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Combining electrical capacitance and impedance tomography  
in monitoring processes 

 
 

Abstract. The presented research describes an experiment aimed at answering the question of whether the combination of two types of 
tomographic measurements, namely electrical impedance tomography (EIT) and electrical capacitance tomography (ECT), will improve the quality of 
the reconstruction in comparison to the tomographic images obtained with both methods considered separately. For this purpose, appropriate tests 
were carried out, which showed that, in fact, magnification of the measurement vector by combining EIT and ECT measurements increases the 
quality of the reconstruction.  
 
Streszczenie. W przedstawionych badaniach opisano eksperyment mający za zadanie odpowiedź na pytanie, czy połączenie dwóch rodzajów 
pomiarów tomograficznych, a mianowicie elektrycznej tomografii impedancyjnej (EIT) i elektrycznej tomografii pojemnościowej (ECT), podniesie 
jakość rekonstrukcji w porównaniu do obrazów tomograficznych uzyskanych obiema rozpatrywanymi metodami z osobna. W tym celu 
przeprowadzono stosowne próby, które wykazały, że istotnie, powiększenie wektora pomiarowego poprzez połączenie pomiarów EIT i ECT 
powoduje wzrost jakości rekonstrukcji. (Łączenie tomografii elektrycznej pojemnościowej i impedancyjnej w procesach monitorowania). 
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Introduction 
Industrial tomography is a dynamically developing field 

of technology. Effective control of industrial processes 
requires constant supervision and monitoring of many 
parameters at the same time. Based on information flowing 
into the monitoring system, individual machines, devices, 
and technical apparatus react to changes in the work 
environment. The reaction consists in adjusting physical 
parameters such as temperature, pressure, flow, substrate 
concentration, etc. [1]. Process control can apply to both 
discrete technological systems and the production of liquid 
or gaseous substances. Figure 1 shows an example of an 
industrial tank reactor. Industrial reactors are designed to 
maintain optimum economic parameters of chemical 
operations. This is possible with the right reactor design and 
the strategic overlap of three different kinds of sub-
processes happening within the reactor: the transfer of 
mass, momentum, and heat.  

The first reaction category involves solidifying 
substances in a liquid medium. It discusses the 
modifications of particle characteristics and industrial 
procedures for creating and purifying solids. Crystallization 
reactors find applications across numerous industries, 
including the chemical, food, and metalworking sectors [2]. 
In real-time, monitoring systems must provide accurate data 
on the number, size, and location of crystals forming in a 
liquid. 

 

 

 (a) (b) 
 

Fig. 1. Continuous stirred-tank reactor: (a) - a real device,  
(b) – a model 

 
The second kind of reaction is one involving a mixture of 

gas and liquid. One such use is in the creation of biogas. 
Biogas plants depend on physicochemical and fermentation 
reactors. Methane and organic waste are fermented within 
these reactors. The dependability of industrial operations 
relies in large part on the efficient functioning of this 
technological system [3]. 

There are primarily two goals in keeping tabs on the 
status of dynamic processes. One is the early warning of 
imminent failures, such as those caused by a breakdown in 
the technological infrastructure, an abnormally large change 
in key process parameters, or a break in the continuity of 
operations. An efficient monitoring system is built to help 
find issues before they become catastrophic so that 
remedial measures may be implemented efficiently. 
Controlling the track of an industrial process is the second 
justification for monitoring its states. 

Electrical tomography is a non-invasive method that 
allows visualisation and monitoring changes inside reactors 
and pipelines [4–6]. The most common types of electrical 
tomography are electrical impedance tomography (EIT) and 
electrical capacitance tomography (ECT) [7–10]. The 
observations and research allowed to formulate the thesis 
that the optimal selection of the type of tomographic method 
used (EIT or ECT) depends on many factors, including the 
type of monitored object and the characteristics of the 
process. The key attributes of the reactor include its size, 
material and wall thickness, the chemical composition of the 
filling substance, and physical parameters such as mixing 
speed, pressure, and temperature. The basic features of 
the process include its dynamics, understood as the rate of 
changes in the state of the tested object, the proportions of 
substrates, temperature, pressure, and flow rate [11-14]. 

 
Materials and Methods 

To solve the tomographic inverse problem, consisting in 
converting measurements into images, a hybrid 
measurement system was used. This heterogeneous 
system is a combination of two types of tomography - EIT 
and ECT. The homogeneous EIT method uses 96 voltage 
measurements, and the ECT measurement vector consists 
of 120 capacitance values. We combined both 
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measurement vectors, and then we got 216 heterogeneous 
values of voltage and capacitance at the input. The output 
is an image with a resolution of 4146 pixels (tetrahedron 
finite elements). Figure 1 shows a diagram of the operation 
of a hybrid tomographic system combining two types of 
tomography - EIT and ECT. 

 

 
 
Fig. 2. Model of operation of a hybrid tomographic system 
combining two types of tomography - EIT and ECT 

 
Figure 3 shows the method of conducting the described 

research. First, two training sets were simulated. The first 
set was generated with EIT tomography in mind. The same 
reference images served as the output models to generate 
the ECT measurements. Eidors software cooperating with 
Matlab was used in both cases. The observations were 
generated by solving a simple problem using the finite 
element method. In other words, the measurement set for 
16 electrodes was calculated for the reference cases 
defined on the finite element mesh. Since each type of 
tomography, EIT and ECT, uses 16 electrodes, the total 
number of electrodes was 32. Then the two training sets 
(EIT and ECT) were joined together in such a way that the 
input vector was extended. The outputs, i.e., the reference 
images, remained the same. 

 

 
 
Fig. 3. Workflow of the research 
 

 
 
Fig. 4. Measurement tank for imaging real cases 

 
Then, three models of neural networks were trained - 

two homogeneous ones: the convolutional neural network 
(CNN) and the long-short-term memory network (LSTM), 
and one hybrid connecting both networks (CNN+LSTM) 
[15–17]. All three types of trained models were compared, 
and it was found that the best results were obtained with a 
model containing both CNN and LSTM layers. 

Figure 4 shows the physical model of the tank with the 
EIT and ECT electrodes. The presented stand enables the 
imaging of real measurements using the tested hybrid EIT 
and ECT measurements. 

Figure 5 shows the 11-layer architecture of the CNN 
network. Since the inputs are a 216-element vector, layer 
one is sequential. 

The next layer is a 1D convolution layer with filterSize = 
29 and numFilters = 9 parameters. This is followed by the 
batch normalization layer which calculates the normalized 
activations 𝑥ො௜ of input elements 𝑥௜ according to formula (1) 

(1)  𝑥ො௜ ൌ
௫೔ିఓಳ

ටఙಳ
మାఢ

 

where 𝜇஻ is mean, and 𝜎஻
ଶ is variance. Both parameters 

are calculated over the spatial, time, and case dimensions 
for each channel individually. Once the variance becomes 
negligible, numerical stability is improved by the constant 𝜖. 
The activations are further shifted and scaled using the (2) 
transformation for accounting for the potential that inputs 
with zero mean and unit variance are not ideal for the 
processes that follow batch normalization. 

(2)  𝑦௜ ൌ 𝛾𝑥ො௜ ൅ 𝛽 

The scale factor 𝛾, and offset 𝛽 and are learnable 
parameters that are updated during artificial neural network 
learning. 

 

 
 
Fig.5. CNN layers used in the hybrid network 
 

Downsampling is carried out via a 1D average pooling 
layer, which accomplishes this task by first splitting the input 
into 1D pooling areas and then calculating the average 
value for each of these regions. The dropout layer is 
designed to counteract overfitting by randomly setting the 
input elements to zero with a certain probability. The fully 
connected layer adds the input and weight products and 
adds a bias vector. When it comes to regression tasks, the 
regression layer is responsible for computing the loss of the 
half-mean squared error. Figure 6 shows the architecture of 
the LSTM network. The entire network consists of a layer of 
layers. This is this text to build a site with CNN. The biLSTM 
and LSTM layers are new. 
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The bidirectional long short-term memory, or biLSTM, 
the layer is responsible for the learning of long-term 
dependencies in both directions between the time steps in a 
time series or sequence of data. When it wants the network 
to learn from the whole time series at each time step, these 
dependencies might be helpful in achieving that goal. 
Learning the long-term relationships between time steps in 
time series and sequence data is the responsibility of an 
LSTM layer. The layer engages in additive interactions, 
which may assist in enhancing gradient flow over extensive 
sequences while the network is being trained. The number 
of hidden units (or the hidden size) is specified as a positive 
integer. 

 
 

Fig.6. The way of using LSTM layers in the hybrid network 
 
The information retained from one-time step to the next 

is proportional to the number of hidden units (the hidden 
state). Regardless of sequence length, information from all 
preceding time steps may be stored in the hidden state. The 
layer may overfit its input data if too many hidden units are 
used. Prices can range from the low hundreds to the low 
thousands. There is no upper bound on the number of 
iterations per time step imposed by the hidden state. Figure 
7 depicts the CNN + LSTM hybrid network, which consists 
of 13 layers. The unique feature of this architecture is the 
fact that it consists of both CNN and LSTM layers. 

 
Results 

Figure 8 shows three types of measurement cases that 
were reconstructed from actual measurements using the 
CNN + LSTM algorithm. The considered observations refer 
to single, double, and triple inclusion. The comparison of 
reconstructions made based on measurements made on a 
real object does not make it possible to calculate objective 
(numerical) quality indicators. Figure 9 shows the three 
measurement cases reconstructed from simulation 
measurements using the CNN + LSTM algorithm. Figure 9a 

shows an example with a small number of inclusions (3 
small objects), and Figure 9b shows an observation with 
lots of hidden objects. Under the reconstruction images, the 
values of mean square error (MSE) and image correlation 
coefficient (ICC) indicators are presented. The closer the 
ICC is to 1, and the closer the MSE is to 0, the better the 
reconstruction is. It is clearly visible that the EIT + ECT 
method gives the best results for both small and large 
numbers of inclusions. 

 

 
 
Fig.8. Reconstruction from real measurements with a single, 
double, and triple inclusion 

 
Conclusions 

The research presented in this paper compares the 
reconstructions of the 2D cross-section of an industrial tank 
reactor obtained with the use of three methods. The first 
two methods of tomography are homogeneous, and they 
are EIT and ECT. The third method used in the research is 
hybrid (EIT + ECT). Machine learning methods were also 
compared. The tested algorithms are CNN, LSTM, and the 
CNN+LSTM hybrid algorithm. At an early stage of the study, 
the homogeneous CNN and LSTM algorithms were 
excluded, and all reconstructions were performed with the 
CNN + LSTM heterogeneous algorithm. Thus, the main 
focus of research has been focused on the comparative 

 
 
Fig.7. CNN and LSTM layers included in the hybrid artificial neural network 
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quality  

 
(a) 

 
(b) 

Fig. 9. Reconstructions obtained from simulation-generated 
measurements: (a) – a few inclusions, (b) – many inclusions 
 
assessment of the three types of electrical tomography, or 
rather on examining whether the combination of EIT and 
ECT measurement vectors will increase the quality of the 
reconstruction. The results of simulation experiments fully 
confirmed this thesis. 
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