
 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 1/2024                                                                                      147 

1. Inajara RUTYNA, 2. Paweł PIOTROWSKI 

Warsaw University of Technology, Electrical Power Engineering Institute 
ORCID: 1. 0000-0001-8086-6231; 2. 0000-0002-1582-0912 

 
 

doi:10.15199/48.2024.01.31 
 

Efficiency analysis of k-Nearest Neighbors machine learning 
method for 10-minutes ahead forecasts of electric energy 

production at an onshore wind farm  
 
 

Abstract. This paper presents tests of the effectiveness of the K-Nearest Neighbors (KNN) machine learning technique for short-term forecasting of 
energy production at an onshore wind farm with a horizon of 10 minutes. The tests were performed for several variants of input variables to KNN 
models (only backward variables of the forecasted time series and the use of additional exogenous input variables - meteorological data). For each 
of the variants, the selection of an appropriate number of k was performed using the cross-validation method, separately for each of the distance 
measures tested. Analyses were performed of the found k values depending on the variant of the input variables and the distance measure. 
Conclusions and observations of the performed tests were formulated.  
 
Streszczenie. W artykule przedstawiono testy skuteczności techniki uczenia maszynowego k najbliższych sąsiadów (K-Nearest Neighbors - KNN)  
do krótkoterminowego prognozowania produkcji energii na farmie wiatrowej lądowej z horyzontem 10 minut. Badania wykonano dla kilku wariantów 
zmiennych wejściowych do modeli KNN (tylko zmienne cofnięte prognozowanego szeregu czasowego oraz zastosowanie dodatkowych zmiennych 
wejściowych egzogenicznych – dane meteorologiczne). Dla każdego z wariantów wykonano dobór właściwej liczby k metodą walidacji krzyżowej, 
osobno dla każdej z testowanych miar odległosci. Wykonano analizy znalezionych wartości k w zależności od wariantu zmiennych wejściowych oraz 
miary odległości. Sformułowano wnioski i spostrzeżenia z wykonanych badań.   (Analiza efektywności metody uczenia maszynowego k-Nearest 
Neighbors dla prognoz produkcji energii elektrycznej z 10-minutowym wyprzedzeniem w lądowej farmie wiatrowej) 
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Introduction 
  Accurate short-term forecasts of energy production from 
onshore wind farms are very important for the proper 
operation of the power system in the processes of control, 
optimization and storage of electricity [1, 2]. The 
development of methodologies for forecasting energy 
production in RES is the subject of a great deal of research. 
Methods propose both single models [3, 4, 5, 6, 7, 8, 9, 10] 
as well as hybrid and ensemble methods [11, 12, 13, 14, 
15]. Among the most commonly used methods are various 
machine learning techniques [13]. The analysis presented 
in this paper is based on the use of KNN models for short-
term forecasts of energy production at a wind farm. This 
machine learning technique uses a different approach to 
input variables - all inputs to the model are treated as 
equally important, unlike other ML models where individual 
input variables have different importance - after training the 
model, the importance of individual input variables can be 
assessed. This treatment of inputs as equal can be both an 
advantage and a disadvantage, depending on the context 
and the nature of the data. Examples of the advantage: 
simplicity and robustness to outliers (since all inputs are 
treated equally, outliers have a relatively smaller impact on 
the predictions).  
  The legitimacy of using the KNN technique to forecast 
energy demand has been demonstrated, among other 
things, by the studies presented in [16, 17]. Meanwhile, the 
application of the KNN technique to wind farm energy 
production forecasts is described in [11, 12]. 
 
Statistical analysis of data  
  The data used to make the forecasts for the period of 2 
full years (2021-2022) was taken from SOTAVENTO 
GALICIA, SA, a wind farm consisting of 24 wind turbines 
with a total  power rating of 17 MW [18]. Three time series 
with 10-minute periods (measured data) were available: 
wind speed, wind direction and energy production in an 

extensive onshore wind farm. For statistical analyzes and 
forecasting models, in the first stage, the last six values 
from each of the three time series were selected as 
potential input variables for KNN models. The three time 
series were normalized to the ranges 0-1 (min-max 
normalization). Incorrect samples and those with numerous 
missing data were eliminated from the input-output data 
sets. In the case of single missing data gaps, data were 
supplemented based on neighboring values. Data outliers 
were replaced by the dataset using a mean plus standard 
deviation approach. After removing the outliers and before 
data normalization, a baseline statistics for the forecasted 
time series can be computed to gain insights into the data 
distribution. Basic statistics of analysed time series are 
presented in Tab.1.  
 
Table 1. Basic statistics of analysed time series.  

Time Series Mean Std Min Max 
Wind speed (m/s) 6.25 3.57 0.00 29.48 
Wind direction (º) 176.69 91.29 0.00 379.00 

Energy production (kWh) 2756.24 3263.24 0.00 22552.20

 
   

 
Fig.1. ACF and PACF results for energy production time series 
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 To better understand the correlation in the energy 
production time series, the autocorrelation function (ACF)  
and the partial autocorrelation function (PACF) are 
computed, considering up to 36 lags (6 hours) (see Fig. 1).  
 The ACF and PACF functions are able to provide 
significant insights about the correlation between 
observations at different time lags, allowing to find  patterns 
or dependencies within the data. As results show, that even 
though there is a slow decay in ACF, it can be due to the 
fact that there is a low variation in the energy production for 
the given next periods, due to the higher decay on PACF 
correlation after 5 lags. Which means that one hour, or 6 
steps, is more than enough to consider as input data for the 
10-minutes ahead forecast. 
  In order to evaluate the impact of each input data on 
energy production (e(t)), a correlation matrix was generated 
(see Fig. 2). The correlation matrix provides a general view 
of the relationships between each input variable and the 
energy production output. Each input data is evaluated up 
to 6 steps back, giving the following input features: wind 
speed (ws(t-1), ws(t-2),…,ws(t-6)), wind direction (wd(t-1), 
wd(t-2),…,wd(t-6)) and energy production (e(t-1), e(t-
2),…,e(t-6). 

 

  Fig.2. Correlation matrix for analysed input data and output 
data 
 

    Analysing the correlation matrix, it is evident that there is 
a clear definition of influence between the expected output 
e(t) and each input data. The energy production features 
e(t-1), e(t-2),…,e(t-6) present a strong linear correlation, 
varying from 0.96 to 0.91, which guarantees a direct 
relationship in the energy production e(t). In terms of 
importance, in second place is the wind speed features 
ws(t-1), ws(t-2),…,ws(t-6), with a correlation between 0.77 
to 0.76, indicating that it is still a feature of great 
importance, even though less influential. On the other hand, 
the wind direction features wd(t-1), wd(t-2),…,wd(t-6) show 
a negative effect in the energy production, with correlation 
values ranging from -0.02 to -0.03, indicating an inverse 
relationship.  
 

Forecasting methods 
  KNN is a non-parametric method used for classification 
and regression where input data consists of the k closest 
training examples in the feature space. In KNN regression, 
the expected result is the value of the feature of the object, 
this value is the average of the distances of the k nearest 
neighbors [12]. The main hyperparameter for tuning is the 
number of nearest neighbors k, in our model k values from 
1 to 100 were tested. The distance metric is the second 
hyperparameter, on which 3 different metrics were tested. 
The Manhattan distance, also known as the city block 
distance, taxi cab distance, or L1 norm, is calculated by 
summing the absolute differences between two points of 
their corresponding feature values. The Euclidean distance, 

also known as L2 norm, is calculated as the square root of 
the sum of the squared differences between two points of 
their corresponding feature values. It is important to 
emphasize that distance is sensitive to the scale of the 
features, therefore normalization of data is recommended. 
The cosine distance is recommended for high-dimensional 
data, is based on the angle between two points their feature 
vectors in the multi-dimensional space. The cosine distance 
has a different approach as instead of considering the 
magnitude of the feature values, it focuses on the direction 
or orientation of the vectors. This distinction allows the 
cosine distance to be robust to differences in feature 
magnitudes. 
  Some advantages of using KNN for forecasting include: 
simplicity (It does not require complex mathematical 
calculations or parameter tuning), robustness to outliers (it 
can be advantageous when dealing with noisy or 
unpredictable data) and ability to handle multi-dimensional 
data (allowing it to capture complex relationships between 
variables and potentially identify non-linear patterns in the 
data). There are also some disadvantages: computationally 
expensive (especially when dealing with large datasets or 
high-dimensional feature spaces), sensitivity to feature 
scaling (KNN relies on distance calculations, and the choice 
of distance metric can be affected by the scale of the 
features), proper choice of k (selecting an inappropriate 
value of k can lead to overfitting or underfitting of the data, 
affecting the accuracy of the forecasts), “curse of 
dimensionality” (KNN's performance can deteriorate as the 
dimensionality of the data increases, in high-dimensional 
feature spaces, the notion of distance becomes less 
reliable, as the points tend to be equidistant from each 
other) and irrelevant or noisy inputs (KNN treats all inputs 
equally, including potentially irrelevant or noisy data points, 
if the dataset contains irrelevant or noisy features, they can 
negatively affect the prediction accuracy).  
  The naive method was chosen as the base method for 
reference comparison, as it is a simple forecasting method 
that assumes that the future values will be the same as the 
most recent observed value. 
  The data sets (input-output) were divided into a training 
and validation set (75%) and a test set (25%). The division 
into the 2 sets was made sequentially - every fourth sample 
in the time series went to the test set. Analyses were 
conducted for three variants of input features: V(18 inputs) - 
all pre-proposed input data (6 regressed values of wind 
speed (ws(t-1), ws(t-2),…,ws(t-6)), wind direction (wd(t-1), 
wd(t-2),…,wd(t-6)) and electricity production (e(t-1), e(t-
2),…,e(t-6)), V(6 inputs) - input data having Pearson's linear 
correlation value with output data above 0.8 (6 regressed 
values of electricity production), and V(12 inputs) - input 
data having Pearson's linear correlation value with output 
data above 0.7 (6 regressed values of wind speed and 
electricity production).   
 

Evaluation criteria 
  To provide a comprehensive assessment of the KNN 
model’s performance and generalization capabilities, the 
10-fold cross-validation approach is used together with 
evaluation criteria such as the Coefficient of Determination 
(R2), normalized Root Mean Squared Error (nRMSE), and 
normalized Mean Absolute Error (nMAE). 
  The cross-validation involves dividing the dataset into 10 
equal-sized folds, so that the KNN model is trained using 
nine folds. The training process is made 10 times, and each 
time one of the folds is removed from training and used as a 
validation set. The evaluation metrics are then computed by 
aggregating the results from each fold, providing a robust 
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assessment of the model's performance. The averaging of 
the evaluation metrics through multiple folds allows to 
access the impact of variations in the training and validation 
data, guaranteeing more reliable results. The choice of 
appropriate k values was based on the lowest nMAE error.  
  The R2 score is a commonly used metric for regression 
tasks, providing an estimate of the model's ability to explain 
the variance in the target variable, with values closer to 1 
indicating a better fit. The nRMSE and nMAE are 
normalized metrics. It allows comparison of prediction 
errors across different size wind farms.  
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where: 𝐶௡௢௥௠ 
 is the normalization coefficient (the difference 

between the maximum and minimum values of the time 
series), 𝑦ො௜ is predicted value, 𝑦௜ is the actual value and N is 
the number of prediction points.  
Results 
  To identify the best KNN model, a total of 900 models 
were trained. This involved using 3 different sets of input 
data, 3 different distance metrics, testing the k parameter 
from 1 to 100, and applying 10-fold cross-validation for 
enhanced reliability in selecting the appropriate k 
parameter. 
In Table 2, a summary of the results of training the KNN 
models is presented, including three prediction error 
measures, as well as the results for the reference model - 
the naive model. The best result for each error measure is 
highlighted in bold in Table 2. Evaluating the obtained 
results, the smallest nRMSE error for the KNN model is 
20.97% lower than the nRMSE error of the reference 
method - the naive model. Additionally, the smallest nMAE 
error for the KNN model is 7.41% lower than the nMAE 
error of the naive model. However, the KNN model with the 
application of the Cosine distance metric performed 
significantly worse, when compared to the naive model. 

 
Table 2. Summary of prediction results for different variations of KNN models and the naive method  

Method Distance 
metric 

Input data 
variant 

nMAE (10-fold 
cross-validation)

nRMSE 
(test) 

nMAE (test) R2 Score (test)

KNN (k=21) Manhattan 
V(6 inputs) 

0.0103 0.0325 0.0104 0.9497
KNN (k=39) Cosine 0.0694 0.0991 0.0692 0.5314 
KNN (k=18) Euclidean 0.0107 0.0328 0.0103 0.9486 
KNN (k=19) Manhattan 

V(12 inputs) 
0.0130 0.0335 0.0125 0.9464 

KNN (k=16) Cosine 0.0343 0.0596 0.0313 0.8306 
KNN (k=15) Euclidean 0.0139 0.0340 0.0131 0.9448 
KNN (k=18) Manhattan 

V(18 inputs) 
0.0211 0.0351 0.0153 0.9411 

KNN (k=14) Cosine 0.0372 0.0474 0.0243 0.8928 
KNN (k=19) Euclidean 0.0248 0.0369 0.0177 0.9352 

Naive - e(t-1) - 0.0411 0.0111 0.9195 
 
  The best KNN model is given by the parameter k=21, 
using 6 input features and employing the Manhattan 
distance metric (lowest nRMSE error and highest R2 score) 
(see Fig.3). However, when considering nMAE error as the 
evaluation criteria for model selection, the best KNN model 
is the one with a parameter k=18, using 6 input features, 
and employing the Euclidean distance metric. It is worth 
noting that the differences in results for both models are 
very small (the same quality class for both models). The 
Figure 4 shows the scatter plot of the actual energy 
production values and the values obtained from the forecast 
with the naive model.  

 

Fig.3. The scatter plot of the actual energy production values and 
the values obtained from the forecast with the best KNN model 
(k=21, Manhattan distance metric, V(6 inputs) (test data)  
 
The selected value of the parameter k using cross-
validation varies for 3 different distance metrics as well as 
for 3 different sets of input features. In the case where the 

Manhattan and Cosine distance metrics are considered, the 
selected value of k decreases as the number of input 
features increases (see Fig.5 and Fig.6). However, for the 
Manhattan distance metric, the changes in the value of k 
are negligible.  

 

Fig.4. The scatter plot of the actual energy production values and 
the values obtained from the forecast with the naive model (test 
data)  
 
Summary and conclusions 
  The conducted research has demonstrated that the 
KNN method can be applied to forecast energy production 
in a wind farm with a 10-minute horizon, using lagged 
values of the predicted time series and meteorological data 
measurements as input data. The inherent characteristic of 
the KNN method, where all input features are treated 
equally, resulted in the best outcomes when employing 6 
input features. These input features exhibit the highest 
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linear correlation with the output data. Undoubtedly, this 
poses a limitation of the KNN method. Typically, in machine 
learning methods, the more input features that have a 
statistically significant correlation with the output data, the 
higher the quality of the forecasts. There are variations of 
the KNN method that consider weights for the input features 
values, and the authors of the article plan to test such 
algorithms. Based on the obtained results, it can be 
concluded that the appropriate distance metric for this 
forecasting problem is Manhattan. The Mean Bias Error 
(MBE) for the best KNN model is very close to zero 
(0.000163). Therefore, this model does not exhibit a 
tendency to overestimate or underestimate forecasted 
values.  
 

 

Fig.5. The relationship between the optimal value of the parameter 
k and the number of input features for the KNN model utilizing the 
Manhattan distance metric (10-fold cross-validation – nMAE error)  
 

 

Fig.6. The relationship between the optimal value of the parameter 
k and the number of input features for the KNN model utilizing the 
Cosine distance metric (10-fold cross-validation – nMAE error) 
 

  As the number of input features increases (12 and then 
18), the prediction errors also increase for the KNN method 
when utilizing Manhattan and Euclidean distance metrics. 
Conversely, the opposite phenomenon was observed for 
the Cosine distance metric - as the number of input features 
increased, the prediction errors decreased (Fig.6). 
However, they were still significantly worse compared to the 
prediction errors of the naive method. 
  In the case of dividing the results into three groups (6, 
12, and 18 input features), the highest number of smallest 
prediction errors was achieved using the KNN method with 
the Manhattan distance metric. Therefore, the Manhattan 
distance metric can be recommended for this type of 
forecasting. A drawback of the KNN method is undoubtedly 
the long training time, especially when using cross-
validation to determine the proper value of the k parameter. 
The conducted research also indicates that the KNN 
method is the most effective for forecasting when only the 
input data with a high correlation to the output data is used. 

The use of input data with low correlation to the output data 
leads to a decrease in the quality of the KNN predictions. 
Therefore, in cases where it is possible to use 
meteorological forecasts (such as wind speed) as input data 
for the prediction period (which have a high correlation with 
the input data), the KNN method would achieve a significant 
reduction in prediction errors.  
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