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Abstract. One challenge in EEG motor imaging is th e low signal-to-noise ratio of brain signals. Its emergence in the accurate rendition of brain 
signals varies significantly from person to person. Here, we propose a framework to classify tasks based on fusion features using a Support Vector 
Machine. Our features are acquired from Discrete Wavelet Transform and Empirical Mode Decomposition. Subsequently, the disparity between 
measurements of left and right brain signals was calculated. Our proposed work significantly improves accuracy from 83.29 % to 93.16 % compared 
to previous work.  
 
Streszczenie. Jednym z wyzwań w obrazowaniu motorycznym EEG jest niski stosunek sygnału do szumu sygnałów mózgowych. Jego pojawienie 
się w dokładnym przekazywaniu sygnałów mózgowych różni się znacznie w zależności od osoby. Tutaj proponujemy ramy do klasyfikowania zadań 
w oparciu o funkcje fuzji przy użyciu maszyny wektorów nośnych. Nasze funkcje są uzyskiwane z dyskretnej transformacji falkowej i dekompozycji 
trybu empirycznego. Następnie obliczono rozbieżność między pomiarami sygnałów lewego i prawego mózgu. Nasza proponowana praca znacznie 
poprawia dokładność z 83,29% do 93,16% w porównaniu z poprzednią pracą. (Ulepszona wydajność maszyny wektorów nośnych do 
klasyfikacji obrazów motorycznych EEG w oparciu o asymetrię różnicową) 
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Introductio 

A brain-computer interface (BCI) is a system that allows 
a person to control a computer or other device using signals 
from their brain. This is typically done by recording electrical 
activity from the brain using electrodes placed on the scalp, 
and then using machine learning algorithms to interpret the 
brain signals and translate them into commands for the 

�com puter. BCIs can be used for a variety of applications, 
�includ ing communication and control of prosthetic devices, 
�assis tive technology for people with disabilities, and 

�neurofeed back for medical and therapeutic purposes. 
Brain-Computer Interface (BCI) is a system capable of 
trans �lating brain activ ity represented by brain waves into 
commands or messages through interactive applications. 
The BCI system includes hardware and software used to 
manipulate brain signals to control a computer or other 

�communication device. BCI al lows someone with physical 
limitations to interact with their environment. The waves or 
signals generated by the brain are used as a source of 
information. In general, the brain waves used are 
Electroencephalography (EEG) because of their non-
invasive nature. Fig ‘1 shows the BCI closed loop system, 
which consists of six main stages: recording brain activity, 
pre- �processing, feature extraction, classifica tion, 
translation into commands, and feedback [1, 2, 3]. 

The initial step after the EEG signal is obtained from the 
recording results is to filter the signal with a bandpass filter 
to reduce noise or artifacts and obtain an EEG signal in its 
frequency range. In several studies, the EEG signal is 
broken down with a sub-bandpass filter into EEG-forming 
frequency waves. 

After obtaining the filtered EEG signal, in the process, 
feature extraction is then carried out. Several studies have 
been proposed to apply the autoregressive (AR) method, 

�dis crete wavelet transforms (DWT), singular value 
�decomposi tion (SVD), and typical spatial pattern (CSP) to 
�obtain rel evant features in terms of the ability to 

distinguish between classes. These features provide high 
classification accuracy results [4, 5]. 

Our main contribution of this work is the incorporation of 
DWT and EMD to extract necessary features. From these 

features, we calculate the Differential Asymmetry. 
�Subse quently, we finally impr 

 
Related Work 

Several methods are applied in machine learning 
�mod els for classifying motor imagery b CSP method is the 

most widely used. Besides being used as a spatial filter, 
CSP is also used to select active segments to be processed 
by the classifier. The CSP method is also used to select 
features and electrode channels. [4, 6]. CSP is used for 
each EEG wave sub-band frequency to get f �ea tures. 
Apart from CSP, DWT method is often used for the 
decomposition of EEG signals [7, 8, 9]. The AR method is 
widely used as an initial process to support the following 

�fea ture extraction process [10, 11, 12]. The evolutionary 
�parti cle swarm optimization (PSO) algorithm selects 

features that significantly contribute to the classification 
process. PSO has been combined with fuzzy integral, which 

�is used as a clas sifier [5]. Besides using DWT as signal 
decomposition, EMD decomposition has also been widely 
used in several studies [13, 14, 15, 16]. 
 

 
Fig. 1. Block diagram of a closed loop BCI system 

 
In the classification process, several studies still use the 

classifier support vector machine (SVM) [8, 17, 18, 19, 20], 
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And a neural deep convolutional model network (CNN) has 
also been applied as a single experimental signal EEG 

�clas sification for motor imaging. One of the activities that 
can be detected from the EEG signal is motor imagery, 
namely the state of a person imagining moving his motor 
organs, such as moving his left hand, right hand, feet, or 

�tongue. Most imagi nary motor EEG signals are applied in 
BCI systems to control equipment, especially for 
neuromuscular disorders [21]. 

Alpha waves are a type of brain wave that are 
�associ ated with a relaxed, awake state. They are typically 

observed in the 8-12 Hz frequency range and are most 
prominent over the occipital and parietal lobes of the brain. 
Alpha waves are often described as the brain’s "default" 
state, and their activity tends to increase when a person is 
not focused on a particular task or stimulus. Some 

�researchers have sug gested that alpha waves may play a 
role in the brain’s "idling" or self-referential processes, such 

�as daydreaming or mind wandering. Alpha waves are also 
often studied in the context of meditation and other 

�practices that aim to promote relax ation and reduce 
stress. Alpha waves are produced in the posterior cortex, 

�including the occipital, parietal, and poste rior temporal 
�brain areas. Alpha waves have functional cor relations 

related to sensory, motor, and memory functions. Waves 
with a frequency range similar to alpha waves are mu 
waves, although there are physiological differences 
between the two. Mu waves are strongly associated with 

�motor ac tivity and beta waves. The 12-25 Hz oscillations 
are often called beta wave activity. This frequency is 
generated in the posterior and frontal regions. Active, busy 

�thinking or anxi ety and total concentration are generally 
known to correlate with higher beta levels. Across the 

�middle cortex, beta lev els are more robust when a person 
is planning or moving, especially during grabbing or holding. 
This activity requires detailed movements of the fingers and 
concentration. The study related to beta waves is motor 
control. Beta waves �ex perience desynchronization when 

�carrying out actual move ments (motor execution) or 
�imagining movements (motor im agery). These events are 

called event- �related desynchro nization (ERD). 
Beta waves are a type of brain wave that are 

�associ ated with an alert, focused state of consciousness. 
They are typically observed in the 12-30 Hz frequency 
range and are most prominent over the frontal and central 
regions of the brain. Beta waves are typically dominant 
during tasks that require high levels of mental activity and 
concentration, such as problem-solving or decision-making. 

�They are also as sociated with anxiety, stress, and other 
negative emotional states. In contrast to alpha waves, 
which are more prominent during relaxed, idle states, beta 
waves are typi �cally more ac tive when a person is engaged 
in a demanding cognitive task. Meanwhile, after the 
movement, the beta wave will return to normal, or it is called 
event-related synchronization (ERS). This characteristic is 
then observed and used as input into the EEG-based BCI 
system [18]. Reference [22] shows that increasing the 

�number of channels does not guarantee in creased 
classification accuracy. Therefore, there is an effort to make 
the number of channels used in EEG as small as possible. 
In [23], the EEG motor imagery channels that were widely 
used in the research were C3, C4, and Cz. 

This paper uses an EEG-based BCI system to 
�recog nize motor imagery activity by taking the difference 
�in fea ture values between the measurements of left and 

�right hemi sphere brain signals. This paper uses several 
�statistical fea tures from the signal decomposition process 

using discrete wavelet decomposition (DWT) and empirical 
�mode decom position (EMD). Because the right side of the 

brain controls the motor nerves of the left organ and vice 
versa, the EEG signals are generated by the right and left 
electrodes, which are different in certain imagery motor 

�activities. This experi ment has been demonstrated in the 
ERD/ERS phenomenon. This difference is higher if the 
value of �the disparity is sig nificant. This method, which 
enlarges the distance between the left and right hemisphere 
features, will be used as a new feature to increase the 
accuracy of the BCI system. 
 

 
Fig. 2. Experimental archetype and the positions of electrode. (a) 
Experimental in one trial. (b) the positions of electrodes. 
 
Material and Methods  
Datasets 

In this study, an open motor imagery EEG dataset was 
provided by Harvard Dataverse in the form of clean and 
mixed leg motor imagery EEG data [24]. This data is a 

�multi class EEG motor imagery provided by Weibo Yi, et 
al, Tianjin University, China. The subjects contain ten 
persons, seven women, and three men. All of them are 
right-handed, around 23-25 years old. All subjects stated 
that they had no prior experience with motor imagery-based 
BCI. They must attend training for one week before 
recording the EEG. Subjects sat on a chair one meter apart 
in front of a computer screen. The duration of each trial is 

�eight seconds. The first part is initi ated with a white dot in 
the center of the monitor that lasts for two seconds. In the 
2nd second part, a red dot, a sign of preparation signal, 

�appears on the monitor to recall the sub ject to be attentive 
to the following character indication. In the next three-
second, �the red dot vanished, and the char acter indication 
appeared on the monitor for four seconds. The respondents 
were inquired to focus on doing the motor imagery activity 
shown, ’Left Hand (LH)’, ’Right Hand (RH)’, ’Legs (F)’, ’Both 
Hands (BH)’, ’Left Hand & Legs’. Right (LH & RF)’, ’Right 
Hand & Left Foot (RH & LF)’. 

In the final task, ’Rest (R)’ was conferred for one second 
prior to the next attempt (Fig. 2a). The experiment was 

�sep arated into nine sections, with eight sections 
containing of 60 trials for all tasks. Furthermore, 10 trials for 
each imagination movement is in one section. Finally, one 
section consisting of 80 trials for the cooling-down state. 
The sequence of the motorized tasks was randomized. 
There are 5 to 10-minute breaks between sections. The 
total number of trials in the dataset for the study are 560. 

The EEG signal is generated from 64 Ag/AgCl 
�elec trodes attached to the scalp by the International 10/20 
�Sys tem. For reference, the nose and prefrontal lobes 

serve as ground (Fig. 1b). The Neuroscan SynAmps2 
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�amplifier am plifies the EEG signal with a sampling rate of 
1000 Hz and a band-pass filtering range of 0.5-100 Hz. In 
addition, there is an additional 50 Hz notch filter used during 

�data acquisi tion to remove noise caused by 50 Hz grid 
waves. After that, the original EEG signal is band-pass 
filtered between 1 and 40Hz, then down-sampled at 200Hz. 

�Prior to further analy sis, the typical average reference 
(CAR) is adopted here in pre-processing [25, 22]. 

The proposed method is shown in a flow chart in Fig. 3. 
After cleaning from noise and artifacts, the EEG signal is 
decomposed using DWT and EMD 

 

Discrete Wavelet Transform 
The Fourier Transform has the significant drawback of 

capturing global frequency information or frequencies 
present throughout the entire signal. Only a few 
applications, such as EEG, which uses data with brief 

�intervals of recog nizable oscillation, may benefit from this 
signal breakdown. The Wavelet Transform is an alternate 
method that breaks down a function into a collection of 
wavelets. Then, we select a wavelet with a specific scale. 
Then, we move this wavelet throughout the entire signal, 

�i.e., modify its location, multiply ing the wavelet and signal 
at each time step. We receive a coefficient for that wavelet 
scale at that time step as a result of this multiplication. The 

�process is then repeated while in creasing the wavelet 
scale, such as with the red and green wavelets. The DWT is 
defined as 
 

 
 

The DWT method uses the Daubechies mother wavelet 
to decompose the EEG signal into parts according to 

�fre quency. Since the sampling frequency is 200 Hz, the 
signal dataset is decomposed with a 5-level DWT. 

�Coefficients ob tained CA1 (0-100 Hz), CD1 (101-200 Hz); 
CA2 (0–50 Hz), CD2 (51-100 Hz); CA3 (0–25 Hz); CD3 
(26–50 Hz); CA4 (0-12 Hz), CD4 (13–25 Hz); CA5 (0–6 Hz), 
and CD5 (7–12 Hz). According to the task used, namely 
motor imagery, the results of the DWT are only taken for the 
D4 and D5 wave coefficients. These signals represent the 
EEG alpha and beta waves. Meanwhile, for EMD, IMF 

�waves with low fre quency are taken. These waves will be 
calculated for their power values (rms), standard deviation, 

�skewness, and kur tosis. These values are used 
 

Empricial Mode Decomposition 
Empirical mode decomposition (EMD) is a data-adaptive 

multi-resolution technique to decompose signals into 
�compo nents according to their physical form. EMD can be 

used to analyze non-linear and non-stationary signals by 
separating them into components at different resolutions. 
EMD can be used to perform the time-frequency analysis 
while remaining in the time domain. The components are on 
the same time scale as the original signal, which makes it 
easier to analyze. Unlike wavelet analysis, EMD recursively 

�extracts the differ ent resolutions from the data without 
using fixed functions or filters. 

EMD has the ability to extract significant characteristics 
and patterns from a signal, and it can be beneficial when 
examining signals with non-stationary or intricate oscillatory 
patterns. It has been used to assess signals like sound, 
�vi bration, and financial data in a number of disciplines, 

�includ ing engineering, physics, and economi 
EMD can be thought of as a fast oscillating signal 
�su perimposed on a slower signal. Once the fast 

oscillations are extracted, the EMD algorithm treats the 
remaining slow components as a new signal and considers 

�them fast os cillations superimposed on the slower 
�components. The al gorithm continues until some stopping 

criterion is reached. The components in EMD are called 
intrinsic mode functions (IMF). An illustration of the EMD 
decomposition  of the EEG  signal  is shown in Fig 1 and 
Fig 2. 

The brain’s work as a controller of motor movements 
�in volves parts of the brain, in this case, the right and left 

�hemi spheres of the brain. The left side of the brain and 
vice versa controls right-hand movement activity. The right 
side of the brain controls left-hand movement activity. It is 

�this charac teristic that attempts to exploit to obtain 
�features that distin guish tasks that involve right-hand and 

left-hand movements. There is a difference in these tasks. If 
�the value of the differ ence between the two is taken, it 

sharpens the difference in value. This is what will be used 
as a feature. In the case of motor imagery, signals from 
electrodes C3, Cp3, and Fc3 are used, representing the 
brain’s left hemisphere. Meanwhile, the right brain 
hemisphere is represented by signals from the C4, Cp4, 
and Fc4 electrodes. The difference from the value of each 
corresponding electrode feature, C3-C4, Cp3-Cp4, and 
Fc3- �Fc4, is used as a new feature that will produce bet ter 
classifier accuracy. 

There are four scenarios of how or the process of 
�tak ing features compared. The first is the feature taken 

from the statistical values of the DWT results. Then, the 
features are fed to EMD to get their statistical value. 
Subsequently, the features from EMD and DWT were 
combined. Furthermore, the fourth is a modification of the 

�third way by taking the fea ture difference value from a 
particular channel. In this case, it is called differential 
asymmetry, to be used as a new feature. Furthermore, the 
classification using SVM is carried out on the features used. 

 

Feature Extraction 
As explained in the previous section, the ERD/ERS 
�phe nomenon, namely the EEG signal, experiences a 

decrease in stress when performing or imagining 
movement. With this in mind, the statistical feature will 
continue to be used. In this study, the statistical features 
used were standard deviation, skewness, kurtosis, and 
power signal (rms) values. 

The average power and average absolute values of the 
Wavelet coefficients and IMFs were calculated as a feature. 
The use of the rms features, standard deviation, skewness, 
and kurtosis is also applied to the Wavelet coefficients as 
well as the IMF. Furthermore, the difference value for the 
channel symmetry pair will be sought from each statistical 
feature. These values will also be used as features. This 
feature of using the difference value of the pair of 
symmetrical channels has been applied in EEG research to 
detect emotion and is known as differential asymmetry. 

Differential asymmetry is the value of the difference 
�be tween two features, for example, the average power, as 

the results of measurements of the channel pair (electrode) 
is calculated as: 
 

 
 

where xl dan xr are the feature values of the left/right 
hemisphere symmetry pair (l, r) of the head. In the case of 
motor imagery, the channel pairs C3-C4, Cp3-Cp4, and 
Fc3- Fc4 were selected. Also included are the channels in 
the center, Cz and Cpz. This research will focus on the use 
of differential asymmetry as a feature marked "+DA". The 
�re sults will be compared with the use of direct features 

without DA. SVM classifier is used as a classifier. 
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Fig. 3. Research method flowchar 
 

 
 
Fig. 4. An example of EEG signal decomposition using EMD. EEG signal subject S1 for task Left Hand, channel C3. Results of 
decomposition of IMF-1 to IMF-6 and Residues (bottom) 
 

 
Experiments and Results 

In this experiment, we utilized a computer with RAM 8 
GB, Intel core i5. To classify seven types of mental tasks, 
and compare three types of multi-class CSP algorithms in 
Weibo Yi’s research, the SVM classifier was used with 
Radial Basis Function (RBF) as the kernel. 

Here, we collected the EEG dataset from [24]. The 
�sig nals were decomposed by using DWT and EMD. 

�These pro cesses work in parallel. DWT decomposed the 
signal into five levels which resulted in ten coefficients. 
Here, we set the N = 5 for the level, the DWT filter was set 
the db5 Daubechies wavelet. We picked only D4 and D5 
waves. 

�On the other hand, EMD decomposed the input sig nal 
into three coefficients, IMFn−2, IMFn−1, and IMFn. Those 

�decomposed waves were calculated with their statis tical 
features such as RMS, Standard Deviation, Skewness, and 
Kurtosis. From the DWT and EMD extracted coefficients, 
we measured the difference between the value from the 

�pair ing channel. This disparity was calculated using Eq. 3. 
Here for EMD, we set the Sift Relative Tolerance to 0.2, Sift 
Max Iteration to 100, Maximum number of IMF to 10, 
maximum energy ratio to 20, and the interpolation method 
was set to Spline for smooth signal. 

Table 1 shows the results of the SVM classifier 
�accu racy for ten subjects with 10-Fold Cross Validation. In 

�pre vious studies, the highest accuracy was obtained at 
84.11% and an average accuracy of 70.43%. In this study, 

�the av erage accuracy obtained using the DWT 
decomposition was 78.35%, while the highest accuracy 
value reached 88.57% tained is 80.94%, with the highest 
accuracy value of 89.82%. The average accuracy obtained 
by combining the DWT and EMD decomposition is 83.29%, 
while the highest accuracy value is 92.32%. By applying 
differential asymmetry (DA) to the combined DWT and EMD 

�decomposition, the highest ac curacy value is 100%, and 
the average accuracy is 93.16%. Graphically it can be seen 
in Figure 6. As a comparison, the following is an example of 

the confusion matrix resulting from Subject S5 accuracy 
without applying DA and by applying DA as a feature, 
shown in Figure 6. 

 
Discussion 

From Weibo Yi’s research, contralateral dominance was 
not observed during left-handed imagery. The same ERD 
pattern and spatial distribution during left-handed motor 
�im agery were also revealed by investigations of four 

different MI tasks, which may be attributable to right-handed 
�use. Imag inary leg movements desynchronize the alpha 

bands of not only the feet but also the hand representation 
areas, which are similar to those revealed by ERD maps on 
realistic head models during voluntary leg movements. 
Movement imagery desynchronizes the lower mu 
components somatotopically nonspecific, meaning 

�desynchronization is present in all sen sorimotor areas (in 
�both attended and unattended target ar eas). However, 

ERD of this wide leg area on the alpha band was only found 
in some subjects [25]. 

In addition, due to the simultaneous imagining of both 
hands, the bilateral hand areas are activated 
simultaneously. However, the situation is that the ERD is 
slightly weaker in the right hemisphere compared to the left 
hemisphere during both-handed imaginary processing, 
possibly associated with the right hand, i.e., more neurons 
have been activated in the right-handed region. In addition, 
the simultaneous imagin ing of the contralateral upper limb 
and lower limb certainly contributes to the simultaneous 

�activation of the contralat eral hand area and the 
contralateral midfoot area. At the same time, the 
homolateral hand area is also activated due to its influence 
on the non-attended. Regions within the lower mu 
component. This phenomenon implies the possibility of 
applying compound limb motor imagery to rehabilitating 
�pa tients suffering from severe motor injuries [25]. 
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Fig. 5. Graph of the accuracy methods per subject (in % 

 

 
Fig. 6. Confusion matrix accuracy of Subject S5 (a)without applying 
DA (b) by applying DA 

 
 

Fig. 7. Graph of the difference between the average LH and RH 
tasks for each feature in channel C3, C4 and C3-C4 
 

 
 

Fig. 8. Graph of average signal energy feature values for Subject-
S5 in 80 trials left-hand (LH) and right-hand (RH) tasks channel C3 
 

 
Fig. 9. Graph of average signal energy feature values for Subject-
S5 in 80 trials left-hand (LH) and right-hand (RH) tasks channel C4 
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Fig. 10. Graph of average signal energy feature values for 

�Subject S5 in 80 trials left-hand (LH) and right-hand (RH) tasks 
channel C3- C4. 

 
In accordance with the objective, the difference in feature 

values between the electrode features and the difference in 
left and right hemisphere electrode features will affect the 
�re sults of the accuracy of the SVM classifier. In this study, 

DA (differential asymmetry) values of C3-C4, Cp3-Cp4, and 
Fc3- Fc4 were used. Figures 8 and 9 show the power signal 
values for the left- and right-handed task motor imagery in 
C3 and C4 channels. Figure 10 shows the value of the 
difference in signal power for the two tasks between C3 and 
C4 channels. There is a significant difference between the 
two tasks if the differential asymmetry is taken. Table below 

�shows the av erage difference between the two LH and RH 
tasks for each feature on channels C3, C4 and the 
differential asymmetry of the two channels. Graphically it 
can also be seen in Figure 7. There is a huge difference 
when compared between each channels C3, C4 with the 
difference between the channels C3-C4. This is in 
accordance with the feature selection rule. 

The difference in the average scores of the two tasks 
shows that the use of the DA feature will increase the 

�dis tance between classes. This can also be seen in the 
graphs of Figure 8 to Figure 19. Figure 8 - 10 show the 
differences in the power features (rms) of the LH and RH 
curves in 80 trials conducted by subject-S5. It can be seen 
in Figure 10, the distance between the LH and RH curves is 
greater than the distance between the LH and RH curves in 
Figures 8 and 9. 

The same thing also happens to the other features, 
namely the standard deviation, skewness, and kurtosis. 
Compared to signal power, these statistical features show a 
tremendous difference (contrast) between using DA and 

�with out DA. This can be seen in Figures 13, 16, 19, the 
distance between the LH and RH curves is greater than the 
distance between the LH and RH curves in Figure 10. 

 

 
 
Fig. 11. Graph of standard deviation feature values of Subject-S5 in 
80 trials for left-hand (LH) and right-hand (RH) tasks channel C3 
 
 
 
 

 
 

Fig. 12. Graph of standard deviation feature values of Subject-S5 in 
80 trials for left-hand (LH) and right-hand (RH) tasks channel C4 
 

 
 

Fig. 13. Graph of standard deviation feature values of Subject-S5 in 
80 trials for left-hand (LH) and right-hand (RH) tasks channel C3-
C4 

 
 

Fig. 14. Graph of skewness feature values of Subject-5 in 80 trials 
for left-hand (LH) and right-hand (RH) tasks channel C3 
 

 
 

Fig. 15. Graph of skewness feature values of Subject-5 in 80 trials 
for left-hand (LH) and right-hand (RH) tasks channel C4 
 

 
Fig. 16. Graph of skewness feature values of Subject-5 in 80 trials 
for left-hand (LH) and right-hand (RH) tasks channel C3-C4 
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Fig. 17. Graph of kurtosis feature values of Subject-5 in 80 trials for 
left-hand (LH) and right-hand (RH) tasks channel C3 
 

 
 
Fig. 18. Graph of kurtosis feature values of Subject-5 in 80 trials for 
left-hand (LH) and right-hand (RH) tasks C4 channels. 
 

 
 
Fig. 19. Graph of kurtosis feature values of Subject-5 in 80 trials for 
left-hand (LH) and right-hand (RH) tasks channels C3-C4. 
 
Conclusion 

In this work, we investigated the use of motor imagery 
based on EEG. The dataset was gathered from a public 
repository that contains ten subjects. Our work comprises 
four scenarios. First, we employ the statistical feature of 
DWT. Next, the features were fed to EMD. Subsequently, 
those features were combined. Last, we extracted the 

�fea ture disparity from a particular EEG channel using a 
�tech nique called Differential Asymmetry. All of these 

features were classified using the SVM classifier. In here, 
�we com pare our model with previous works, Multi-CSP, 

Multi-GECSP, Multi-sTRCSP, Stat DWT, Stat EMD, and 
Stat DWT+EMD. Our model achieved the best overall 
accuracy (OA) with a value of 93.16 %. 
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