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Estimation for Doubly-Fed Induction Generator 

 
 

Abstract. The main objective of this paper is to analyze the influence of the discretization step on the estimated states of the Doubly-Fed Induction 
Generator (DFIG). Although the Extended Kalman Filter (EKF) has been widely used for such systems, the discretization process is conventionally 
ensured by the first-order Forward Euler method. Therefore, the effects of the discretization order of the discrete state-space representation on the 
Extended Kalman Filter estimation have not been studied before. In this paper, we combine the Extended Kalman Filter with two second-order 
discretization methods: Central Difference and Adams-Bashforth methods, to estimate the states of a Doubly-Fed Induction Generator and improve 
the estimation precision of the rotor speed and the Flux of the generator. A comparative study has been conducted to analyze the qualitative and 
quantitative responses of the estimator for different cases. The obtained results have demonstrated the significance of the discretization order on the 
estimation process of the two states of the DFIG.  
 
Streszczenie. Głównym celem tej pracy jest analiza wpływu kroku dyskretyzacji na oszacowane stany Dwubiegowego Generatora Indukcyjnego 
(DFIG). Chociaż Rozszerzony Filtr Kalmana (EKF) jest szeroko stosowany w tego typu systemach, proces dyskretyzacji jest zazwyczaj zapewniany 
przez metodę pierwszego rzędu Forward Euler. Dlatego też wpływ rzędu dyskretyzacji na oszacowanie za pomocą Rozszerzonego Filtru Kalmana 
nie był wcześniej badany. W niniejszej pracy łączymy Rozszerzony Filtr Kalmana z dwiema metodami dyskretyzacji drugiego rzędu: różnicą 
centralną i metodą Adamsa-Bashfortha, aby oszacować stany Dwubiegowego Generatora Indukcyjnego oraz poprawić precyzję oszacowania 
prędkości wirnika i strumienia generatora. Przeprowadzono badanie porównawcze w celu analizy odpowiedzi jakościowych i ilościowych estymatora 
dla różnych przypadków. Uzyskane wyniki wykazały znaczenie rzędu dyskretyzacji w procesie oszacowania dwóch stanów DFIG. (Wpływ 
kolejności dyskretyzacji na rozszerzoną estymację filtra Kalmana dla generatora indukcyjnego z podwójnym zasilaniem) 
 
Keywords: Discretization, Doubly-Fed Induction Generator (DFIG), Extended Kalman Filter (EKF), Second-Order Method. 
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I. Introduction 

State estimation is a very broad subject, as it is involved 
in many research areas such as control, system 
identification, and telecommunications, among others. It 
consists of inferring the states of a system based on the 
information provided by the process model and the taken 
measurements. In general, the model is not an exact replica 
of the behavior of the process, but it provides a good 
approximation with a certain level of accuracy, while the 
measurements are affected by noises that can reduce their 
accuracy. To address these imperfections, various 
estimation techniques have been developed, such as 
Maximum Likelihood Estimator (MLE) and Kalman Filter 
(KF). 

The Kalman Filter (KF) is widely used in state estimation 
problems for linear dynamical systems and is known to be 
one of the most optimal estimators under predefined 
conditions. Some applications of using the KF for estimation 
are presented in [1–3]. However, most industrial systems 
exhibit nonlinear dynamic behavior, which can render the 
standard Kalman filter less effective. To address this 
limitation, modifications have been introduced to improve 
the accuracy of the Kalman filter for nonlinear systems, 
leading to the development of new algorithms such as the 
Extended Kalman Filter (EKF) and the Unscented Kalman 
Filter (UKF) [4]. The EKF is based on the linearization of the 
nonlinear model at each iteration around an operating point. 
It is widely used due to its simplicity and ease of 
implementation. However, in strongly nonlinear systems, 
the EKF often provides poor estimation results. On the 
other hand, the UKF is known to have better accuracy than 
the EKF for nonlinear systems, but it is more complex and 
requires more computational time. Researchers have made 
attempts to improve the EKF, as demonstrated in the work 
presented in [5], where three modified EKF algorithms have 
been compared in terms of their performances. These 
methods involve changing the integration step length using 
the Gauss-Newton method with Quasi-Newton technique 
and the Levenberg-Marquardt method. The latter introduces 

a damping factor to the Gauss-Newton method. Another 
strategy proposed in the literature involves approximating 
the nonlinear functions of the model using Taylor series up 
to the second derivative [6-7]. However, the use of second 
derivatives results in the computation of the Hessian matrix, 
making the EKF more complex and less efficient in terms of 
required computational time. To address this issue, Michael 
Roth and Frederick Gustafsson proposed a new 
contribution in [8] to enhance the required computational 
time and reduce complexity. Another modification to tackle 
the problem of calculating the Hessian matrix is presented 
in [9], wherein the algorithm used is called the Second 
Order Extended Particle Filter, where the EKF is used to 
obtain an approximation of the posterior probability density 
needed in the particle filter algorithm. Additional 
modifications to improve the accuracy of the EKF are 
presented in [10–13]. Another algorithm known as the 
"Cubature Kalman Filter" (CKF) was developed by 
Lenkaran Arasaratnam and Simon Haykin in 2009 [14]. This 
algorithm is quite similar to UKF, but it differs in the set of 
rules used to calculate the Kalman filter weights. The CKF 
uses a spherical radial cubature rule to generate the 
weights instead of the Sigma-points set. The CKF was 
designed to tackle the problems of divergence in high-
dimensional nonlinear systems. 

In this paper, we make an attempt to improve the 
accuracy of the Kalman filter for nonlinear systems without 
increasing the algorithm's complexity or computational 
inefficiency. Specifically, we propose the investigation of 
two second-order discretization methods (central difference 
and Adams-Bashforth) for the continuous nonlinear system, 
resulting in a second-order Extended Kalman Filter (EKF) 
that does not require the computation of the Hessian matrix. 

The rest of the manuscript is organized as follows: in 
section two, the central difference and Adams-Bashforth 
discretization methods are carefully overviewed. In section 
three, the DFIG nonlinear state equations are derived in the 
synchronous reference frame (dq) to be used for EKF 
estimation. Then, in section four, the EKF combined with 
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the different discretization methods is designed for the 
DFIG model. In section five, an analytical comparison is 
conducted for the different obtained results.  
 

II. Overview of 1ST and 2ND Order Discretization of 
Ordinary Differential Equations 

In this section, we demonstrate the advantage of using 
second-order discretization methods over first-order 
methods by solving a 1st-order ordinary differential equation 
(ODE) given by Equation (1). 
  

(1) ( ) ( ( ), )x t f x t t   
  

The function f(x(t), t) is continuous and can be either 
linear or nonlinear. For linear functions with high order 
(greater than 2) or nonlinear functions, finding an analytical 
solution is either really difficult or impossible. Instead, an 
approximate solution is obtained by using numerical 
methods, which is based on replacing the first derivative by 
a discrete approximation using discretization methods. The 
discretization methods are classified as first-order methods, 
second-order methods, or higher-order methods. The most 
used first order discretization method is Forward Euler's 
method because of its simplicity, where ( )x t  is replaced by 

(2). 
 

(2) 
2( ) (( 1) )

( ) ( )   

 ( 1)

x k t x k t
x t O t

t
for k t t k t

   
  


    


  

This yields to the following discrete equation: 
 

(3) 1 ( , )k k k kx x tf x t     
  

Where: 

 1( ), (( 1) ),

, ( , ) ( ( ), ).
k k

k k k

x x k t x x k t

t k t f x t f x k t k t
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Forward Euler's method is known to have a local 
truncation error of order O(∆t2) and a global truncation error 
of order O(∆t), which is a disadvantage of this method. To 
obtain better results, we resort to improving the 
approximation by using second-order discretization 
schemes. The first second order method that we discuss is 
called central difference, which is based on approximating 

( )x t   by (4). 
 

(4) 
3(( 1) ) (( 1) )

( ) ( )
2

   ( 1) ( 1)

x k t x k t
x t O t

t
for k t t k t

    
  


     


  

 

After replacing (4) in (1), we get the following multi step 
equation: 

(5) 1 1 2 ( , )k k k kx x tf x t      

Central difference is known to have better accuracy than 
Forward Euler method in which the local error is of order 
O(∆t3) instead of O(∆t2), and the global error is of order 
O(∆t2) instead of O(∆t). The Central Difference method is 
also known in the literature as the “Leap-Frog” method. 

The Leap-Frog (Central Difference) method is better in 
terms of accuracy than Forward Euler. The method can also 
be easily implemented, requiring only one function 
evaluation per time step. However, its major disadvantage 
is that it has a risk of becoming unstable during long time 
integration. To handle this problem, the method is 
reinitialized using Forward Euler after each N steps of 
integration, ensuring the stability of the method [15]. 

Another method is the Adams-Bashforth scheme where 

the solution at time (k+1)Δt  is expanded using Taylor’s 
series formula: 

 

(6) 
2

3(( 1) ) ( ) ( ) ( ) (
2

)
t

x k t x k t tx k t x k t O t


              

The second derivative is then approximated by Forward 
Euler’s method: 

 

(7) ( ) (( 1) )
( )

x k t x k t
x k t

t
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This yields to the following expression: 
 

(8) 
3

1 1 1
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( , ) ( , ) ( )

2 2
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Adams-Bashforth method is also known to have better 
accuracy than Forward Euler method i.e, a local truncation 
error of order O(∆t3)  and a global truncation error  of order 
O(∆t2). The method can  also be easily implemented, i.e. 
only a one function evaluation per step time is needed  

In the rest of this section, a comparison between the 
methods stated above is illustrated by showing the solution 
obtained by each method and its error graphically. For this 
purpose, a simple ordinary differential equation is chosen, 
which is given by: 
 

(9)                           ( )x t x    
With x(0) = 1. 
 

Fig. 1 and 2 demonstrate the analytical response and 
the solutions obtained by the numerical methods stated 
above. The legend of Forward Euler is (FE), for the Leap-
Frog (LP) and for Adams-Bashforth (AB2). 

 
Fig.1. Comparison between Forward Euler, Leap-Frog, and AB2 
methods response. 

 
Fig.2. Errors of Forward Euler, Leap-Frog, and AB2solution with the 
analytical solution 
 

 We can see from Fig. 2 that the error of  LP method  is 
better than FE (almost one fifth the error of the Forward 
Euler’s method)  but it exhibits some oscillations; whereas 
AB2 method is the best in terms of accuracy and stability. 
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III. Dynamic Model of DFIG 
 Induction machines (IM) are very important in renewable 
energy domain. They are used extensively to generate 
electric power from wind energy. Different types of induction 
machine exist such as squirrel cage IM, permanent magnet 
IM…etc. However, Doubly-fed induction generators (DFIG) 
are best suited for wind turbines (WT) because they can 
produce a regulated electric power of constant voltage and 
frequency, regardless of the disturbance caused by the 
variation of wind speed. The ability to produce constant 
voltage and frequency electric power is ensured primarily by 
adjusting the amplitude and frequency of the voltage fed 
back to the rotor. Therefore, the output of the wind turbine 
that has a DFIG can be directly connected to the electric 
grid network [16-18]. A DFIG is composed of three-phase 
stator windings, which are the output of the machine, and a 
three-phase rotor winding, which is used as input to 
regulate the voltage and frequency of the three-phase stator 
voltage output. To derive a state space model of the DFIG, 
we express the voltage equations of both the stator and 
rotor referred to their natural reference frames. These 
equations are given by the references [19, 20]. 
 

(10) 
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d
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dt
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      (11)

ar
ar r ar

br
br r br

cr
cr r cr

d
v R i

dt
d

v R i
dt

d
v R i

dt







  

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Where  , ,as bs cs    are the three-phase stator fluxes, 

and  , ,ar br cr     are the three-phase rotor fluxes. 

To transform equations (10) and (11) to the (dq) rotating 
reference frame (Fig.3), we first need to transform them to 
the stationary two-phase components (αß) and then to the 
synchronous reference frame (dq). The resulting equation 
(12) is obtained as a result of this transformation process. 

 
 

Fig.3. the (dq) reference frame of  DFIG 
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Where: 
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d

dt
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d
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 The mechanical torque of the DFIG machine is given by: 

(14) r
m em r

d
T T J B

dt

      

 The electromagnetic torque is then expressed in terms 
of stator current and rotor flux as: 

(15) ( )m
em dr qs qr ds

r

pL
T i i

L
     

 

By choosing a state vector 
T

dr qr ds qs ri i     x , 

we obtain a state space model by combining equations (12-
15), which is given by equation (16). 
 

(16)

2 2

2 2

2 2

2 2

( )

( )

r r m
dr r qr ds

r r

r r m
r dr qr qsdr

r r

qr
r m m r m s r

dr r qr ds qsds
r s s r r s

qs

m s m r m s r
r r dr qr ds qs

s r r s r s

m

R R L
i

L L

R R L
i

L L

R L L R L R L
i ii

L L L L L L
i

L R L R L R L
i i

L L L L L L

pL

J

   

   


  
  

   
  

   

    
 
      
 
 

     







( )

1 0 0 0 0

0 1 0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0

dr qs qr ds r
r

dr

m
qr

s r s
ds

m
qs

s r s
m

B
i i

L J

v
L v
L L L

v
L

v
L L L

T

J

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
    

 
 
  
  
  
  
  
  
  

  
 
 

  

Equation (16) can be written in the form: 
 

(17) ( ) x f x Bu   

Where 
T

dr qr ds qs mv v v v T   u  and the output 

measurement vector is: 
  

(18) 
T

ds qsi i   z Cx   

With  0 0 1 1 0C  

 The resulting state space model is nonlinear and will be 
used to estimate the speed and rotor flux of the DFIG 
machine. 
 

IV. Extended Kalman Filter 
 The Kalman Filter (KF) is extensively used for state 
estimation in stochastic linear dynamical systems. The 
estimation is performed based on a recursive algorithm that 
estimates the state from prior knowledge given by the state 
space model and some measurements related to the 
estimated state. For nonlinear systems, the Kalman Filter 
can still be used for state estimation, but the nonlinear state 
space model has to be linearized before applying the 
algorithm. The resulting algorithm is known as the Extended 
Kalman Filter (EKF). 

Whether for KF or EKF algorithm, the estimation 
process is done in two steps: a prediction step and a 
correction step. In the prediction step, we estimate the 
states by using the prior knowledge given by the state 
space model, and then we correct the estimation with the 
measurements performed and by calculating Kalman gain 
to get a better estimation. The Kalman gain is calculated by 
applying the minimum mean square error (MMSE) criteria to 
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the state space model. The model is supposed to be not 
precise and is affected by random process noise vector 

1kw     and the measurements are noisy and altered by a 

random noise vector kv . Both 1kw   and kv    are assumed to 

be independent, have a Gaussian distribution of zero 
means and covariance matrices  w    and  v    respectively 

[21]. 
The DFIG state space model obtained in equation (16) 

has to be discretized in order to be used for state estimation 
by Kalman Filter algorithm [22]. 

The discretization of DFIG nonlinear model using 
Forward Euler's method gives the following discrete 
nonlinear model. 
 

(19) 1 1 1f( )k k k d k    x x Δt x B u   
Where: d  B B t  , Δt – is the discretization step 
 

The following steps summarizes the proposed EKF 
algorithm for DFIG machine: 
 

Step 1: state-space  discretization  

 1 1 1 1( )k k k d k k
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Step 2: Initialization 
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Step 3: For  1,2,...k N  , calculate:  

Linearization:   
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Prediction:  
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Correction: 
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Now, we develop the Extended Kalman Filter equations 
for the central difference method [23]. 

 

Step 1: The nonlinear discrete-time state-space 
representation: 
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Step 2: Linearization of the equation yields to: 
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Step 3: The state prediction is: 

2 1 1ˆ ˆ ˆ2 ( ) 2k k k d ktf  
     x x x B u  

The estimation error is: 

1 2 1ˆk k k d k k k
   

      x x x A x x w    

The error covariance matrix is obtained as follows: 
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And: 
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Compared to the classical EKF equations obtained by 
Forward Euler method, there are two new terms in these 
equations when using central difference discretization: 

,( 1, 2)x k k  
    and

,( 2, 1)x k k  
  . These terms are computed 

recursively as shown in the above equations.  
As stated in section 2, central difference method suffers 

of instability problem for long-time integration, and the 
solution to this problem is to reinitialize the algorithm with 
Forward Euler after N steps [24, 25]. 

Lastly, we develop the extended Kalman filter for Adams-
Bashforth 2nd order method: 

Step 1:  discrete-time state-space representation: 
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Step 2: Linearizing the equation yields to: 
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Where:  
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Step 3: The state prediction is: 
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The error covariance matrix is obtained as follows: 
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Where: 
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As in the LP method, the new terms in these equations 
are: 

,( 1, 2)x k k  
    and  

,( 2, 1)x k k  
   which are computed 

recursively as shown in the equations above.  
The following steps summarize the EKF algorithm for the 

Adams-Bashforth discretization applied for DFIG model 
[26]. 

 

Step 1:  state-space discretization 
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Step 2: Initialization 
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Linearization: 
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In the following section, the developed algorithms will be 
implemented to estimate the speed and rotor flux of a DFIG 
machine, then a comparison study will be discussed [27]. 
 

V. Results and Discussion 
Table I. shows the DFIG rating parameters used for the 
simulation. 
 

Table1. DFIG RATING PARAMETERS 

Parameter     Rating values 

Rated Power 3 kW 
Rs 2.0 Ω 
Rr 1.78 Ω 
Ls 0.2406 H 

Lr 0.2406 H 
Lm 

Pole pairs  
Moment of Inertia 

0.2304 H 
2 
0.0408 kg.m2 

Figure 4 shows the mechanical torque input used for 
simulation. We use variable mechanical torque, assuming it 
results from a variable wind speed hitting the wind turbine 
blades and rotating the DFIG rotor.   

 
Fig.4. Input mechanical torque of the DFIG 
 

For the purpose of simulation, the measured variables dsi    

and  qsi  are obtained from solving the DFIG equations 

numerically by using the Runge-Kutta algorithm. Then we 
add some measurement noise   of covariance matrix: 
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Also, we need some process noise to the DFIG state space 
model with a covariance matrix given by: 
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Figure 5 shows the stator currents of the DFIG machine. 
The current waveforms contain fluctuations resulting from 
the variation in mechanical torque applied to the DFIG 
machine [26, 27]. 

 
Fig.5. Stator and rotor currents 
 

 In what follows, the results of estimation using EKF 
corresponding to Forward Euler, central difference and 
Adams-Bashforth discretization methods will be discussed 
and compared. The estimated and simulated rotor speeds 
are shown in Fig. 6 where 1ˆr  is for Forward Euler method, 

2ˆr  is for EKF with central Difference method and  3ˆr   is 

for EKF with Adams-Bashforth method. 
From Fig. 6, we can see that the rotor speed is better 

estimated with the Adams-Bashforth method than with the 
Forward Euler or Central Difference methods. Moreover, 
AB2 has better performance in both the transient regime 
and permanent response. This is due to the better accuracy 
of second-order methods over first-order methods. As 
shown in Fig. 6, the Central Difference discretization (LP 
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method) results are noisy due to the instability problems 
discussed earlier. Overall, the AB2 with EKF gives better 
results with less noise in the response than LP with EKF or 
Forward Euler with EKF [29]. Table II gives the maximum 
errors of speed estimation for the three methods in both the 
transient regime and permanent regime. 

 

 
Fig.6. Rotor speed estimation of the DFIG  
 
TABLE 2.  MAX SPEED ERROR 

Regime 
 Response 

FE-EKF 
Max. 

speed  Error 
(RPM) 

LP-EKF 
Max. speed   
Error (RPM) 

AB2-EKF 
Max. speed 
Error (RPM) 

Transient  10.99 19.89 2.70 
Permanent  1.07 2.54 0.39 

 

 

 
 
Fig.7.  Estimated flux of DFIG rotor 

Figures 7 and 8 demonstrate the estimated rotor flux by 
Forward Euler (FE), Leap-Frog (LP), and AB2 methods. 
The estimation of the rotor flux is better with AB2 than with 
FE and LP methods. As in speed estimation, the Central 
Difference discretization gives noisy estimation. The noisy 
response in the LP method is related to its instability 
problems over long-term integration. Similar to speed 
estimation, we can also say that AB2 with EKF is less noisy 
and more accurate than FE or LP with EKF. Overall, the 
rotor flux is better estimated with the AB2 method. Table III 
and Table IV give the maximum errors of flux estimation for 
the three methods in both transient and permanent regimes.  

 
TABLE 3.  MAX D-FLUX ERROR 

Regime 
 Response 

FE-EKF 
Max. d-flux 
error (V.s) 

LP-EKF 
Max. d-flux 
error (V.s) 

AB2-EKF 
Max. d-flux  
error (V.s) 

Transient 1.047 1.039 0.188 

Permanent  0.056 0.113 0.017 

 

 
Fig. 8.  q-component of DFIG rotor flux 
 

TABLE 4.  MAX Q-FLUX ERROR 

Regime 
 Response 

FE-EKF 
Max. q-flux 
error (V.s) 

LP-EKF 
Max. q-flux 
error (V.s) 

AB2-EKF 
Max. q-flux  
error (V.s) 

Transient 0.055 0.119 0.024 

Permanent 0.381 0.693 0.102 

 

VI. Conclusion 
In this paper, a combination of second-order 

discretization methods with the Extended Kalman Filter 
(EKF) was proposed. Modified equations of the EKF have 
been introduced based on central difference and Adams-
Bashforth discretization methods. The developed EKF 
algorithm is used to estimate the rotor speed and flux of a 
Doubly Fed Induction Generator (DFIG). From the obtained 
results, it was found that the EKF combined with Adams-
Bashforth provides the best performance in terms of 
precision and stability. EKF with central difference has 
shown good performance, but the estimation results were a 
bit noisy due to instability problems, as discussed earlier. 
Based on these results, it is highly recommended to use the 
proposed EKF combined with Adams-Bashforth, as it 
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provides the best accuracy with less complexity compared 
to other algorithms such as Unscented Kalman Filter (UKF) 
and Cubature Kalman Filter (CKF). For future work, it is 
highly recommendable to implement the proposed 
approach in a test bench of a DFIG machine. 

ACKNOWLEDGEMENTS 
This study has been sponsored by DGRSDT (Diréction 

Générale de la Recherche Scientifique et Développement 
Technologique) Algiers, Algeria. 

 
Conflict of Interset 

The authors declare that they have no conflicts of interest 
and we do not have any financial relationship with the 
organization that sponsored the research.  
 
Author: PhD Student. Ahmad BOUSSOUFA, Applied Automation 
Laboratory, Faculty of Hydrocarbons, University of M’hamed 
Bougara of Boumerdes, 35000, Algeria, E-mail: 
a.boussoufa@univ-boumerdes.dz  

REFERENCES 
[1] P. Hippe, “Regular design equations for the discrete reduced-

order kalman filter,” Archives of Control Sciences 22(2):175–
189, 2012. DOI: 10.2478/v10170-011-0019-x 

[2] Z. Lin, Q. Yang, Z. Guo, J. Li, “An improved autoregressive 
method with kalman filtering theory for vessel motion 
predication,” International Journal of Intelligent Engineering 
and Systems 4(4):11–18, 2011. 

[3] R. Riane, M. Kidouche, R. Illoul, M. Z. Doghmane, “Unknown 
resistive torque estimation of a rotary drilling system based on 
kalman filter,” IETE Journal of Research pp. 1–12, 2020. 
https://doi.org/10.1080/03772063.2020.1724834 

[4] Laamari, Yahia, et al. "Highly nonlinear systems estimation 
using extended and unscented kalman filters." PRZEGLĄD 
ELEKTROTECHNICZN journal,  pp.111-115, 2021. 
doi:10.15199/48.2021.05.20 

[5] J. Havlík, O. Straka, “Performance evaluation of iterated 
extended kalman filter with variable step-length,” In Journal of 
Physics: Conference Series, vol. 659, p. 012022. IOP 
Publishing, 2015. DOI: 10.1088/1742-6596/659/1/012022 

[6] M. Z. Doghmane, M. Kidouche, “Decentralized controller 
robustness improvement using longitudinal overlapping 
Decomposition-Application to web winding system,” 
Elektronika ir Elektronika, vol. 24, pp. 10-18, 2018. DOI: 
https://doi.org/10.5755/j01.eie.24.5.21837 

[7] B. D. Anderson, J. B. Moore, “Optimal filtering,” Prentice-Hall 
Information and System Science Series,  Prentice-Hall, INC., 
Englewood Cliffs, New Jersey 07632, 2012. 

[8] M. Moujahid, H. Ben Azza, M. Jemli, M. Boussak, “Speed 
Estimation by Using EKF Techniques for Sensor-Less DTC of 
PMSM with Load Torque Observer,” International Review of 
Electrical Engineering 9(2), 35-43 (2014).  

[9] H. Dai, L. Zou, et al., “Two second-order nonlinear extended 
kalman particle filter algorithms,” Open Journal of Statistics 
5(04):254, 2015. DOI: 10.4236/ojs.2015.54027 

[10] S. Udomsuk, K. Areerak, T. Areerak, Kongpan Arrerak, 
“Speed Estimation of Three-Phase Induction Motor Using 
Kalman Filter,” International Review of Electrical Engineering 
16(6), 15-27. DOI: https://doi.org/10.15866/iree.v13i4.13451 

[11] D. Beckmann, M. Dagen, T. Ortmaier, “Symplectic 
discretization methods for parameter estimation of a nonlinear 
mechanical system using an extended Kalman filter,” In 
International Conference on Informatics in Control, Automation 
and Robotics, vol. 2, pp. 327–334. SCITEPRESS, 2016. DOI: 
10.5220/0005973503270334 

[12] M. Kidouche, et al., “Combining second order central 
difference discretization with extended kalman filter for rotor 
speed and flux estimation of a doubly-fed induction generator,” 
In 2018 International Conference on Communications and 
Electrical Engineering (ICCEE), pp. 1–6. IEEE, 2018. DOI: 
10.1109/CCEE.2018.8634518 

[13] K. Szabat, T. Orlowska-Kowalska, “Optimal design of the 
extended kalman filter for the two-mass system using genetic 
algorithm,” Archives of Electrical Engineering 55(3-4):237–
254, 2006. 

[14] I. Arasaratnam, S. Haykin, “Cubature kalman filters,” IEEE 
Transactions on automatic control 54(6):1254–1269, 2009. 
DOI: 10.1109/TAC.2009.2019800 

[15] S. A. S. Ari Aluthge, R. Estep, “Filtered leapfrog time 
integration with enhanced stability properties,” Journal of 
Applied Mathematics and Physics 4:1354–1370, 2016. DOI: 
10.4236/jamp.2016.47145 

[16] S. Muller, M. Deicke, R. W. De Doncker. Doubly fed induction 
generator systems for wind turbines. IEEE Industry 
applications magazine 8(3):26–33, 2002. DOI: 
10.1109/2943.999610 

[17] G. Abad, J. Lopez, M. Rodriguez, et al., “Doubly fed induction 
machine: modeling and control for wind energy generation,” 
vol. 85. John Wiley & Sons, 2011.  

[18] Akroum, H., Kidouche, M., Grouni, S., & Zelmat, M. (2010). A 
Perfectly Symmetrical Configuration in Dual-Bridge Inverter 
Topology for Maximum Mitigation of EMI, Common-Mode 
Voltages and Common-Mode Currents. Elektronika Ir 
Elektrotechnika, 103(7), 51-56. 
https://eejournal.ktu.lt/index.php/elt/article/view/9275 

[19] J. Slootweg, H. Polinder, W. L. Kling, “Dynamic modelling of a 
wind turbine with doubly fed induction generator,” In 2001 
Power Engineering Society Summer Meeting. Conference 
Proceedings (Cat. No. 01CH37262), vol. 1, pp. 644–649. 
IEEE, 2001. DOI: 10.1109/PESS.2001.970114 

[20] A. Petersson, “Analysis, modeling and control of doubly-fed 
induction generators for wind turbines,” PhD thesis, Chalmers 
University of Technology, 2005. 

[21] D. Simon, “Optimal state estimation: Kalman, H infinity, and 
nonlinear approaches,” John Wiley & Sons, 2006. 

[22] Aibech, A., Akroum, H., Boudouda, A., Kidouche, M., & 
Doghmane, M. Z. (2021). Real-Time Reduction of Rotor 
Position Estimation Error Based on the Stator Flux Estimation-
Combined Method for Sensorless Control of PMSMs Drives. 
International Review of Electrical Engineering 16(6), 15-27. 
DOI: https://doi.org/10.15866/iree.v16i6.20801 

[23] M. Abdelrahem, C. Hackl, R. Kennel, “Application of extended 
kalman filter to parameter estimation of doubly fed induction 
generators in variable-speed wind turbine systems,” In 2015 
International Conference on Clean Electrical Power (ICCEP), 
pp. 226–233. IEEE, 2015. DOI: 10.1109/ICCEP.2015.7177628 

[24] I. R. Pérez, J. C. Silva, E. J. Yuz, R. G. Carrasco, 
“Experimental sensorless vector control performance of a dfig 
based on an extended kalman filter,” In IECON 2012-38th 
Annual Conference on IEEE Industrial Electronics Society, pp. 
1786–1792. IEEE, 2012. DOI: 10.1109/IECON.2012.6388930 

[25] M. K. Malakar, P. Tripathy, S. Krishnaswamy, “State 
estimation of dfig using an extended kalman filter with an 
augmented state model,” In Power Systems Conference 
(NPSC), 2014 Eighteenth National, pp. 1–6. IEEE, 2014. DOI: 
10.1109/NPSC.2014.7103891 

[26] S. Yu, T. Fernando, H. H.-C. Iu, K. Emami, “Realization of 
state- 

estimation-based dfig wind turbine control design in hybrid power  
systems using stochastic filtering approaches,” IEEE 
Transactions on Industrial Informatics 12(3):1084–1092, 2016. 
DOI: 10.1109/TII.2016.2549940 

[27] A. Boussoufa, M. Kidouche, A. Ahriche, “Rotor speed and flux 
estimation of a doubly-fed induction machine using extended 
kalman filter,” Algerian Journal of Signals and Systems 
2(4):266–273, 2017. DOI: https://doi.org/10.51485/ajss.v2i4.52 

[28] D. J. Herzfeld, P. A. Vaswani, M. K. Marko, R. Shadmehr, “A 
memory of errors in sensorimotor learning,” Science 
345(6202):1349–1353, 2014. DOI: 10.1126/science.1253138 

[29] Mendil C., Kidouche M., Doghmane M.Z. (2021) A Study of 
the Parametric Variations Influences on Stick-Slip Vibrations in 
Smart Rotary Drilling Systems. In: Hatti M. (eds) Artificial 
Intelligence and Renewables Towards an Energy Transition. 
ICAIRES 2020. Lecture Notes in Networks and Systems, vol 
174. Springer, Cham. https://doi.org/10.1007/978-3-030-
63846-7_67 

[30] Mendil C., Kidouche M., Doghmane M.Z. (2021) Modeling of 
Hydrocarbons Rotary Drilling Systems Under Torsional 
Vibrations: A Survey. In: Hatti M. (eds) Artificial Intelligence 
and Renewables Towards an Energy Transition. ICAIRES 
2020. Lecture Notes in Networks and Systems, vol 174. 
Springer, Cham. https://doi.org/10.1007/978-3-030-63846-
7_24 


