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Abstract. In the paper, the FOCUSS method was applied to the noisy data, and the effect of the Tikhonov regularization factor on image 
retrievability was analysed. This method is used to solve systems of underdetermined equations, strongly underdetermined systems could not be 
solved by this method even with different values of the regularization parameter. It turned out that overdetermined systems can also be solved by 
this method. The execution time of the algorithm implementing the linear least squares task is much longer than that of the FOCUSS method 
algorithm. 
  
Streszczenie. W pracy zastosowano metodę fokusową do zaszumionych danych oraz przeanalizowano wpływ współczynnika regularyzacji 
Tichonowa na odtwarzalność obrazu. Metoda ta służy do rozwiązywania układów równań niezdeterminowanych, silnie niezdeterminowane układy 
nie mogły być rozwiązane tą metodą nawet przy różnych wartościach parametru regularności. Okazało się, że układy naddeterminowane również 
mogą być rozwiązywane tą metodą. Czas wykonania algorytmu realizującego zadanie liniowych najmniejszych kwadratów jest znacznie dłuższy od 
czasu wykonania algorytmu metody FOCUSS (Regularyzacja rozwiązania dla danych zaszumionych przy użyciu metody fokusowej w 
transmisyjnej tomografii ultradźwiękowej).  
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Introduction 
Many optimization methods can be used to solve the 

inverse in ultrasound tomography [1-9]. The FOCUSS 
(FOCal Underdetermined System Solver) method [10-12] is 
used to solve systems of underdetermined linear equations. 
To introduce the idea of the FOCUSS, the optimization 
problem associated with solving a system of equations 
A𝑥 ൌ b by norm minimalization with an additional 'penalty' 
term is considered. The default form of presumed penalty 
term is 

 

(1)                        𝑱௣ሺ𝒙ሻ ൌ ∑ 𝑝ห𝑥௝ห௡
௝ୀଵ ,  

 

where 𝑱௣ሺ𝒙ሻ is often referred to as multilateral 
measurement, 𝑝 is the parameter and 𝑥௝ are the non-zero 
values of the matrix 𝒙. However, relation (1) can take other 
forms, e.g. 
 

(2)                       𝑱௣ሺ𝒙ሻ ൌ signሺ𝑝ሻ ∑ ห𝑥௝ห
௣௡

௝ୀଵ ,  
 

where 𝑝 < 1 is the chosen parameter. If we want the penalty 
term to be a measure of Gaussian entropy, then the 
following applies 
 

(3)                    𝑱ீሺ𝒙ሻ ൌ 𝑯ீሺ𝒙ሻ ൌ ∑ logห𝑥௝ห
ଶ

.௡
௝ୀଵ  

 

Note that for 𝑝=1 we obtain a form of linear problem in 
which at least 𝑛 െ 𝑚 components are zero. By choosing the 
factor 𝑱௣,, we obtain a sparser solution than for the case of 
a minimum 1-norm solution (corresponding to 𝑝=1), e.g., for 
more than 𝑛 െ 𝑚 zero components in the solution vector. 
Moreover, the solution may be more accurate in the case of 
a noisy system. To minimize the solution with a term 𝑱௣ሺ𝒙ሻ 
we define 𝐿ሺ𝒙, 𝞴ሻ as 
 

(4)                𝐿       ሺ𝒙, 𝞴ሻ ൌ 𝑱௣ሺ𝒙ሻ ൅ 𝞴ሺ𝐛 െ 𝐖𝒙ሻ, 
 

where: 𝞴 ∈ 𝑹௡ is the vector of the Lagrange equation.  
 

We can determine the stationary points of the Lagrange's 
described above by 
 
(5)                     𝛻௫𝐿ሺ𝒙∗, 𝞴∗ሻ ൌ 𝛻௫𝑱௣ሺ𝒙ሻ െ 𝐖்𝞴∗ ൌ 0, 
(6)                  𝛻ఒ𝐿ሺ𝒙∗, 𝞴∗ሻ ൌ 𝐛 െ 𝐖𝒙∗ ൌ 0,  
 

where the gradient 𝛻௫𝑱௣ሺ𝒙ሻ is expressed as 
 

(7)                      𝛻௫𝑱௣ሺ𝒙ሻ ൌ |𝑝|𝐃|𝒙|
ିଵሺ𝒙ሻ𝒙, 

 

where 𝐃|𝒙|ሺ𝒙ሻ ∈ 𝑹ሺ௡௫௡ሻ is a diagonal matrix with the values 

of 𝑑௝ ൌ ห𝑥௝ห
ଶି௣

. Solving the above equations, we get 

(8)                          𝞴∗ ൌ |𝑝|൫𝐖𝐃|𝒙|ሺ𝒙∗ሻ𝐖்൯
ିଵ

𝐛, 
(9) 𝒙∗ ൌ |𝑝|ିଵ𝐃|𝒙|ሺ𝒙∗ሻ𝐖்𝞴∗ ൌ 𝐃|𝒙|ሺ𝒙∗ሻ𝐖்ሺ𝐖𝐃|𝒙∗|𝐖்ሻିଵ𝐛. 
 

It is recommended that the iterative algorithm for obtaining 
the optimal vector 𝒙∗be given by the formula 
 

(10) 𝒙ሺ𝑘 ൅ 1ሻ ൌ 𝐃|𝒙|ሺ𝑘ሻ𝐖்൫𝐖𝐃|𝒙|ሺ𝑘ሻ𝐖்൯
ିଵ

𝐛, 
 

where 𝐃|𝒙|ሺ𝑘ሻ ൌ diag൛𝑥ଵ
ଶି௣ሺ𝑘ሻ, 𝑥ଶ

ଶି௣ሺ𝑘ሻ, . . . , 𝑥௡
ଶି௣ሺ𝑘ሻൟ. This 

algorithm is called FOCUSS and if we denote 𝐃෩ |𝒙| ൌ
𝐃|𝒙|ሺ𝑘ሻ𝐖்the formula (10) can be expressed as 
 

(11) 𝒙ሺ𝑘 ൅ 1ሻ ൌ 𝐃෩ |𝒙|ሺ𝑘ሻൣ𝐖𝐃෩ |𝒙|ሺ𝑘ሻ൧
ା

𝐛, 
 

where ሾ∙ሿା stands for pseudo-inversion according to Moore-
Penrose [11,17] and 
 

𝐃෩ |𝒙|ሺ𝑘ሻ ൌ 𝐃|𝒙|
ଵ/ଶሺ𝑘ሻ ൌ diagቄ𝑥ଵ

ଵି௣/ଶሺ𝑘ሻ, 𝑥ଶ
ଵି௣/ଶሺ𝑘ሻ, . . . , 𝑥௡

ଵି௣/ଶሺ𝑘ሻቅ 
 

The important thing is that the matrix 𝐃|𝒙| exists for all 
values of 𝒙 even for negative values of 𝑝. For 𝑝=2, matrix 
𝐃|𝒙| ൌ 𝐈 (see equation (11) and the FOCUSS algorithm is 
simplified to a standard least squares task or a 2-norm 
solution 𝒙∗ ൌ 𝐖்ሺ𝐖𝐖்ሻିଵ. In the exceptional case when 
𝑝 ൌ 0, the diagonal matrix 𝐃෩ |𝒙| ൌ diagሼ|𝑥ଵ| , |𝑥ଶ|, . . . , |𝑥௡|ሽ  
and instead of using equation (1) we use Gaussian entropy 
(3), for which the gradient is expressed as: 
 

(12) 𝛻௫𝑱ீሺ𝒙ሻ ൌ 2𝐃ீ
ିଵ𝒙, 

 

where 𝐃ீሺ𝒙ሻ ൌ diagሼ|𝑥ଵ|ଶሺ𝑘ሻ , |𝑥ଶ|ଶሺ𝑘ሻ, . . . , |𝑥௡|ଶሺ𝑘ሻሽ. 
 

For noisy data, we use the FOCUSS algorithm with a 
regularization term of the form 
 

(13) 𝐱ሺk ൅ 1ሻ ൌ 𝐃|𝐱|ሺkሻ𝐖୘൫𝐖𝐃|𝐱|ሺkሻ𝐖୘ ൅ αሺkሻ𝐈൯
ିଵ

𝐛, 
 

where 𝛼ሺ𝑘ሻ ൒ 0  is a Tikhonov regularisation parameter [13-
15] dependent on the degree of noise.  
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For systems where there is a multiplication of the tracks 
of individual sensor systems, the FOCUSS algorithm can be 
represented as 
 

(14) 𝐱ሺk ൅ 1ሻ ൌ 𝐃‖𝐱‖ሺkሻ𝐖୘൫𝐖𝐃‖𝐱‖ሺkሻ𝐖୘൯
ିଵ

𝐛,  
 
where: 𝐃‖𝒙‖ሺ𝑘ሻ ൌ diagሼ𝑑ଵሺ𝑘ሻ , 𝑑ଶሺ𝑘ሻ, . . . , 𝑑௡ሺ𝑘ሻሽ and 𝑑௝ሺ𝑘ሻ ൌ

ฮ𝑠௝ฮ
ଶି௣

ሺ𝑘ሻ. 
 

The algorithm can be considered as a standard 
FOCUSS algorithm described by equation (5) and initialised 
by using minimum Frobenius solutions. Alternatively, for 
noisy data, we use the regularisation technique according to 
Tikhonov or the SVD method with a selection of singular 
values according to the L-curve principle [14,16]. 
 

Generation methods of the matrix of coefficients 
 Due to the fact that our considerations concern a circle 
(cylindrical tube cross-section), therefore, it was necessary 
to eliminate the pixels that lie outside of the square grid of 
pixels. A simplification has been adopted consisting in the 
fact that the circular area will be described with pixels, 
forming a shape similar to a circle. 
 

 
 
Fig.1. The shape of the area under consideration after applying a 
square grid a) 16x16, b) 32x32 c) 64x64. 
 
 The matrix of coefficients A from the equation A𝑥 ൌ b 
can be determined in three ways. The first method is the 
method that can be conventionally called zero-one. Its 
advantage is simplicity. 
The second method, a bit more complicated, replaces the 
one with the ratio of the length of the passing ray to the 
diagonal length of the pixel [13]. And the third variant 
consists in replacing the length of the fields marked by the 
ray passing through the pixel to the area of the entire pixel. 
This idea is illustrated in Figures 1 to 4. The zero-one 
method, the simplest of the methods, consists of the fact 
that if a ray passes through a given pixel, then in the matrix 
of coefficients, we put "1" in the appropriate place. In other 
cases, when the ray does not pass through the pixel, we put 
"0" into this matrix. Figure 2 illustrates the above principle. 

 
 
Fig.2. Zero-one rule for determining the elements of the matrix of 
coefficients. 
 

 
 
Fig.3. The principle of determining the ratio of the length of a ray 
running through a pixel to the diagonal length of a pixel. 

A modification of this method consists in the fact that 
instead of inserting ones or zeros, we insert the ratio of the 
length of the segments: the ray inside the pixel to the 
diagonal length of the entire pixel. This principle is 
illustrated in figure 3. 

The most advanced modification of the ART method 
[10], consisting in the fact that we do not put in the 
appropriate places either 0s or 1s nor the ratio of the length 
of the ray passing through the pixel to the diagonal of the 
pixel. Instead, we calculate the ratio of the fields encircled 
by the ray through the given pixel. The overview drawing is 
shown below. 

 
Fig.4. Rays and the fields circled by them. 
 
 Having a system constructed in any of these ways of 
equations, we can proceed to its solution, which is based on 
the distribution with respect to the singular values of SVD. 
For this purpose, the Linear Least Squares Problem [14] 
was used. This method consists in selecting a sample 
solution for which the result is closest to the model image. 
This solution was selected on the basis of the graph of the 
residual vector as a function of the solution vector norm, 
i.e., the function of the form ‖𝐑‖ ൌ 𝑓ሺ‖𝒙‖ሻ, where 𝐑 ൌ 𝐀𝒙 െ
𝐛 [14,17]. The best solution is defined as a compromise 
between the solution that provides the smallest error in the 
sense of the mean square norm and the solution with the 
smallest norm i.e., the solution with the smallest oscillations 
[14]. 
 The method used for solving the system of equations is 
the FOCUSS method described in detail above. 
 In order to check the correctness of the algorithm 
operation, synthetic data was used, i.e., data free of noise 
and errors. The obtained results were neither filtered nor 
standardized. These are raw data intended for further 
processing. Three objects were adopted: square, rectangle 
and cross. These objects were placed in a circular area with 
a diameter of 20 cm over which a square grid was placed. 
In order to reproduce the objects as faithfully as possible, 3 
mesh sizes were selected: 16x16 (256 pixels), 32x32 (1024 
pixels) and 64x64 (4096 pixels). 
 The measuring transducers are arranged at equal 
intervals on the circle, creating eight projection angles, with 
8 rays per projection angle, which gives a total of 64 rays. 
This number, however, turned out to be insufficient for the 
correct detection of the object, so it was decided to increase 
their number using the method of linear interpolation. 
Depending on the resolution of the grid, the following were 
used: 128, 256, 512, 624, 1024 rays in all eight sensor 
positions (projection angles). 
 
Results 
 The figures show images of objects determined with the 
FOCUSS method: a) reference images, b) c) d) are results 
for different values of the regularisation parameter. Figures 
(d) are the results most similar to the reference images. 
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Fig.5. Images of the object with a cross-section at a resolution of 16 
by 16 obtained by the FOCUSS method depending on the value of 
the regularization parameter a) reference image, b) value 0.02, c) 
value 0.2, d). value 50. 

 
Fig.6. Images of an object with a square cross-section with a 
resolution of 64 by 64 obtained by the FOCUSS method depending 
on the value of the regularization parameter a) reference image, b) 
value 0.02, c) value 0.2, d) value 3. 

 
 
Fig.7. The influence of objects on the transit times of rays in 
particular orientations: without an object, square, rectangle, cross. 

Figure 8 shows images for noise-free data and, at the 
same time shows the effect of the regularization coefficient 
on the image. 

 
Fig.8. Images of an object with a square cross-section at a 
resolution of 32 by 32 with 0% noise, obtained by the FOCUSS 
method depending on the value of the regularization parameter a) 
reference image, b) value 0.01, c) value 0.2, d) value 15. 
 

 

 
 
Fig.9. The influence of a square-shaped object on the transit times 
of rays in particular orientations for 20% of noise; at the bottom of 
the magnified image - no noise, dashed blue line. 
 

 

 
 

Fig.10. Images of a square object at 32 by 32 resolution with 20% 
noise, obtained using the FOCUSS method, depending on the 
value of the regularisation parameter (a) reference image, (b) value 
0.0, (c) value 0.02, (d) value 0.2. 
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Fig.11. Images of a square object at 32 by 32 resolution with 20% 
noise, obtained using the FOCUSS method, depending on the 
value of the regularisation parameter (a) value 2, (b) value 4, (c) 
value 6, (d) value 8. 
 
Conclusions 

When performing the solution of the equation A𝑥 ൌ b by 
the methods of least squares and FOCUSS, it is possible to 
observe the differences between them even when the 
matrix of coefficients A was constructed in the same way 
(the method of calculating the areas for the 16x16 grid and 
ART "diagonals" for the 32x32 grid). Although the FOCUSS 
method is used to solve systems of underdetermined 
equations, strongly underdetermined systems (such as 
64x208, 64x820, 128x820, 64x3224 and 128x3224) could 
not be solved by this method even with different values of 
the regularization parameter. However, because of 
experiments, it turned out that overdetermined systems can 
also be solved by this method. 

The execution time of the algorithm implementing the 
linear least squares task is much longer than that of the 
FOCUSS method algorithm. This is due, among other 
things, to the fact that the Linear Least Squares Problem 
solution is based on the SVD decomposition of the 
coefficient matrix A of the system of equations.  
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