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Scattering problems in 2D space within the Rayleigh regime 
 
 

Abstract. In this paper, the application of the classic method of boundary elements to analyse the scattering problems of acoustic waves by a rigid 
object with a circular cross-section in 2D space is presented. The analysis is presented on the example of a flat wave falling on an object along the 
x-axis positive direction. The accuracy of the solution for two different cases meeting the Rayleigh regime was analysed. The criteria that must be 
met in order to expect a reliable solution are provided. 
 

Streszczenie. W pracy przedstawiono zastosowanie klasycznej metody elementów brzegowych do analizy problemów rozpraszania fal 
akustycznych przez sztywny obiekt o przekroju kołowym w przestrzeni 2D. Analizę przedstawiono na przykładzie fali płaskiej padającej na 
obiekt zgodny z dodatnim kierunkiem osi x. Przeanalizowano dokładność rozwiązania dla dwóch różnych przypadków spełniających 
wymagania reżimu Rayleigh’a. Podano kryteria jakie muszą być spełnione, aby można było oczekiwać wiarygodnego rozwiązania 
(Problemy rozpraszania w przestrzeni 2D w reżimie Rayleigha). 
 
Keywords: boundary element method, acoustics, Helmholtz equation, Rayleigh regime. 
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Introduction 
Many numerical methods can be used to analyze 

forward, and inverse problems, are ultrasound tomography 
[1-14]. Considering acoustic scattering problems in infinite 
domains, BEM has become the preferable approach. The 
biggest advantage is that the Sommerfeld radiation 
condition [15] is satisfied by an open boundary problem 
(Fig. 1). Thus, there is no requirement to truncate the 
domain and impose artificial non-reflecting boundary 
conditions. 

The problem is outlined by beginning with the time-
harmonic reduction of the wave equation for the exterior 
problem to the Helmholtz equation and finally to the 
Boundary Integral Equation formulation [16] for the acoustic 
scattering problem. The sound-hard scatterer is imposed 
through a homogeneous Neumann boundary condition on 
the boundary 𝛤 (see Fig. 2). Making use of Green’s second 
identity, the Helmholtz equation can be expressed in an 
equivalent form of a Boundary Integral Equation (BIE) [4], 
i.e. 
 

(1) 𝑐ሺ𝒓ሻ𝜑ሺ𝒓ሻ ൅ ׬
డீ൫ห𝒓ି𝒓ᇲห൯

డ௡𝜞 𝜑ሺ𝒓ᇱሻ𝑑𝛤 ൌ

׬ 𝐺ሺ|𝒓 െ 𝒓ᇱ|ሻ డఝ൫𝒓ᇲ൯

డ௡𝜞 𝑑𝜞 ൅ 𝜑௜௡௖ሺ𝒓ሻ,    𝒓 ∈ 𝜞 
 

where φinc is the incident wave, and the vector n is the unit 
normal vector outward pointing from the considered 
domain, see the centre of figure 1. 
 

 
Fig. 1. Internal point locations for an arbitrary shape scatterer 
(in this figure, square one) 
 

Due to the homogeneous Neumann boundary 
conditions, the third term of Eq. (1) vanish. Now the integral 

boundary equation (1) for constant boundary elements can 
be written in terms of local coordinate ξ as follows: 
 

(2) 𝑐ሺ𝒓ሻ𝜑ሺ𝒓ሻ ൅ ∑ 𝜑௝ሺ𝒓ᇱሻெ
௝ୀଵ ׬

డீ൫ห𝒓ି𝒓ᇲห൯

డ௡

ାଵ
ିଵ 𝐽ሺ𝜉ሻ𝑑𝜉 ൌ

 𝜑௜௡௖ሺ𝒓ሻ 
 
where M – is the total number of constant elements and 
𝐽ሺ𝜉ሻ – is the Jacobian of transformation, which for constant 
element is equal to: 
 

(3) 𝐽ሺ𝜉ሻ ൌ
ௗ𝜞

ௗక
ൌ ටቀௗ௫ሺకሻ

ௗక
ቁ

ଶ
൅ ቀௗ௬ሺకሻ

ௗక
ቁ

ଶ
ൌ

௅

ଶ
 

 
where L is the length of the constant boundary element [16]. 
 If the plane wave is travelling along the vector 𝒅௝ ൌ
൫cos 𝜃௝  , sin 𝜃௝൯ than 𝜑௜௡௖ሺ𝒓ሻ  ൌ 𝑒௜௞𝒓∙𝒅ೕ, where i is the 

imaginary unit 𝑖 ൌ √െ1. 
 It is worth noticing that the unit vector is defined in the 
boundary element method by the x-component and y-
component of the vector. So, the incoming wave is relatively 
easy to calculate on the boundary and incorporate into the 
right-hand side of the equation (2). 
 
Plane-wave and circular scatterer for Neuman (hard 
wall) boundary conditions 

In this chapter, we consider the scattering within the 
Rayleigh regime. By the Rayleigh regime [3] we understand 
the situation when the wavelength of scattering waves is 
much bigger than the diameter of the circular scatterer. 

The simulation of the scattering problems is an 
extremely difficult task. The most important is controlling the 
correctness and precision of the solution. There are several 
different methods to control solutions. 

The best method is to compare the results of numerical 
simulation with the analytical solution. Unfortunately, only 
the geometrically simplest scatterers are able to provide 
analytical solutions. The analytical solutions exist only for a 
narrow number of scatterers in the shape of a circle for 2D 
space and in the shape of a ball for 3D space. 

In this chapter, we will restrict scatterers to the shape of 
circles only. Although the transition from circle to square 
looks like an easy step forward but additional serious 
problems associated with square scatterers will not be of 
interest to us in this paper.  
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Another method of validating the BEM simulation results 
is to compare them with the results presented in the 
literature or compare them with a solution obtained by 
another method, such as FEM or FDM (Finite Difference 
Method). 

Moreover, finally, the most desirable but difficult and 
sometimes even impossible to implement there is a method 
of comparing the results of numerical simulation with 
measurement results. 

Otherwise, in order for the results would be reliable, one 
can use tips taken from the literature. And here are the 
most important of them: 

1) The number of boundary elements should be no 
less than 6 to 10 per wavelength (see, for example, 
[8]). 

2) It is well known in the literature that BEM provides 
unreliable results for all but low wavenumber [7]. 
The wavenumber should fulfil the following relation: 
 𝑘 𝐷 ൏ 4.0, 

where D denote the diameter of the circular body and 
when the shape of the body is irregular then the 
maximum distance between two boundary points. But in 
[7] the author state that this condition is too restrictive 
for most of the applications, and as we can see later, 
this condition alone do not guarantee high precision of 
the solution. 
In this paper, to control the simulation results, we will 

compare them with the analytical solution which was 
presented in [9]. Let the rigid circular void would be 
illuminated by the plane wave. The void is located in the 
centre of the cartesian system of coordinates, as it is shown 
in Fig. 2. The environment is the air with well-known 
parameters (see for example [8]). 

 

Fig. 2. Circular scatterer illuminated by a plane wave where I 
denote the illuminated and S denotes shadow zone 

 

Let us consider a circular scatterer of radius 𝑟 ൌ 𝑎 ൌ
1, in the case of an incoming plane wave with incident 

angle 𝜃, as shown in Fig. 2. Potential of the time-harmonic 
incoming wave can be expressed as [9]: 

 

(4)  𝜑௜௡௖ሺ𝑥, 𝑦ሻ ൌ 𝑒ି௜௞௥ ൌ 𝑒ି௜௞ሺ௫ୡ୭ୱఏା௬ୱ୧୬ఏሻ. 
 

Our goal is to find out the total velocity potential 
composed of the incident and scattered velocity potential: 

 

(5)  𝜑ሺ𝑥, 𝑦ሻ ൌ 𝜑௜௡௖ሺ𝑥, 𝑦ሻ ൅ 𝜑௦௖௔௧ሺ𝑥, 𝑦ሻ. 
 

Velocity potential described by Eq. (5) satisfies the 
Helmholtz equation in integral form (see Eq. (2)). Due to the 
shape of the scatterer, it is convenient to introduce the polar 
coordinate system with origin in the centre of the circular 
scatterer: 

(6)  𝑥 ൌ 𝑟 cos𝜃,       𝑦 ൌ 𝑟 sin𝜃. 
 

 We will be looking for the solution using the separation 
of variables method in the shape of [19]: 
 

(7) 𝜑௡ሺ𝑟, 𝜃ሻ ൌ  ൬𝐴௡𝐻௡
ሺଵሻሺ𝑘𝑟ሻ ൅ 𝐵௡𝐻௡

ሺଶሻሺ𝑘𝑟ሻ൰ 𝑒௜ ௡ఏ, 
 

where 𝐻௡
ሺଵሻሺ𝑘𝑟ሻ and 𝐻௡

ሺଶሻሺ𝑘𝑟ሻ are the Henkel functions of 
the first and second kind respectively [1]. 
 

a) 

b) 

c) 

Fig. 3. Incoming flat wave with unit amplitude expansion for 
only 20 modes a) real part b) imaginary part and c) the 
absolute value. 
 

As the region extends to infinity, only the outgoing wave 
will be taken into consideration, it means that the scattered 
field can be a sum of the modes 𝜑௡ሺ𝑟, 𝜃ሻ: 

 

(8) 𝜑௦௖௔௧ሺ𝑟, 𝜃ሻ ൌ ∑ 𝑖௡𝐴௡𝐻௡
ሺଵሻሺ𝑘𝑟ሻஶ

௡ୀିஶ 𝑒௜ ௡ሺఏିఏబሻ, 
 

or: 
(9)
 𝜑௦௖௔௧ሺ𝑟, 𝜃ሻ ൌ
𝐴଴𝐻଴

ሺଵሻሺ𝑘𝑟ሻ ൅ 2 ∑ 𝑖௡𝐴௡𝐻௡
ሺଵሻሺ𝑘𝑟ሻஶ

௡ୀଵ cos൫𝑛ሺ𝜃 െ 𝜃଴ሻ൯, 
 

where 𝐴௡ is the amplitude of the n-th mode. 
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To determine the amplitudes 𝐴௡ we have to use the 
homogeneous Neumann boundary conditions:  

 

(10) 
డఝ

డ௥
ൌ 0   on  𝑟 ൌ 𝑎. 

 

Following Eq. (5), the incident plane wave with unit 
amplitude will express as an infinite sum of the first kind of 
Bessel functions using the Jacobi-Anger expansion [1]. It is 
shown in the figures below 
 The plane wave is travelling from the left in the positive 
direction of the x-axis direction toward a cylindrical gap with 
a rigid boundary. Fig. 3 shows a plot for only 20 terms of 
cylindrical Bessel functions. In Fig., it can clearly see the 
influence of the limited number modes in the shape of a 
circular pattern. 
 
a) 

 

b) 

c) 

Fig. 4. Incoming flat wave expansion for 40 modes a) real 
part b) imaginary part and c) the absolute value for unite 
amplitude 
 

However, by increasing the number of terms up to 40 
we can easily notice the flat wave pattern (see Fig. 4c). 
Only at the corners of an image there

 are some perturbances with an error less than 1%. 

The higher frequency of the wave the more terms of the 
flat wave expansion has to be selected. 

 
(11)

 𝜑௜௡௖ሺ𝑟, 𝜃ሻ ൌ 𝑒௜ ௞௥ୡ୭ୱሺఏିఏబሻ ൌ
                                       ∑ 𝑖௡𝐽௡ሺ𝑘𝑟ሻஶ

௡ୀିஶ 𝑒௜ ௡ሺఏିఏబሻ, 
 
where 𝜃 is the polar coordinate and 𝜃଴ is the angle of 
incoming plane wave. 

Using the relation 𝐽 ௡ሺ𝑘𝑟ሻ ൌ ሺെ1ሻ௡𝐽௡ሺ𝑘𝑟ሻ the 
incoming wave could be expressed as follows [2]: 

(12) 𝜑௜௡௖ሺ𝑟, 𝜃ሻ ൌ 𝑒௜ ௞௥ୡ୭ୱሺఏିఏబሻ ൌ 𝐽଴ሺ𝑘𝑟ሻ ൅
                          2 ∑ 𝑖௡𝐽௡ሺ𝑘𝑟ሻஶ

௡ୀଵ cos൫𝑛ሺ𝜃 െ 𝜃଴ሻ൯. 
Following Eq. (5) we have got the complete solution: 
(13)

 𝜑 ൌ 𝐽଴ሺ𝑘𝑟ሻ ൅ 𝐴଴𝐻଴
ሺଵሻሺ𝑘𝑟ሻ ൅ 2 ∑ 𝑖௡ ൬𝐽௡ሺ𝑘𝑟ሻ ൅ஶ

௡ୀଵ

𝐴௡𝐻௡
ሺଵሻሺ𝑘𝑟ሻ൰ cos൫𝑛ሺ𝜃 െ 𝜃଴ሻ൯. 

Each term of the expansion (13) is called a partial wave 
[2]. Now for the Neumann boundary conditions, it can 
calculate the amplitudes of n-th mode of the wave as: 

(14)  𝐴௡ ൌ െ
௃೙

ᇲ ሺ௞௔ሻ

ு೙
ሺభሻᇲሺ௞௔ሻ

 

where the prime sign denotes derivatives with respect to the 
argument 𝑘𝑎 and  𝑎 is a radius of the circular void (see Fig. 
2). 

Following the works [1,3] we will have: 

(15)  𝐽଴
ᇱ ሺ𝑘𝑎ሻ ൌ െ𝐽ଵሺ𝑘𝑎ሻ 

(16) 𝐽௡
ᇱ ሺ𝑘𝑎ሻ ൌ

ଵ

ଶ
൫𝐽௡ିଵሺ𝑘𝑎ሻ െ 𝐽௡ାଵሺ𝑘𝑎ሻ൯ , 

and similarly for Hankel functions, we have got: 

(17)  𝐻଴
ሺଵሻᇱሺ𝑘𝑎ሻ ൌ െ𝐻ଵ

ሺଵሻሺ𝑘𝑎ሻ 

(18) 𝐻௡
ሺଵሻᇱሺ𝑘𝑎ሻ ൌ

ଵ

ଶ
൬𝐻௡ିଵ

ሺଵሻ ሺ𝑘𝑎ሻ െ 𝐻௡ାଵ
ሺଵሻ ሺ𝑘𝑎ሻ൰ 

Then the amplitude of the n-th mode will be: 

(19) 𝐴଴ ൌ െ
௃బ

ᇲ ሺ௞௔ሻ

ுబ
ሺభሻᇲ

ሺ௞௔ሻ
ൌ െ

ି௃భሺ௞௔ሻ

ିுభ
ሺభሻሺ௞௔ሻ

 

(20) 𝐴௡ ൌ െ
௃೙

ᇲ ሺ௞௔ሻ

ு೙
ሺభሻᇲ

ሺ௞௔ሻ
ൌ െ

௃೙షభሺ௞௔ሻି௃೙శభሺ௞௔ሻ

ு೙షభ
ሺభሻ ሺ௞௔ሻିு೙శభ

ሺభሻ ሺ௞௔ሻ
. 

 

According to Eq. (5) the sum of incident and scattered wave 
will take the form: 
 

(20) 𝜑ሺ𝑟, 𝜃ሻ ൌ 𝐽଴ሺ𝑘𝑟ሻ൅𝐴଴𝐻଴
ሺଵሻሺ𝑘𝑟ሻ ൅

2 ∑ 𝑖௡ஶ
௡ୀଵ ቂ𝐽௡ሺ𝑘𝑟ሻ ൅ 𝐴௡𝐻௡

ሺଵሻሺ𝑘𝑟ሻቃ cos ൫𝑛ሺ𝜃 െ 𝜃଴ሻ൯ 
 

Of practical interest is the potential angular distribution on 
the rigid boundary of the cylindrical void for 𝑟 ൌ 𝑎 namely 

𝜑ሺ𝑎, 𝜃ሻ. 
 
Numerical simulation 

Let's consider two cases that meet Rayleigh's regime. In 
both cases, the wavelength is much larger than the 
diameter of the object, which fulfil Rayleigh regime 
conditions. 
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Comparison BEM and analytical 
magnitude on the boundary of the 

object 

Error distribution along the perimetry of the 
scatterer 

Basic data 

 

   
wavelength 𝜆 ൌ 12.6 𝑚 

 
frequency= 27.37 Hz 

 
boundary element length 

𝐿 ൌ 0.392𝑚 
 

number of boundary 
elements per wavelength 

𝑛𝑒_𝑝𝑒𝑟_𝜆 ൌ 32  
𝑘 𝐷 ൌ 1 ൏ 4.0 

 

   
wavelength 𝜆=6.3 𝑚 

 
frequency= 54.75 Hz 

 
boundary element length 

𝐿 ൌ 0.196 𝑚 
 

number of boundary 
elements per wavelength 

𝑛𝑒_𝑝𝑒𝑟_𝜆 ൌ 32 
𝑘 𝐷 ൌ 2 ൏ 4.0 

Fig. 5. Magnitude of the incoming and scattered wave on the perimetry of the circular void (scatterer); in the middle column the 
error distribution along the object boundary; and in the third column the basic data of the simulation 

k=0.5

 
k=1 

   
Fig. 6. Equipotential lines (left column), image of the potential velocity of sound with the sound shielding effect (middle column) 
and the relief image of the problem (right column) 

 

In the first column figure, 5 shows a comparison of BEM 
results with an analytical solution. The level of the error is 
so low that both curves are almost the same. In the second 
column the distribution of the relative error along the edge 
of the area, while in the third column the basic parameters 
of the experiment. The air was an environment in this 
experiment. 

The analytical solution was treated as a reference result. 
We must remember that the analytical solution is an infinite 
series truncated to 20 or 40 components. So, this is not an 
accurate result. 

In the middle column relative error of the velocity 
potential magnitude along the rigid surface of the circular 
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scatterer is below one per cent. Such precision was 
achieved in spite of as coarse discretization as possible.  

In Fig. 6, the first column (left) presents the equipotential 
lines of velocity potential, the next image of the potential 
velocity of sound with the sound shielding effect (middle 
column) and the third column relief image of the problem 
(right column). All results are presented for two cases 
where arguments of the Bessel functions are the small 
ones. 

It should be emphasized that the calculation was carried 
out for the standard BEM. Accuracy improvement, 
particularly for higher frequencies, by simply increasing 
discretization does not give satisfactory results due to 
tomography applications. For the iterative mode of the 
tomography, we need as small number of unknowns as 
possible. According to the authors, the only solution seems 
to be the application of more sophisticated approximation 
like plane wave basis functions for example. 
 
Conclusion 

The acoustic scattering problem in 2D space was 
presented in this paper. The classical BEM was used, and 
its precision was analysed using the analytical solution as 
the reference one. Illuminated and the shadowed side of the 
circular scatterer were presented in the figures. The relative 
error distribution along the perimetry of the scatterer was 
calculated. The main goal of this paper was to investigate 
such an approach to tomography problems in acoustic or 
even ultrasonic problems. The errors were on the 
acceptable level, but more sophisticated basis functions 
could be necessary for high-frequency scattering problems 
in the future. 
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