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Abstract In this article, we develop a Maximum Power Point Tracker (MPPT) for a fuel cell system based on an Adaptive Neural Fuzzy Inference 
System (ANFIS). The system considered consists of a Proton Exchange Membrane fuel cell (PEMFC) connected to a resistive load via a boost 
converter, an ANFIS giving the reference signals (the voltage and the current values of the maximum power point whatever the operating conditions 
of the fuel cell), and a PI (Proportional integrator) controller with a Pulse Width Modulation (PWM) signal generator to tuning the duty cycle of the 
DC-DC boost converter. The ANFIS training database uses samples calculated using a validate fuel cell electrochemical model. The simulation 
results obtained using Matlab-Simulink package demonstrate the effectiveness of the proposed MPPT compared to conventional MPPT techniques 
in terms of static and dynamic performance. 
 
Streszczenie. W tym artykule opracowujemy śledzenie punktu maksymalnej mocy (MPPT) dla systemu ogniw paliwowych opartego na Adaptive 
Neural Fuzzy Inference System (ANFIS). Rozważany system składa się z ogniwa paliwowego z membraną do wymiany protonów (PEMFC) 
połączonego z obciążeniem rezystancyjnym poprzez konwerter doładowania, ANFIS dający sygnały odniesienia (napięcie i wartości prądu 
maksymalnego punktu mocy, niezależnie od warunków pracy ogniwa paliwowego ) oraz sterownik PI (proporcjonalny integrator) z generatorem 
sygnału z modulacją szerokości impulsu (PWM) do dostrajania cyklu pracy przetwornicy podwyższającej DC-DC. Baza danych szkoleniowych 
ANFIS wykorzystuje próbki obliczone przy użyciu walidacyjnego modelu elektrochemicznego ogniw paliwowych. Wyniki symulacji uzyskane przy 
użyciu pakietu MATLAB-Simulink pokazują skuteczność proponowanego MPPT w porównaniu z konwencjonalnymi technikami MPPT pod 
względem wydajności statycznej i dynamicznej. (Wydajny moduł śledzenia maksymalnego punktu mocy ogniwa paliwowego oparty na 
adaptacyjnym systemie wnioskowania neuronowego Fuzzy) 
 
Keywords: Adaptive Neural Fuzzy Inference System (ANFIS), Proton exchange membrane fuel cell (PEMFC), Maximum power point 
tracking (MPPT) 
Słowa kluczowe: Adaptacyjny Neural Fuzzy Inference System (ANFIS), Ogniwo paliwowe z membraną do wymiany protonów (PEMFC), 
Śledzenie punktu maksymalnej mocy (MPPT) 
 
 
Introduction 

Currently countries mainly rely on coal, oil and                                                                                     
natural gas for their energy supply [1, 2]. These fossil fuels 
are not renewable, namely they depend limited resources 
that will certainly decrease, and becoming too expensive in 
addition to their damage of the environment [1, 3]. Among 
the technologies expected to replace fossil fuels, fuel cells 
(the only converter of hydrogen into electricity) have the 
potential to provide the world with clean and sustainable 
electrical energy [2]. Fuel cell offer many advantages. It’s 
efficient, reliable, quiet, and it emit no greenhouse gases 
[4]. 

Fuel cell technologies are generally categorized 
according to their electrolyte and operating temperature. A 
PEMFC operates with a polymer electrolyte and its 
operating temperature is about 80 °C [5]. Due to its 
characteristics such as fast start-up, light weight, high 
power density and low operating temperature, PEMFC is 
the most popular type of fuel cell and the best candidate for 
residential and vehicular applications [4, 5]. 

The current-voltage characteristic of fuel cells is non-
linear and is influenced by operating parameters such as 
temperature, oxygen partial pressure, hydrogen partial 
pressure and membrane water content [6, 7]. At particular 
operating conditions, there is a single operating point where 
the power delivered by the fuel cell is at its maximum. 
Therefore, it is important to find this maximum power point 
(MPP) defined by its voltage (Vmpp) and current (Impp) in 
order to increase the efficiency of the system. This 
approach is referred to as the maximum power point 
tracking.  A MPPT (Maximum Power Point Tracker) is a DC-
DC converter controlled to enforce the fuel cell to operate at 
its maximum power point [7, 8]. MPPT techniques constitute 
a wide field of research with the aim of improving the 
efficiency of renewable energy systems [8-12]. The diversity 
of these methods is basically developed for photovoltaic 
systems [13]. The best known methods are the “perturb and 

observe” method and the “incremental conductance” 
method due to their simplicity and low cost [14]. However, 
their drawbacks (fluctuation around the maximum power 
point and tracking error in case of fast operating conditions 
change) have led to propose alternative algorithms based 
on artificial intelligence techniques [15-19]. 

This paper presents a MPPT suitable for a PEMFC 
system based on an ANFIS and a DC/DC boost converter. 
ANFIS systems don’t need to know the fuel cell system 
internal parameters, use less electrical sensors and less 
computing resources. 

 
Fuel cell model 

Fuel cells are efficient electric power generating 
systems that convert the chemical energy of hydrogen 
directly into electrical energy and heat [20]. The operating 
principle of a PEMFC requires an elementary cell 
comprising an anode, a cathode, an electrolyte as well 
oxygen and hydrogen supply systems (Fig. 1) [21]. 

 

 
Fig.1. Fuel cell principle [4] 

At the anode occurs the catalytic oxidation of hydrogen 
which comes apart from its electrons: 

 
                              H2 → 2H+ + 2e- 
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At the cathode occurs the catalytic reduction of oxygen, 
producing heat and water: 

 

               O2 + 4H+ + 4e- → H2O 
 

The overall reaction is therefore: 
 

H2 + 1/2O2 → H2O + heat + electricity 
 

By physically separating the anode and the cathode 
reactions using an electrolyte, the electrons released by the 
oxidation of hydrogen pass through the external electrical 
circuit forming a direct electrical current while the H+ ions 
formed can pass through the electrolyte. 

R. F. Mann et al. [22] developed an electrochemical 
based fuel cell model which gives the fuel cell voltage as a 
function of its current taking into account the essential 
electrochemical phenomena that take place inside it. 

The expression of the voltage of a single fuel cell is 
expressed as follows: 

 

(1)       𝐸஼௘௟௟ ൌ 𝐸ே௘௥௡௦௧ െ 𝐸௔௖௧ െ 𝐸௢௛௠ െ 𝐸௖௢௡ 
 

where ENernst is the Nernst potential of the cell (V), Eact is the 
activation overvoltage (V), Eohm is the ohmic overvoltage (V) 
and Econ is the concentration overvoltage (V). 

The voltage EStack (V) of a stack formed by n cells 
connected in series is: 

     

(2)                                𝐸ௌ௧௔௖௞ ൌ 𝑛. 𝐸஼௘௟௟ 
 

The Nernst voltage of a single fuel cell under normal 
pressure and temperature conditions is around 1.229 V. 
The following formula calculates the Nernst voltage for any 
conditions of temperature and pressure: 

 

 (3)     𝐸ே௘௥௡௦௧ ൌ 1,229 െ 0,85𝑇ିଷ . ሺ𝑇 െ 298,15ሻ  

                                                  ൅ 4,31. 10ିହ. 𝑇. ቂ𝑙𝑛൫𝑃ுమ
 ൯ ൅

ଵ

ଶ
𝑙𝑛൫𝑃ைమ

 ൯ቃ              
 

where T is the absolute operating temperature of the stack 
(K), 𝑃ுమ

 is the hydrogen partial pressures (atm) and  𝑃ைమ
  is 

the oxygen partial pressures (atm) [21, 22]. 
 Activation over-voltage is given by the relation: 
 

(4)    𝐸௔௖௧ ൌ 𝜉ଵ ൅ 𝜉ଶ. 𝑇𝜉ଷ. 𝑇. 𝑙𝑛൫𝑐ைమ
൯ ൅ 𝜉ସ. 𝑇. 𝑙𝑛 ሺ𝑖ி஼ሻ   

 

where 𝑖ி஼ is the functional fuel cell operating electrical 
current (A). 𝜉, 𝜉ଶ, 𝜉ଷ, and 𝜉ସ are empirical coefficients. 𝑐ைమ

 is 
the concentration of dissolved oxygen in the interface of the 
cathode catalyst (mol/ cm3), determined by: 

 

(5)                    𝑐ைమ
ൌ

௉ೀమ

ହ.଴଼.ଵ଴ల.௘షቀరవఴ
೅ ቁ

                              

 

The ohmic over-voltage is determined by: 
 

(6)                      𝐸௢௛௠ ൌ 𝑖ி஼. ሺ𝑅ெ ൅ 𝑅஼ሻ                             
 

where R୑ is the equivalent proton-exchange membrane 
impedance (Ω) and  Rେ  is the resistance between the 
electrodes and the proton-exchange membrane (Ω). R୑ is 
calculated as the following relation: 

 

 (7)                                   R୑ ൌ
஡౉.୐

୅
                                       

 

where L is the membrane thickness (cm), A is the cell active 
area (cm2), and  ρ୑ is the specific membrane resistivity 
(Ω.cm) obtained by the following relation: 
 

(8)        𝜌ெ ൌ
ଵ଼ଵ,଺.ቈଵା଴,଴଴ଷ.ቀ
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where 𝜓 is an adjustable parameter function of the 
membrane  water content and stoichiometry relation of the 

anode gas. 𝜓 may have a value order of 14 under 100% of 
relative humidity and up to 23 at oversaturated conditions 
[21]. 

The concentration over-voltage related to the kinetics of 
diffusion of gases through the electrodes is given by the 
relation: 

 

(9)                        𝐸௖௢௡ ൌ െ𝐵. 𝑙𝑛 ቀ1 െ
௃

௃೘ೌೣ
ቁ 

 

where B (V) is an empirical coefficient it depends on the 
type of fuel cell and its operation state , J is the actual 
current density of the cell (A/cm2), and Jmax is the maximum 
current density (A/ cm2) [21]. 

Equation (1) represents the steady state electrical model 
of the fuel cell. An equivalent electrical circuit can be used 
to model the dynamic behavior of the fuel cell (Fig. 2) [23]. 

 

 
Fig.2. PEMFC Equivalent dynamic electrical circuit 

In this circuit, ohmic over-voltage, activation over-
voltage and concentration over-voltage are represented by 
the resistors Rohm, Ract and Rcon respectively, while the 
capacitor C models the delay of the activation and the 
concentration over-voltages in the case of change in fuel 
cell current. This delay is caused by the charge double layer 
in the electrode/electrolyte interface. For the 500-W BCS 
fuel cell stack, the value of this capacity is approximately 3 
Farads [21]. 

 

Proposed Based MPPT ANFIS 
An adaptive neural fuzzy inference system (ANFIS) 

combines the ability of neural networks to learn and the 
ability of fuzzy inference systems to use linguistic variables 
[24]. An ANFIS implements a Takagi-Sugeno fuzzy 
inference system of five hidden layers (Fig. 3). The first 
hidden layer is responsible for mapping the input variables 
relative to each membership function. The operator “AND” 
is applied in the second layer to calculate the truth value of 
each rule. The third hidden layer normalizes the truth value 
of the rule (weight). At the fourth hidden layer, the 
parameters called “rules consequents” are determined. The 
last layer delivers the ANFIS response defined by the sum 
of all the incoming signals. ANFIS uses a back propagation 
learning method for the parameters of the input 
membership functions and the mean square error method 
to determine the rules consequents [25, 26, 27]. 

 

 
 

Fig.3. Basic ANFIS structure 
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The proposed ANFIS must be able to predict the voltage 
(Vmpp) and the current (Impp) of the maximum power point 
whatever the operating conditions of the fuel cell system. 
Fig. 4 shows the inputs and the outputs of the proposed 
ANFIS. 

 
Fig. 4 Proposed ANFIS inputs/outputs 

The input layer has four inputs: the partial pressure of 
hydrogen PH2 (atm), the partial pressure of oxygen PO2 
(atm), the relative humidity factor of the membrane ψ and 
the operating temperature T (°C). The output layer has two 
outputs: the voltage (Vmpp) and the current (Impp) of the 
maximum power point. In practice, the input nodes are 
sensors delivering the measurements of the operating 
conditions of the fuel cell. 
 

Simulation results 
Fuel cell output characteristics 

MATLAB® was used to perform simulation of the 500-W 
BCS PEMFC stack based on the fuel cell electrochemical 
model described above and simulation parameters 
presented on Table 1. Many articles in the literature present 
the electrical characteristics of this fuel cell stack [21, 28, 
29]; which facilitates the validation of the simulation results. 

 
Table 1 500-W BCS PEMFC simulation parameters [21] 
Parameter  Value  Parameter Value

n  32  ξ1  ‐0.948

L  0.0178  cm  ξ2  0.00312 

B  0.016  V  ξ3  7.6.10
‐5

Rc  0.0003 Ω  ξ4  ‐1.93.10
‐4

A  64 cm
2
  Jmax   0.469 A/cm

2

 

Fig.5 shows the voltage-current curve and the power-
current curve of the 500-W BCS PEMFC FC for standard 
conditions of pressure and temperature, and 𝜓 equal to 14. 

 

 
 
Fig. 5 500-W BCS stack electrical output characteristics 

 

Fig. 6 Operating parameters effect on fuel cell polarization curve 
and maximum power point 

A fuel cell is a non-linear DC power and there is always 
a single maximum point existing on the power curve at 
particular operating conditions. The output characteristics of 
a fuel cell are significantly affected by the operating 
parameters. The main factors are fuel cell temperature, 
hydrogen partial pressure, oxygen partial pressure and 
membrane water content. Fig. 6 shows the influence of 
each operating parameter on the current-voltage curve and 
the maximum power point. 

It’s clear that the maximum power point changes when 
operating conditions change. Therefore, to ensure that fuel 
cell output the maximum power even if operating conditions 
change rapidly, it is imperative to develop a highly efficient 
MPPT system. 

ANFIS performances 
      The fuel cell electrochemical model is used to develop a 
set of maximum power points (Vmpp , Impp) for different fuel 
cell operating conditions serving as ANFIS training data 
samples (Table 2). One hundred twenty data were 
generated defined by operating conditions of the fuel cell 
and voltage and current values of the corresponding 
maximum power points. 

Table 2 ANFIS training data sample 
T (K) PH2=PO2 (atm) Ψ   Vmpp (A) Impp (V)
298 1 7 13,93 23,80 
298 1,5 7 14,23 24,20 
298 2 7 14,50 24,40 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
328 1 11 19,07 28,70 
328 1,5 11 19,07 28,70 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 
358 4 23 22,26 29,40 
358 4,5 23 22,45 29,40 

 
During the training phase, the ANFIS parameters are 

adjusted so as to bring the current ANFIS output values 
very close to the target values. The learning is stopped 
when a level of precision defined beforehand by the mean 
square error value is reached. In our case, an acceptable 
precision is reached for a target mean square error fixed at 
0.003. 

The ANFIS was then tested for operating conditions 
different from those used during the training phase. The 
results are validated by comparing them to the values 
obtained using the fuel cell electrochemical model under the 
same operating conditions (Table 3) 

 
Table 3 ANFIS accuracy 

FC electrochemical 
model 

ANFIS  MP 
relative 
Error 
(%) 

Vmpp 

(V) 
Impp

(A) 
MP 
(W) 

Vmpp 

(V) 
Impp 

(A) 
MPANFIS

(W) 

13.98 21.50 300.57 15.20  18.90  287.28 4.42

15.10 24.60 371.46 17.20  23.10  397.32 6.96

.

. 
.
. 

.

. 
. 
. 

. 

. 
. 
. 

.

. 

18.60 28.50 530.10 20.10  25.50  512.55 3.31

22.49 29.30 658.96 24.50  28.10  688.45 4.48

 
Relative error of the maximum power (MPANFIS) predicted 

by the ANFIS compared to the maximum power calculated 
by the electrochemical model (MP) is calculated to assess 
the accuracy of the ANFIS. The maximum relative error 
value expressed in percentage is 7.52 % of the theoretical 
maximum power value. It seems that maximum power 
points predicted by the proposed ANFIS are very close to 
those obtained by the electrochemical model. This is 
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confirmed by the linear regression curve (Fig.7) considering 
maximum power values calculated by the electrochemical 
model as inputs and the maximum power values predicted 
by the ANFIS as outputs.  

 

 

Fig. 7 Linear regression curve 

Therefore, we can conclude that the developed ANFIS 
can accurately predict the fuel cell maximum power point for 
any fuel cell operating conditions. 

DC-DC boost converter control 
To illustrate the usefulness of the proposed ANFIS, it is 

used as an algorithm to provide the reference voltage for 
controlling the DC-DC boost converter connected to the fuel 
cell system (Fig. 8). 

 

Fig. 8 Overall proposed MPPT system 

The control is based on comparing the actual PEMFC 
voltage and the reference voltage given by the ANFIS block 
to continuously adjust the duty cycle of the DC-DC boost 
converter. For this, the error between the actual voltage and 
the reference voltage is introduced to a PI controller whose 
output is compared to a high frequency triangular signal to 
generate an appropriate PWM signal. 

The system is tested in the case of rapid change in 
gases pressures, temperature and membrane relative 
humidity. A change in the operating conditions causes a 
change in reference voltage (and reference current) given 
by the ANFIS. Fig. 9 shows an example of voltage response 
in the case of a rapid change in fuel cell operating 
conditions.  

 

Fig. 9 Fuel cell voltage under varying operating conditions 

The proposed MPPT exhibits a quick dynamic response 
with a very lower static error. Even in the event of fast 
operating conditions change, it finds accurately and quickly 

the new maximum power point. Compared to other 
published works [7, 30], the proposed ANFIS-based MPPT 
is characterized by fewer fluctuations around the maximum 
power point and rapid dynamic response. 

Comparison among the proposed MPPT and the 
conventional “Perturb and Observe” MPPT technique 

To assess the performance of the proposed MPPT, it is 
compared with the “Perturb and Observe (P&O)” MPPT 
technique. The “P&O” technique is by far the most widely 
used because of its simplicity.  

 

Fig. 10 Perturb and observe (P&O) MPPT algorithm 

The basis algorithm of this technique is described in 
Fig.10. More details can be found in literature [31-34]. 

 

Fig. 11 ANFIS MPPT and (P&O) MPPT comparison 

Fig. 11 shows the response of the ANFIS-based MPPT 
and the response of the P&O-based MPPT for similar 
changes in fuel cell operating conditions  

The ANFIS-based MPPT exhibits improved dynamic 
response (steady state reached in a shorter time), and 
improved steady stat response (weaker fluctuations). 

Conclusion 
This article presents a synthesis of a maximum power 

point tracker based on an artificial neural fuzzy inference 
system (ANFIS) suitable for PEM fuel cell. The design and 
implementation of the proposed MPPT are performed using 
MATLAB software. A fuel cell electrochemical model was 
used to generate the database for the ANFIS learning as 
well as to validate the simulation results. The proposed 
MPPT ensure impedance matching between the load and 
the fuel cell for maximum power transfer by controlling the 
duty cycle of a DC–DC boost converter. Simulation results 
show that the proposed MPPT exhibits good static and 
dynamic performances whatever the fuel cell operating 
conditions compared to conventional MPPT. Comparison 
with the P&O technique confirms the ANFIS-based MPPT 
proposed for the fuel cell system is an effective 
methodology. However, the main drawback of the proposed 
ANFIS based MPPT is that it is exclusively suitable for the 
fuel cell stack for which it was developed. If another fuel cell 
stack is used, the ANFIS must be designed and trained 
again. 
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