement values based on bridge strain measurements 

8R , assuming linear sensors and the absence of initial 
strains (offsets): 
 

(1)  W C   
 

where: 
6 8C R  is strain stiffness matrix (calibration 

matrix), 
6W R  is wrench vector, composed of force F


 

and torque M


vectors: 
 

(2)  , , , , , ,
T T

x y z x y zW F M F F F M M M       
 

 

 

 In practical applications, it is not valid to assume that 
strains are zero when no wrench is applied to the sensor. 
Therefore, it becomes necessary to incorporate a strain 

offset 
8D R   into the model: 

 

(3)  ( )W C D C CD C D           

where: 
6D R  is wrench offset vector. 

 It is assumed that the elements of the calibration matrix 
and the offset vector remain constant. 
 

Determination of the Calibration Matrix 
 In order to implement equations (1) or (3), which involve 
calculating forces and torques from measured strains, it is 
essential to possess information about the calibration matrix 
C. The derivation of this matrix involves solving an 
overdetermined system of equations: 
 

(4)                                   W C   , 
 

utilizing known values of n strain vectors Δ 

(  1 2
8,  , , n

nR      ) and n vectors W of forces 

and torques that are applied to the sensor 

(  2
6

1 , , , n
nW RWW W   ). The estimation of the matrix 

C's elements is accomplished through the ordinary least 
squares method. 
 Matrix C consists of six rows, and each row consists of 
eight coefficients that represents the degree of dependence 
between the calculated values  Fx, Fy, Fz, Mx, My, Mz and 
the individual values of the strain measurement vector 

1 2 8,..., ,...,  , k T
      . To achieve a proper 

estimation of these eight coefficients (obtain an 
unambiguous solution) it is essential to have a minimum of 
eight linearly independent equations. However, in this case, 
the given set of equations (4) can only provide a maximum 
of six linearly independent  equations. Therefore, additional 
information regarding the arrangement of measurement 
bridges and the coordinate system relative to the sensor 
(see Fig. 1(b)) was utilized. Consequently, under the 
assumption of an ideally manufactured sensor, the 
relationship (1) between the vector W and the strain Δ is 
expressed as follows:  
   

(5)  
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where: 
6 6C R   is a modified calibration matrix, 

6R  

is modified (projected) strain vector, 
8 6P R   is a 

projection matrix: 
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 If an ideal sensor is considered, the matrix C  will take 
the form of a diagonal matrix, where the coefficients 

represent the scaling of strains   into subsequent forces 

and torques. However, for a real sensor, the matrix C  
deviates from being diagonal. Then by multiplying  this non-
diagonal matrix by the projection matrix P, the desired 
calibration matrix C is obtained: 

(7)  C CP . 
 
Online Ordinary Least Squares Method 
 In order to create an algorithm that determines the 
matrix C online, first the relation (4) should be multiplied by 

the Moore-Penrose right-pseudoinverse of ~ , which is 
defined as follows:  
 

(8)    1# T T 
        

 

Since 
# I   , the solution for C  is then given by: 

 

(9)    1# T TC W W


          . 

 In the equation (9) the (j,k)-th component of 
TW   can 

be represented by: 
 

(10)  
,

1 1 ,
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and the (j,k)-th component of 
T  by: 

(11)  
,

1 1 ,

( ) ( )
n n

T T
i j i k i ij k

i i j k 
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   , 

 

where: i is an index representing the column number of the 

matrix ~ and W . Then the closed form of solution (9) used 
in online method is as follows: 

(12)  
1

1

1 1

n n
T T

i i i i W
i i

C W S S



 
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 In order to achieve a successful calculation of matrix C 
using either formula (12) or (9), it is essential that matrix 

T   is invertible, meaning that   should possess 
independent rows. Therefore, using relation (12), a modified 

calibration matrix C  is calculated (instead of matrix C) as a 

result of replacing the strain vector   by the projected 

strain vector  .  
 The developed method must be able to determine, in 
addition to the matrix C, the wrench offset vector D. 
Therefore, in formula (12), instead of the projected strain 

vector  , a vector appended by a unit element is 
introduced as input: 
 

(13)                        
* ,1

TT     , 

and then instead of C  an augmented calibration matrix: 
 

(14)                            
* ,C C D      

 

is calculated. 
 The determination of the matrix C according to relation 
(12) can be implemented using an iterative method. Then, 

at the beginning, the matrices WS   and S  are zero 

matrices and then, in successive iterations (i.e. for the 
following pairs of vectors Wi and Δi), they are calculated as 
follows: 
 

(15) : T
W W i iS S W    ,  

(16) : T
i iS S     .  

 

After the end of the n-th iteration, the matrix C is calculated 
according to the right side of relation (12). 
 
In Situ Online Calibration Method 

  Due to the non-ideal nature of the FTS, characterized by 
factors like non-linearities and stress changes due to 
temperature variations, the least square method for 
determining the C-matrix will be more effective with a larger 
number n of input data points and a more uniform 
distribution of these data points across the sensor's 
measurement range. These data points, represented as 
pairs of Wi and Δi vectors, are obtained through experiments 
where the sensor is subjected to known loads. To achieve 
on-line calibration, the proposed in situ method can be 
utilized. This calibration method can be performed on 
demand without the need for additional measuring and 
control equipment. The approach employs a standard 
manipulator equipped with a RIM (FTS) and a specialized 
RIM calibration tool (RCT) mounted as the manipulator's 
end-effector (refer to Fig. 3).  
 During the course of the experiment, the end-effector 
undergoes changes in its orientation relative to the ground. 
Cyclic calculations are then carried out using equations (15) 
and (16). The Δi values represent the direct outcomes of 
strain measurements, while the components of the vector 

Wi, comprising force vector iF


 and torques, are calculated 

as follows:  

(17) ,0gmRF ii


 ,  

(18) 0i iM r F 
 

 
 

using information about the known mass m0 and center of 

gravity 0r


 of the RCT, along with the known orientation Ri 

of the sensor coordinate system. 
 In order to uniquely define matrix C in equation (4), 
matrices Δ and W must be linearly independent. This 
requirement implies that matrix W needs to be full-rank, 
which means it must have a rank of 6. When considering a 

constant value of 0r


 and different orientations Ri, all 

torques calculated using relation (18) are subject to two 
additional equations: 

(19)                  0 0( ) 0,i i iM r r F F    
   
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(20)                0( ) 0i i iM F r F F    
   
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Fig. 3. Manipulator with RIM and RIM Calibration Tool 
 

Then the knowledge of the 4 components of the vector 
Wi allows the calculation of the remaining 2. This applies to 

all Wi. However, due to this relationship, the matrix W  
ends up having only 4 linearly independent rows instead of 
the required 6, leading to its rank being 4. The number of 

linearly independent rows in matrix W  can be increased by 

conducting experiments with another value of 0r


, appearing 

in equations (18) and (19). 
  

 
 

Fig. 4. RIM Calibration Tool reconfiguration possibilities 
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Fig.5. Forces acting on FTS  

 In summary, to achieve a full-rank W  matrix, it is 

essential to employ at least three different values 1r


, 2r


, 

3r


 (instead of a single 0r


), representing the center of mass 

of the RCT during the calibration experiment.  
 In the arrangement shown in Fig. 3, all that is needed to 
properly perform the calibration experiment is to vary the 
angular positions in the range of +/- 180° for the last two 

joints in an appropriate manner. This should be done 
sequentially for the three configurations (i.e. three different 
centers of mass) of the RCT. The RCT allows the 
configuration to be changed by moving the main weight in 
two directions as shown in Fig. 4.   
 The forces and torques waveforms acting on the FTS, 
used during the calibration experiment, are shown in Fig. 5 
and 6 respectively. 
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Fig.6. Torques acting on FTS 
 
Simulation validation of the method 
 The developed method was initially validated through 
simulation. This validation process involved applying the 

calibration procedure to a series of input data Wi and i . 

These data were not obtained from actual experiments but 
were instead calculated based on the FTS mathematical 
model derived from equations (3) and (5): 
 

(21) i iW C D    

To generate the data, arbitrary assumptions about the 

modified calibration matrix C  and the wrench offset vector 

D were made. Then, successive vectors i  were 

calculated, using the relation resulting from the 
transformation of equation (21): 
 

(22) 
1( ).i iC W D    

 

Next, the resulting calibration matrix was compared with the 
one used for the data generation. The comparison results 

for the 11C element of the calibration matrix in each iteration 

of the algorithm are presented in Fig. 7. 
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Fig 7. Relative error in the determination of the coefficient 1,1C  of 

the calibration matrix 



134                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 3/2024 

The error waveform exhibits a noticeable trend of 

approaching zero for the 11C  error value with an increase 

in the algorithm iterations. This convergence can be 
observed in three distinct intervals, each showing an abrupt 
decrease in the error value. These changes are directly 
associated with consecutive alterations in the center of 
mass of the RCT. It is noteworthy that the data originating 

from the third RCT configuration leads to a minimized 11C  

determination error, effectively reaching zero. A comparable 
pattern of convergence for the error was also observed for 

the other coefficients of the C  matrix, as well as for the D 
vector. 
 The results of the simulation validation experiments 
confirmed the correctness of the developed method 
 
Experimental validation of the method 
 The validation process under real calibration experiment 
conditions carried out on a physical sensor was conducted 
in multiple stages. In the first stage, offline input data were 
collected using a dedicated calibration jig (see Fig. 8). On 
this device, pure axial forces and torques acting on the 
sensor were generated by appropriately mounting the FTS 
on jig and suspending weights on cables. Each force and 
torque was applied stepwise by dividing the whole sensor 
nominal load range (+/- 50 N and +/- 5 Nm) into 10 

increments creating matrix W . Simultaneously, strain 
measurements were obtained, and after offset removal, 

they constituted matrix  . Then, by multiplying matrix   by 
the projection matrix P and using successively relations (9) 
and (7), the calibration matrix C shown in Table 1 was 
determined.  Almost identical values of the coefficients of 
matrix C were obtained using relations (15), (16) and (12) 
utilized in online calibration method. 

 
 
Fig.8. FTS calibration using calibration jig 
 
 In the second stage, the in situ online calibration method 
described in the previous chapter was used to determine 
the C matrix. The resulting calibration matrix is presented in 
Table 2.  
 
 
 

 During the final stage, a comparison was made between 
the results obtained in the first two stages by calculating the 
forces and moments by multiplying the measured strains by 
both the matrix in Table 1 and Table 2. This experiment was 
done in a system with a manipulator (see Fig. 3) moving the 
arm end-effector in a way that produced different forces and 
moments acting on the FTS than those used during the 
calibration experiment. The waveform of the force acting in 
the x-axis direction is shown in Fig. 9. The waveform of the 
measurement error, calculated as the difference between 
the value of the acting force Fx and the value of this force 
determined using the matrix from Table 2, is shown in Fig. 
10. A similar waveform of the error was obtained comparing 
the forces determined using both methods, i.e. using the 
matrices from Tables 1 and 2. On this basis, it can be 
concluded that the measurement error of the force Fx is less 
than 10%. In reality, the value of this error is expected to be 
lower, as its higher value is caused by the uncompensated 
dynamics in the system accompanying the arm movement.  
For torques and forces acting in other directions, the value 
of the measurement error is even slightly smaller.   
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Fig 9. Force Fx acting on FTS during validation experiment 
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Fig 10. Absolute error of force Fx measurement during validation 
experiment 

 
Table 1. Calibration matrix obtained using offline measurements 

 Δ1 
Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8

Fx    -0.0783     115.9959      0.9697 116.2178     1.3307 115.8044    0.2828 115.5825

Fy -261.2932         0.4277     -0.7689    -1.1942 260.2123    -2.8367   -0.3119    -1.2148

Fz     -1.8840        -1.9708 -268.3156    -0.5501    -2.5808     2.0404  263.8509     0.6196

Mx      2.8420        -0.0162       2.8130    -0.0295     2.7539    -0.0427     2.7829    -0.0294

My      0.1194         2.7478      0.0584     0.0326    -0.1015    -2.7470    -0.0405    -0.0318

Mz     -0.0495        -0.0221      0.0971        2.7913        0.0981     0.0448    -0.0485    -2.7686
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Table 2. Calibration matrix obtained using in situ online method 

 Δ1 
Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8

Fx     3.0923 115.3273          4.7326 115.7136    -2.1440 115.6176   -3.7843  115.2313

Fy -259.3593        0.4145    14.1101    -0.3564 258.7215   -1.6980 -14.7478     -0.9271

Fz     -7.7659       -2.8778  -263.0028    -1.2387    3.2590    1.7686  258.4959     0.1295

Mx      3.4190      -0.2087           3.1167    -0.1291    2.0776   -0.1821         2.3799    -0.2618

My    -0.6157       2.7617       0.9176    -0.0135    0.5943   -2.5584    -0.9390        0.2169

Mz    -0.1800       0.2929      -0.1008     2.9374       0.1539    0.1548         0.0747    -2.4897

 
Conclusion 
 The development of a non-disassembly calibration 
method for force-torque sensors represents a significant 
advancement in robotics. This method effectively addresses 
the crucial need for frequent calibration, particularly offset 
removal, without necessitating sensor disassembly. The 
developed technique offers a streamlined and highly 
efficient approach, enabling users to maintain the accuracy 
of their FTS sensors without prolonged interruptions to the 
robot's operation. Furthermore, this calibration method does 
not demand any additional hardware or human resources, 
making it readily applicable in various robotic systems. It 
can be implemented on a simple microprocessor-based 
manipulator controller, without requiring significant memory 
resources and computing power.  
 Validation experiments carried out on the developed 
calibration method confirmed its correctness. The measured 
forces and torques have exhibited a level of precision 
sufficient for basic human-manipulator interactions, such as 
hand-guided movements or overload detection. 
 However, to further enhance measurement accuracy, 
there are potential approaches. One method involves 
compensating for the influence of arm dynamics during the 
calibration process, which unfortunately would require 
additional computing power. Alternatively, considering the 
values of measured strains in static arm positions for 
calculations could minimize measurement errors, but this 
approach would result in a significant increase in calibration 
time. 
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