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Discrete Wavelet Transform and Energy Distribution for 
Effective Bearing Fault Detection and Analysis 

 
 

Abstract. Condition monitoring and problem diagnostics have drawn more attention recently in the industrial sector. One of the most crucial parts of 
rotating machinery are rolling-element bearings. Bearing faults are a common cause of machinery failures. To identify failing bearings early, vibration 
condition monitoring of rotating machinery has emerged as the preferred technique. Several signal analysis techniques can extract useful 
information from vibration data. The non-stationary analysis signals that are typically associated with machine defects cannot be handled by 
frequency-based approaches. Non-stationary signals are analyzed effectively by applying time-frequency techniques.  The use of wavelet transform 
has increased in bearing monitoring research for the last 20 years to obtain correlated time-frequency information. This paper presents a discrete 
wavelet transform (DWT) and energy distribution-based bearing defect diagnostic technique. The "db3" wavelet form of DWT is used to decompose 
vibration signals under both normal and faulty (inner race-fault and outer race-fault) bearing conditions at various frequency ranges. Due to the 
default, the energy distribution for every decomposition level is calculated to detect which frequency band contains the harmonics. The results 
obtained from healthy and defective bearings are compared. The wavelet coefficient with the highest value of the energy distribution is employed in 
the Fourier analysis to pinpoint the site of the fault. The monitoring results demonstrate that the suggested approach is effective in finding and 
analyzing faults. 
 
Streszczenie. Monitorowanie stanu i diagnostyka problemów przyciągnęły ostatnio więcej uwagi w sektorze przemysłowym. Jedną z najbardziej 
kluczowych części maszyn wirujących są łożyska toczne. Usterki łożysk są częstą przyczyną awarii maszyn. W celu wczesnej identyfikacji 
uszkodzonych łożysk, monitorowanie stanu wibracji maszyn wirujących stało się preferowaną techniką. Kilka technik analizy sygnału może wydobyć 
użyteczne informacje z danych o drganiach. Niestacjonarne sygnały analizy, które są zwykle związane z uszkodzeniami maszyn, nie mogą być 
obsługiwane przez podejścia oparte na częstotliwości. Sygnały niestacjonarne są skutecznie analizowane poprzez zastosowanie technik czasowo-
częstotliwościowych.  Zastosowanie transformaty falkowej wzrosło w badaniach nad monitorowaniem łożysk przez ostatnie 20 lat w celu uzyskania 
skorelowanej informacji czasowo-częstotliwościowej. W niniejszej pracy przedstawiono dyskretną transformatę falkową (DWT) oraz technikę 
diagnostyczną opartą na rozkładzie energii. Forma falkowa "db3" DWT jest używana do dekomponowania sygnałów drganiowych w warunkach 
łożyska zarówno normalnego, jak i wadliwego (wewnętrznego i zewnętrznego) w różnych zakresach częstotliwości. Ze względu na domyślność, 
rozkład energii dla każdego poziomu dekompozycji jest obliczany w celu wykrycia, które pasmo częstotliwości zawiera harmoniczne. Wyniki 
uzyskane z łożysk zdrowych i uszkodzonych są porównywane. Współczynnik falkowy o największej wartości rozkładu energii jest wykorzystywany w 
analizie Fouriera w celu określenia miejsca uszkodzenia. Wyniki monitorowania pokazują, że proponowane podejście jest skuteczne w 
wyszukiwaniu i analizie uszkodzeń. (Dyskretna transformacja falkowa i dystrybucja energii w celu skutecznego wykrywania i analizy 
uszkodzeń łożysk) 
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Introduction 

Along with the growth in manufacturing capacity, the 
implementation of an efficient machine condition monitoring 
system has become increasingly necessary to prevent 
machine failure and reduce operating maintenance costs 
[1]. Rolling bearings are one of the main machine elements 
in rotating equipment. One of the common causes of this 
sort of equipment failing is the unavoidable bearing failure. 
[2]. Vibration analysis has been one of the principal tools for 
identifying early defects [3]. It is presently frequently used to 
find and diagnose bearing defects in a range of 
components. Condition monitoring based on vibration signal 
recording may be analyzed in both the time and frequency 
domains, as well as the time-frequency domain. 

In time domain analysis, the metrics kurtosis, RMS, 
skewness, peak, and crest factor will be heavily utilized [4]. 
For analyzing stationary signals, the Fast Fourier Transform 
(FFT), which transforms time-domain data into frequency-
domain data, has been the most popular method. Due to 
the properties of non-stationary vibration signals, time-
frequency analysis has been investigated to analyze them. 
Several techniques exist in the time-frequency domain, 
including Empirical Mode Decomposition (EMD), Short 
Time Fourier Transform (STFT) [5], Hilbert Huang 
Transform (HHT), Wigner-Ville Distribution (WVD) [6], and 
Wavelet Transform (WT) [7]. Hence, the wavelet transform 
has a characteristic called "multi-scale analysis", which 
comprises the discrete wavelet transform (DWT) and the 
continuous wavelet transform (CWT). The DWT provides 

time-scale information about vibration signals, allowing for 
the extraction of effective features that change over time. 
Simple features, such as energy distribution or impulses, 
are computed in a given way to return particular signal 
characteristics. 

There is a tremendous quantity of literature on fault 
detection and analysis. According to Wu et al. [8], a DWT 
strategy that incorporates energy spectrum feature 
selection and fault classification using a neural network that 
evaluates fault signals in order to rectify defects without 
sacrificing the original quality. Veerasamy et al. in [9] 
describe a method that employs DWT and an adaptive 
neuro-fuzzy inference system to identify and categorize 
high impedance faults in medium voltage (MV) distribution 
networks (ANFIS). In Addition, Tse et al. [10] propose a 
coupled FFT and wavelet analysis for machine fault 
diagnosis. Otherwise, Rai et al. [11] incorporate the 
frequency Fourier transform (FFT) of intrinsic mode 
functions (IMFs) from Hilbert–Huang Transform (HHT) 
process to utilize the efficiency of HT in the frequency 
domain. In [12], Chen et al. introduced a convolution neural 
network (CNN) and DWT-based method for diagnosing 
failure states in planetary gearboxes. However, Yan et al. 
[13] give an overview of current wavelet applications with a 
focus on rotary machine fault diagnosis. 

 In the present paper, Daubechies wavelets have been 
applied in DWT decomposition to decompose the bearing 
vibration signals. This approach for bearing defect 
identification is based on time-domain analysis. The energy 
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distribution has been calculated to indicate the desired level 
of resolution and extract fault features. Also, to get the 
location of the fault, the Fourier analysis was performed 
using the higher energy output from DWT. The study 
includes normal and defective data. 

 The paper is structured as follows: Section II goes 
through the bearing dataset. Section III outlines the fault 
diagnostic approach. Section IV contains the monitoring 
findings and conversations. The paper is concluded in the 
final portion. 
 
1. Bearings fault data acquisition 

In the studies included in this research, the vibration 
data collected from the Case Western Reserve University 
Bearing Data [14] was used. The vibration information was 
gathered using an accelerometer, as shown in Figure 1. 
The experimental system was used to collect vibration data 
under various bearing states, including (1) normal state, (2) 
Inner Race Fault (IRF), (3) Outer Race Fault (ORF), and (4) 
Ball Fault (BF). Each vibration signal lasted for 10 seconds, 
and the data was collected at a frequency of 12000 Hz. 
SKF bearings were used for the 0.18, 0.36, and 0.53-mm 
diameter faults. Data on vibration was obtained for motor 
loads ranging from zero to three horsepower at rotational 
speeds between 1720 and 1797 revolutions per minute. 
 

 
 

Fig.1. (a) Bearing test rig and (b) its cross-sectional view [14],[15] 
 
The bearing fault frequencies associated with the defective 
inner and outer races may be estimated as follows: 
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where BPFI represents the inner-race ball pass frequency, 
BPFO represents the outer-race ball pass frequency, n 

represents the number of rolling elements, 𝑓௥  is the shaft 
speed, d represents the rolling element diameter, D 
represents the bearing pitch diameter, and α is the contact 
angle. 

This study includes three cases: normal condition, IRF, 
and outside race fault with a diameter of 0.53 mm. The data 
was obtained with no load at a rotational speed of 1797 
rpm. Each signal has 4096 data points. The vibration 
signals of the normal condition, the IRF, and the ORF are 
shown in Figures (2a), (2b), and (2c, respectively). 

According to calculation formulas (1) and (2), the fault 
frequencies of the inner race and the outer race are 162 Hz 
and 107 Hz. 

 

2. Fault Diagnosis Strategy 
2.1 Discrete wavelet transforms 

The Wavelet Transform is an adaptive transform that 
has overcome the resolution problem of the STFT.  

When translating and dilating a basic function known as 
the "mother wavelet," wavelets are produced (3) [16]. 
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where a is the scale factor, and b is the shift translation 
factor.  
a) 

 
b) 

 
c) 

 
Fig.2. Vibration Signals: (a) normal state, (b) inner race fault, and 
(c) outer race fault 
 

The CWT is defined as: 
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 Where * denotes complex conjugate. 
     The DWT is obtained by discretizing CWT(a,b) as: 
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With a=2j, and  b=2j.k, where j represents the 
decomposition level, and k is the translation factor. 

 

 
Fig.3. Structure of Wavelet decomposition 
 

The notion of multi-resolution analysis (MRA) was 
invented by Mallat [17]. High-pass (wavelets) and low-pass 
filters (scaling functions) are used to implement MRA. A 
multi-resolution analysis often breaks down the signal into 
two parts: a smoothed version of the input signal 
(approximation) and a collection of extensive explanation at 
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several scales. Detail coefficients (D) and approximation 
coefficients(A), respectively, are the terms for the high- and 
low-frequency components [18]. To analyze the signal, the 
high-frequency components will indeed be investigated in 
this paper. 

 
2.2 Features analysis of data 

Based on Parseval's theorem, the amount of energy of 
the signal f(t) in the wavelet domain for an m-level DWT 
decomposition equals the energy of the approximation 

coefficient ( mEA ) plus the energies of the detail 

coefficients ( jED ), this can be described by [16]:. 
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number of samples, while m denotes the highest wavelet 
decomposition level. 

 
Wavelet energy distribution is used to recognize the 

local characteristic variations at different levels. The band's 
energy content is the sum of the scale and detail 
components' energies [19]. Hence, the energy distribution is 
computed to obtain the most useful information from the 
various resolution levels. It comes from: 
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As found in the literature, for time-series signals, Haar, 
Daubechies, and Symlets wavelets are widely used [18]. To 
identify fault frequencies in the current study, we employ the 
Daubechies wavelet of order 3 (db3). 

 
 
Fig.4. Wavelet decomposition of normal state 
 
 

 
Fig.5. Wavelet decomposition of inner race fault 
 

 
Fig.6. Wavelet decomposition of outer race fault 
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3. Results and discussions 
The multi-scale analysis is performed on the vibration 

data for normal and abnormal SKF bearings at a speed of 
1797 rpm (30 Hz). The vibration signals are decomposed 
up to 5 levels by using db3. From the 5 levels of 
decomposition, we obtained the detail coefficients from 1 to 
5 (cD1 to cD5) and one approximation coefficient (cA5). 

Figures 4, 5, and 6 show the results of the db3 
decomposition, accordingly. 
a) 

 
b) 

 
  Fig.7. Energy distribution:(a) inner race fault and (b) outer race 
fault. 
 

 
Fig.8. FFT spectrum of signal D2 sub-bands of inner race 
 

 
Fig.9. FFT spectrum of signal D2 sub-bands of outer race 
 

The first step in a diagnosis of a rolling bearing condition 
is to identify the existence of defects, then identify its 
location. If a bearing is unhealthy, the percentage of energy 
present at the higher frequencies is large, otherwise, it is 
small. From figure 4, the standard vibration data shows no 
significant changes in magnitude. However, for defective 
data, there are essential changes in all sub-bands of DWT 
decompositions. In Figures 5 and 6, it is also possible to 
observe the maximum magnitude changes in sub-band D2, 
which belongs to a higher frequency. That suggests 

concentrating on the D2 sub-band. Further, the energy 
distribution is calculated for each sub-band, and it can be 
seen that there are abnormal changes in the energy 
distribution at level 2, as shown in figure 7. That 
demonstrates that the D2 sub-band contains a multitude of 
fault-related data 

Figure 7 displays the energy distribution at each level of 
inner race and outer race faults. 

The FFT on the D2 signal of the IRF and ORF is 
performed to determine the fault location from the selected 
level.  

Figures 8 and 9 show the FFT spectrum of D2 for the 
IRF and ORF, respectively. The obtained frequencies 
correspond to the IRF (162 Hz), the ORF (107 Hz), and 
their harmonics, which are diagnostic of a damaged 
bearing. 
 
4. Conclusion 

This paper presents an improved method based on 
multiresolution analysis using discrete wavelet transform 
and energy distribution for the effective extraction of 
defects' features. In this work, the nature of the vibration 
signals used for bearing fault diagnosis is non-stationary, 
which is why we apply DWT analysis. The proposed 
approach was modified to employ wavelet decomposition to 
collect many datasets at different resolutions and determine 
energy distribution using Parseval's theorem. The presence 
of faults was determined by the DWT node energy, which 
increases significantly in faulty bearings. Finally, the fault's 
location is easily found through the fast Fourier transform 
method. Thus, this approach is a successful tool for 
vibration monitoring and fault diagnosis. 
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