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Analysis of 3D head rotations for eye tracking calibration in 
large computer monitors 

 
 

Abstract. In order to operate in the center of the vision field, the computer user maintains a frontal pose with respect to the screen. In this ideal 
situation, the computer user can visually explore the screen, moving only the eyes. The user activity changes when the computer screen is large, 
and it is necessary to change the pose and gaze orientation in order to explore the entire screen. The availability of high-end and high-size computer 
monitors (621mm width, 341mm height, or bigger), improves the possibilities of computer visualization but requires constant head pose changes to 
be performed by the computer user. In this study, we evaluate the 3D head rotation activity for the process of calibration on eye tracking. We 
compare the activity data for a fixed zigzag calibration pattern with respect to a random calibration pattern. The results show that the rotation data 
provide important information about the user screen exploration, and the incorporation of head rotations can contribute to reducing the quantity of 
information required to estimate the parameters of calibration models. 

 
Streszczenie. Aby działać w centrum pola widzenia, użytkownik komputera utrzymuje pozycję frontalną względem ekranu.  W tej idealnej sytuacji 
użytkownik komputera może wizualnie zbadać cały ekran, poruszając jedynie oczami. Aktywność użytkownika zmienia się, gdy ekran komputera jest 
duży i konieczna jest zmiana pozy i orientacji spojrzenia w celu eksploracji całego ekranu.  Dostępność wysokiej klasy monitorów komputerowych 
(621mm szerokości, 341mm wysokości lub większych) zwiększa możliwości wizualizacji komputerowej, ale wymaga ciągłej zmiany pozycji głowy 
przez użytkownika komputera.  W tej pracy oceniamy aktywność rotacji głowy w 3D dla procesu kalibracji na eye trackingu.  Porównujemy dane 
aktywności dla stałego zygzakowatego wzorca kalibracji w odniesieniu do losowego wzorca kalibracji.  Wyniki pokazują, że dane o rotacji 
dostarczają ważnych informacji o eksploracji ekranu przez użytkownika, a włączenie rotacji głowy może przyczynić się do zmniejszenia ilości 
informacji wymaganych do oszacowania parametrów modeli kalibracyjnych. (Analiza obrotów głowy 3D do kalibracji śledzenia ruchu gałek 
ocznych w dużych monitorach komputerowych) 

 
Keywords: Visual detection, eye-tracking, calibration. 
Słowa kluczowe: Detekcja wzrokowa, śledzenie wzroku, kalibracja. 

 
 

Introduction 
Eye tracking is an important problem in computer vision, 

and it is very dependent on the user's activity, any subtle 
movement or pose change will compromise the accuracy of 
eye-tracking systems. The end-user calibration process for 
eye tracking systems is one of the most important steps to 
customize the tracking algorithm to the user behaviour, and 
it can be crucial for a correct estimation and measurement. 
One of the methods for system calibration is to estimate a 
model to obtain a prediction of the screening point where 
the user is focusing his visual attention, generally by the 
use of linear regression.  

To solve the calibration problem, it is required to track 
the head and eye positions in order to obtain the input data 
for the model estimation. Different methods for optimization 
and detection are available in the scientific literature [1-12]. 
In this work, we use the machine learning framework media 
pipe, face mesh and iris, which applies landmark detection 
with a mesh of 468 vertices to acquire the 3D geometry of 
the user's face from the video data frames. 

 The objective of this work is to perform a comparison of 
two calibration processes with random and zigzag-like 
calibration point sequences in a small and a large computer 
monitor. Head and eyes pose estimates can be collected as 
continuous angular measurements across multiple degrees 
of freedom (DOF). The DOF orientation can be described in 
terms of pitch, roll and yaw movements, as defined in flight 
dynamics. For our eye-tracking case, these movements are 
presented in Fig. 2 (right). 

 
Eye tracking  

Eye tracking is a composite problem. It requires the 
calculation of many sub-problems in a chain, also called a 
processing pipeline. The first step is the data acquisition of 
user activity using the appropriate sensors. In this work, we 
focus on the most important part of these sensors and data, 
the visible light cameras that produce the video stream. The 
following step is the decoding of the frames in order to 

obtain a data structure from the binary encoding formats of 
the digital cameras. The algorithms for the detection of the 
face and the detection of the eyes are the first image-
processing algorithms of the pipeline for eye tracking. The 
solution to the problem of eye and face detection is a 
difficult task: it involves a considerable amount of 
computation time, it needs to be robust to variable ambient 
light conditions, and it needs to be able to take into account 
the inclusion of additional visual components, for example, 
the use of glasses or hats. The determination of a set of 
important features is one of the main steps to solving 
engineering problems using machine learning. A model with 
too many features can be memory and computationally 
intensive, and it can be impractical to apply a huge model to 
solve real-world problems. This is especially true when the 
algorithm is aimed to be executed in an embedded system. 
In the opposite case, a model with few features can 
produce strong errors in variable environments. Therefore, 
the selection of a correct model and the selection of a 
subset of features using dimensionality reduction 
techniques is generally a required step. Fig. 1 presents a 
typical eye-tracking calibration diagram. 

 

 
Fig.1. Eye tracking calibration diagram. 
 
Face and eyes landmark detection 

Landmark detection is a computer vision technique that 
allows to automatically detect key points of the contour of a 
template object in images. One important application of 
landmark detection is the detection of facial features. These 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 1/2023                                                                               279 

points can be used to calculate pitch, roll and yaw using the 
distance between facial landmark points. The available 
techniques for landmark detection can be divided into three 
categories: holistic method, constrained local model (CLM) 
and regression-based method. An example of facial 
landmark detection is presented in Fig. 2 (left). 

 

    
Fig.2. Facial landmarks (left), head rotations(right). 

 

A comparison of facial landmark detection categories is 
presented in Table 1. The holistic method for whole face 
detection has good accuracy with respect to the cost of 
computation, and the CLM is performed for local patches 
and offers good performance and medium speed. The 
regression-based methods for local and whole-face 
detection show the best performance in accuracy and 
computation time. The regression-based method can be 
divided into direct regression, cascade regression and deep 
learning-based methods. 

 

Table 1. Comparison of landmark detection methods. 

 
 

Regression-based models can be classified into direct 
regression methods, deep learning-based regression 
methods and cascade regression methods. The direct 
regression method performs the prediction of the landmarks 
in one iteration, while cascade methods usually require an 
initial landmark location. Deep learning-based methods 
follow the cascade regression or direct regression. 
Regression-based face landmark detection methods have 
been the subject of intense research, and several scientific 
articles present methods with great accuracy. For example, 
in [13] a robust cascaded pose regression (RCPR) is 
proposed. The result of the RCPR method showed 80% 
precision and 40% recall. 

 
Calibration of gaze estimation based on polynomial 
regressions 

Gaze estimation is a popular topic in scientific research, 
spanning many domains such as human-computer 
interaction [16,18, 19] and computer vision [17, 20]. The 
gaze tracking can have a nonlinear behaviour with respect 
to eye movement and require adaptive regression for 
solving this problem. Polynomial regression is the most 
spread regression function used in gaze estimation. In [11], 
the authors present a polynomial regression used in 
commercial eye trackers: 

 
PoRx and PoRy correspond to the point of regard in 

screen. The coordinates of  and are normalized 

vectors that generally track the iris and K is the unknown 
coefficients matrix. In [12] it is proposed a model of 
polynomial regression that provides high accuracy: 
 

 
 

where Kx0 ∙∙∙Kx7  and Ky0 ∙∙∙Ky6  are the model 
arameters to estimate. 

As we can appreciate, the head rotations can be 
incorporated into the observation model. We are currently 
developing and testing a model using both the iris 
coordinates and head rotations as input data for the 
regression. 

 
Head position detection 

Head position detection is important to reduce the input 
data space for eye-tracking. The head detection is 
performed considering the detection of face features in the 
image frame. For accelerated face and eye detection, the 
Viola-Jones algorithm [14] has proven to be fast and 
accurate. The algorithm combines features from the face as 
shape and edge and other statistical models, i.e. adaptive 
boosting (AdaBoost). The algorithm of Viola-Jones uses the 
concept of integrating the image through the graph. The 
pixel sum of all regions in the image can be obtained by one 
traversal exploration of the image. This technique reduces 
the overall computation time. In [15], an improved method 
for face and eye detection based on the Viola-Jones 
algorithm was presented. This face detection method scans 
an image with windows of different sizes. Then, the system 
uses two Viola-Jones detectors to receive each window for 
a binary classification as a face or non-face. These 
detectors contain multiple cascaded classifiers trained by 
the AdaBoost algorithm. The idea of these detectors is to 
detect a frontal and a profile face separately. In the case of 
false detection, the window will be labelled as non-face for 
both detectors. 

 

Experimental setup for calibration data acquisition 
The proposed setup for data collection contains a 

camera laptop, a large 28-inch QHD monitor with a 
621x341mm LCD matrix and small 15.6 inch HD monitor 
with a 194x344mm LCD matrix. To performing the 
calibration procedure a program using the Python language 
was develop to display the calibration dots in the required 
order. To simplify calibration process the point are 
generated with a very small offset from the monitor borders, 
allowing the computer user to follow the calibration in a 
comfortable manner. In Fig. 3 are presented two calibration 
patterns use, a zigzag-like sequence (left) and one instance 
of a random sequence (right). To calculate the head 
rotations, (yaw, pitch and roll) we selected six 3D facial 
landmark points, two for each axis. Facial landmark 
detection is performed using the mediapipe library. 

 

 
Fig.3. Calibration patterns, sequential (left), random (right). 

 

Results 
We perform measurements using two types of 

calibration patterns, one that cover the screen in a zigzag-
like pattern and another that considers random sequences 
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over the base calibration points. The two types of calibration 
patterns are presented in Fig. 3. The data was collected 
with calibration measurements in a small (194x344 mm) 
and in a large (621x341 mm) computer monitor. It is 
important to note that the area of the large monitor is more 
than three times bigger than the area of the small monitor. 

 

 
Fig.4. Head rotation time series (yaw, pitch, roll) for two instances 
of random sequence calibration patterns in large (upper) and small 
(lower) monitors. 
 

The measurement was performed with a controlled 
distance between the monitor and the user head. 
 

 

 
Fig.5. Head rotation time-series (yaw, pitch, roll) for a zigzag-like 
sequence calibration pattern in large (upper) and small (lower) 
monitors. 
 

Fig. 4 are presented the time series of measurements 
for the yaw, pitch and roll rotations on a large and small 
monitor with random sequence calibration patterns. As we 
can see, the rotations in a small screen are minimal to 
comparing with a large screen. Similar results are achieved 
for zigzag-like sequence measurements presented in Fig. 5, 
where we can see how the head rotations are minimal in 
the case of the small screen. Therefore we can appreciate 
that a constant pose adjustment needs to be executed in 
the case of a large screen. For the two cases, the rolling 
activity is negligible. For the following results, we consider 
only the most important rotations, pitch and yaw. 

For the yaw and pitch rotation data, a cubic smoothing 
spline approximation was performed to estimate the 
average trajectory for the time-series measurements for the 
two calibration types in small and big monitors—the result 
of the cubic spline approximation and the point cloud 
presented in Fig. 6 and 7. 

In Fig. 8 and 9 are presented the histograms for random 
and sequential calibration points of yaw measurements in 
large (left) and small (right) monitors. The histograms with 
zigzag-like sequence calibration points clearly show 
distributions of horizontal movements of the head. For the 
large monitor, the user activity can be classified into 4 
classes of head movement while for the same zigzag 
pattern in the small screen, three classes of head 

movements are enough to follow the entire calibration 
process. 

 
Fig.6. Scatter plot of pitch versus yaw rotations during 
measurements of two random calibration sequences in large (left) 
and small (right) monitors. A cubic smoothing spline approximation 
is calculated over the point cloud to estimate the average trajectory. 

 

 
Fig.7. Scatter plot of pitch versus yaw rotations during 
measurements of two zigzag-like calibration sequences in large 
(left) and small (right) monitors. A cubic smoothing spline 
approximation is calculated over the point cloud to estimate the 
average trajectory. 
 

In the small screen, as the result of small and short 
head movements, the resolution of detection is limited by 
the pixel size. This quantization is visible in Fig. 6 and 7. 
 

 
Fig.8. Histogram for two instances of random sequence calibration 
points of yaw rotations in large (left) and small (right) monitors. 

 

 
Fig.9. Histogram of zigzag-like sequence calibration points of yaw 
rotations in large (left) and small (right) monitors. 
 

A global mean and standard deviation calculation was 
performed for three sets of data and is presented in Table 
2. We can appreciate the small standard deviation in the 
small monitor, given that fewer rotations from the mean 
position are required. The mean rotation angle variate 
between the large and the small monitor, given that a 
different pose need to be performed for the computer user 
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given the variation on the locations of the small and the 
large screen.  
Table 2. Mean and standard deviation of yaw, pitch and roll for 
large and small computer monitor. 

 
 
Additionally, the center of the user's iris was tracked 

during the zigzag-like calibration process with large and 
small monitors. Fig. 10 is presented the histogram of the iris 
displacement speed. The speed calculation ∆L/∆t was 
performed by estimating the distance between two 
consecutive iris 3D location measurements ∆L and the time 
between measurements ∆t.  

Based on this histogram, we can appreciate that the 
user needs to accommodate the large screen performing 
faster iris displacements on the large monitor. This implies 
that the combined effect of rotation and iris movement 
allows the computer user to explore large screens in a 
similar way to small screens. 

 

 
Fig.10. Histogram of displacement eyes speed. 
 
Conclusions and Further Work 
In this paper, we track and analyze 3D head rotations and 
iris movements for eye-tracking calibration considering 
small and large computer monitors. We perform an online 
head rotation calculation and collect measurements for 
random and zigzag-like calibration pattern sequences with a 
large and small monitor. The time series of yaw, pitch and 
roll rotations was presented, and a cubic smoothing spline 
approximation was calculated to estimate the trajectory of 
yaw and pitch rotations. Based on our measurements, we 
can classify user activity with small and large computer 
monitors. The analysis of the data allows us to validate the 
incorporation of head rotation data into the calibration 
models. A further contribution in preparation will analyze the 
calibration results in a regression model that consider only 
iris data versus a regression model considering iris data 
and head rotation data. 
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