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Abstract. The accurate modeling of ferromagnetic magnetic behavior and implementation of magnetic law into a solving procedure of nonlinear 
partial differential equations, derived from Maxwell’s equations are necessary for the design and simulation of electrical engineering applications.  
 The finite element methods are widely used in literature for solving electromagnetic problems. Partial differential equations are generally nonlinear 
due to the strong nonlinear character of ferromagnetic materials. However, there are other numerical methods, which can be used for design and 
can offer better numerical stability, such as, the finite volume method (FVM). In this work, FVM simulation results of computer code developed and 
implemented under MATLAB environment is detailed. The nondestructive eddy current inspection situation on multilayered material is described in 
three-dimensional modeling problem. The goal is to present a stable numerical model able to solve a highly non-linear problem requiring a very fine 
mesh with various magnetic properties from one region to another. The confrontation between the experiments and simulations validate the 
developed FVM models. 
 
Streszczewnie. Dokładne modelowanie zachowania magnetycznego ferromagnetyku i implementacja prawa magnetycznego do procedury 
rozwiązywania nieliniowych równań różniczkowych cząstkowych, wyprowadzonych z równań Maxwella, są niezbędne do projektowania i symulacji 
zastosowań w elektrotechnice. Metody elementów skończonych są szeroko stosowane w literaturze do rozwiązywania problemów 
elektromagnetycznych. Równania różniczkowe cząstkowe są na ogół nieliniowe ze względu na silną nieliniowość materiałów ferromagnetycznych. 
Istnieją jednak inne metody numeryczne, które można zastosować w projektowaniu i które mogą zapewnić lepszą stabilność numeryczną, takie jak 
metoda objętości skończonych (FVM). W pracy szczegółowo opisano wyniki symulacji FVM kodu komputerowego opracowanego i 
zaimplementowanego w środowisku MATLAB. Nieniszcząca sytuacja kontroli prądów wirowych materiału wielowarstwowego jest opisana w 
problematyce modelowania trójwymiarowego. Celem jest przedstawienie stabilnego modelu numerycznego zdolnego do rozwiązania wysoce 
nieliniowego problemu wymagającego bardzo drobnej siatki o różnych właściwościach magnetycznych w zależności od regionu. Konfrontacja 
eksperymentów i symulacji weryfikuje opracowane modele FVM. (Trójwymiarowe modelowanie numeryczne układu prądów wirowych przy 
użyciu metody objętości skończonych) 
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Introduction 

Significant improvements in material science have 
significantly affected their exploitation in engineering 
applications, especially in highly developed industries. In 
such application, it is necessary to have reliable 
measurement techniques that evaluate correctly the 
properties of the materials. Several measurement 
techniques are used; such as optical and electron 
microscopy for microstructure analysis and destructive 
testing methods for the determination of mechanical targets 
such as: tensile strength, elongation, hardness, etc [1]. 
However, due to the cost and production speed, it is 
necessary to predict the properties in a short time and real 
time. This can be achieved by non-destructive testing (NDT) 
which is widely used in the aircraft maintenance, particle 
accelerators and in metallurgical industry; such coating 
evaluations and material thickness determination [2]. 

For the improvement of non-destructive testing and to 
guarantee better functional dependence between the micro-
magnetic measurement quantities and the micro structural 
characteristics and/or material properties (calibration), many 
equipment and variants of electromagnetic sensors have 
been developed [3]. However, the complexity of materials 
makes calibrate of the NDT techniques limited. To 
overcome these limitations and correctly predict the 
magnetic behavior of materials in different situations, 
several analytical and numerical models have been 
proposed. The analytical models have the advantage of 
simplicity in terms of cost and time compared to the 
numerical models. However, the analytical methods reveal 
their limits in complex geometries and properties 
(anisotropy, nonlinear character). Nevertheless, the 
development of new electromagnetic designs requires 
precise simulation tools. Under these conditions, numerical 
simulations are the most favorable and large interest in 
NDT domain  where generally, the FEM is widely used [4-5-

6-7].Furthermore, this method is the most popular and the 
most flexible numerical technique [8-9] to determine the 
approximated solution of the partial differential equations in 
engineering [9]. However, there are simpler numerical 
methods and easier to implement in a computational 
environment, such as the finite volume method (FVM) [10-
11]. This method can correctly deal with strong nonlinear 
problems. It offers comfortable numerical stability to solve 
such problems compared to the FEM [10-11]. Beside this, 
the integral form in the FVM method has more explicitly 
physical meaning than other numerical methods 
[6].Furthermore, it offers similar flexibility as FEM method 
for solving complex media. 

The first time where, FVM was introduced into 
electromagnetic computational problem (CEM) by Shankar 
et al. [12]. Many works presented in literature focus on 
solving electromagnetic problems is one-dimensional [13] or 
even two-dimensional [6-14-15].The models are mainly 
defined by differential equations, which are based on the 
conservation principle defined by the divergence law [16]. 
Nevertheless, the basic formula of the FVM is not adapted 
for electromagnetic system modeling in the three-
dimensional cases [16]. A new scheme of the FVM, makes 
the 3D problem solving possible. This new approach which 
is developed in our previous works, has been applied only 
for the 3D modeling systems of diamagnetic materials 
where the magnetic permeability does not vary from one 
environment to another[10-16-17]. In this context, the new 
approach for the 3Dmodeling system is applied on 
ferromagnetic materials, with various magnetic properties. 
For this purpose, a mathematical-numerical model is 
developed and implemented under Matlab environment. 
The robustness of the proposed work is evaluated by 
comparison between simulation and the experimental 
results. 
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Mathematical and Numerical Models 
The model consists on a 3D sketch of an eddy current 
probe head and multi-layered sample. The model is 
illustrated in Figure 1.The sample is then magnetized via 
the ferrite yoke, which have three arms with the inner and 
outer pole distances of 12 mm and 18 mm. The simulation 
parameters are summarize din Table 1.The gap between 
yoke and the specimen is set to 1mm. The magnetizing coil 
is wound around the central arm of the yoke (Figure 1). 
 

Table 1. Simulation and measurement set up 
Setup parameter Value 

Low frequency excitation  fLF 50 Hz 
High frequency excitation  fHF 150 KHz 

Ferrite Yoke [7] JA: Ms = 1.41106; α=1.4710-4, 
a = 85.73, 

c = 0.316, k 65.53and σ = 6 
MS/m. 

Magnetization coil 100 turns/4 mm external 
diameter 

 

 
Fig.1. Sketch in 3D. 
 

The layered sample is represented via three layers: 
decarburized, an intermediate and bulk layer. Two 
specimen are tested, both have various decarburized layer 
thickness : 200 μm and 800 μm. A sinusoidal current with 
frequency ranging from 50 Hz to 150 kHz is applied to the 
coil for both samples. The measurements are performed on 
absolute mode. The physical properties and the dimensions 
of sample layers are given in Table-2. 

 
Table 1. Geometry and physical properties of a sample 

Layer Thickness           Magnetic 
                           permeability r 

Decarburized 200 m                          250 
Intermediate 600 m                          200 

Bulk 2000m                       50 
 

The electrical resistivity of the different sample layers varies 
in the range of ρ = [1.49e-7 - 1e-7] Ω.m from the surface to 
the bulk. The numerical analysis of the studied 
electromagnetic device is processed by solving the three 
dimensional (3D) electromagnetic equation obtained from 
Maxwell's equations. For resolution, it is necessary to add 
penalty term, which is expressed in following: 
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In both equations (1) and (2),  A and V are respectively 
the magnetic vector potential and the electric scalar 
potential. The physical properties υ and σ represent 
respectively the magnetic reluctivity and the electrical 
conductivity. The right term of equation (1) Js represents 
the source current density. The system of partial differential 
equations (3) and (4) is solved in Cartesian coordinates (x, 
y, z). The computation of both voltage module and phase 
are then performed  via the resolution of partial differential 
equations system in terms of magnetic vector potential A 
and electric scalar potential V formulation. 

In the following, only one component of partial 
differential is represented in equations (1) and (2) along x 
coordinate. The development is then expressed as 
following: 
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The developments concerning the others coordinates y 
and z are obtained at the same time but not given here. The 
finite volume discretization method applied to equations (3) 
and (4) allow, for each elementary volume (ve) of solving 
domain, to deduce the following equations: 
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Fig.1. Elementary volume, a- Classic scheme, b- New scheme 
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The classic discretization scheme (Figure.2.a.) permits 

to treat easily the crossed terms (the differential terms such 
as: 
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with, i and j represent  x, y and z coordinates. These terms 
are similar to those obtained from two-dimensional 
electromagnetic models or even by three-dimensional 
models managed by partial differential equations. 
The discretization in finite volumes of equation (7) is carried 
out for each Cartesian coordinate x, y and z in an 
elementary volume represented in figure 2.a. Thus, for the 
y-coordinate case, the discretization scheme leads to the 
following formula: 
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In figure (2.a), υn and υs are defined as the magnetic 
reluctivities at nodes n and s of the elementary volume (Fig. 
2.a). The unknowns AXN, AXS and AXP represent respectively 
the magnetic vector potential at nodes N, S and P. 

However, the finite volume discretization scheme 
represented in (Figure.2.a.) of the elementary volume don´t 
not take correctly into account  the partial derivatives of two 
different coordinates successively, i.e. the partial differential 
terms such as: 
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with i≠j and i, j, kare related to the Cartesian coordinates x, 
y and z. In the new scheme of the elementary volume 
presented in Fig. 2. b, the terms are described as follows: 
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In the new finite volume discretization scheme, it 
appears supplementary terms such as: AYNE, AYNW, AYSE 

and AYNW are defined as a supplementary terms 
represented in Fig. 2. b for the elementary finite volume 
(formula 10). 

The addition of supplementary nodes to the classical (or 
basic) elementary volume scheme allows to take into 
account the successively different partial differential 
operations applied to different variables (in case of second 
order partial differential equations). Which leads to a well-
treated three-dimensional electromagnetic model, described 
in equation (10). 

 

 
Fig. 3. Projection of the elementary volume according to the XY 
plane. 
 

Numerical Results and discussion 
From FVM calculation, both module and the phase of 

the detected voltage are obtained. From these results, it's 
possible to determine the impedance. The multilayer 
characteristics of the specimen (bulk layer + decarburized 
layer)is taken into account. The mutli-scale time signal (50 
Hz-150 kHz) and size (ratio 105 ) are solved.  

This multi-scale difference requires adapted meshes 
depending on the area of sample-sensor system, and a 
finer time discretization to identify the high-frequency 
phenomena. 

Both figures 4 and 5 represent the comparison between 
calculated and measured impedance for frequency range 
values from 50Hz to 150 kHz) and for both specimen 
surface decarburized layer thickness of L = 200μm and L = 
800μm. 

According to the presented validation results, it can be 
concluded that model is robust and can correctly reproduce 
the impedance profiles for various frequencies. 
Discrepancies between numerical and experimental results 
appear for a specimen of L=200μm.  

 
Fig. 4. Calculated and measured impedance profile via frequencies 
(f = 50Hz-150 kHz) for a specimen with decarburized layer 
thicknesses L = 800 μm. 
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Even if these discrepancies are negligible, the FVM 
presents this limit for applications requiring a fine mesh 
density. The figure 6 represents the variation of the 
impedance profile in case of specimen thicknesses: L = 200 
μm, 400 μm and 800 μm.  
The Figure 7 denotes the impedance for both specimen 
with decarburized layer thicknesses from 200μm to 800μm. 
The results show an increase in impedance (an almost 
linear increase). The Figure 8 represents the two-
dimensional distribution of the magnetic field isolines and 
the value of the magnetic induction for following frequencies 
f= 50Hz, 1kHz and 150 kHz. 

 
Fig. 5. Computed and measured impedance profile via frequencies 
(f = 50Hz-150 kHz) for a specimen with decarburized layer 
thicknesses L = 200 μm. 

 
Fig. 6. Calculated impedance profile via frequencies(f = 50Hz-150 
kHz) for a specimen with decarburized layer thicknesses L = 800 
μm, L = 400 μm and L = 200 μm. 
 

 
Fig. 7. Impedance values calculated at 1 kHz frequency for various 
decarburized layer thicknesses L = [150-800]μm. 
 

 
Fig. 8.a. 2D. Distribution of the magnetic field vectors and magnetic 
induction values for f= 50Hz. 

 
Fig. 8.b. 2D distribution of magnetic field vectors and magnetic 
induction for f= 1 kHz. 

 
Fig. 8.c. 2D distribution of magnetic field vectors and magnetic 
induction for f= 150kHz. 
 
Conclusion 

A three-dimensional calculation code implemented 
under MATLAB environment. In this work, new 
development were performed and adopt a new approach of 
the FVM, which makes the analysis of electromagnetic 3D 
problems possible without simplifying hypothesis. The three 
dimensional (3D) equation is solved by considering the 
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successively partial derivatives of different coordinates, in 
case of second order partial differential equation, don't 
vanishes and included in the final transient algebraic 
system through the new scheme of finite volume 
discretization.  The comparison between numerical and 
experimental results show a good agreement results and 
accuracy. Then, the proposed mathematical of the 3D 
electromagnetic equation and the associated new finite 
volume scheme applied. The presented approach limits the 
FVM for problem, which request very fine meshes. 
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