
120 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 1/2023

1. Riyadh Zaghlool Mahmood1, 2. Hiba-Aallah Tariq Abdullah2

University of Mosul (1), Northern Technical University (2)
ORCID: 1. orcid.org/0000-0001-7899-6475; 2. orcid.org/0000-0001-6276-0011

doi:10.15199/48.2023.01.23

FPGA-Based high speed two ways parallel histogram
computation for grey image

Abstract - In this paper approaches to the parallel architecture for local parallel histogram computation is studied. In this method, has been used
many number of block RAM in FPGA based, each of them to perform a specific function must use a dual-ported of BRAM memory. These hardware
techniques need one array of image and another one array for histogram. To reduce number of cycles in the FPGA implementation of our proposed
technique read two operation memories at the same time.

Streszczenie. W tym artykule badane są podejścia do architektury równoległej do obliczania lokalnego histogramu równoległego. W metodzie tej
wykorzystano wiele bloków pamięci RAM w układzie FPGA, każdy z nich do wykonywania określonej funkcji musi wykorzystywać dwuportową
pamięć BRAM. Te techniki sprzętowe wymagają jednej tablicy obrazu i drugiej tablicy dla histogramu. Aby zredukować liczbę cykli w implementacji
FPGA proponowanej przez nas techniki odczytujemy jednocześnie dwie pamięci operacyjne. (Oparte na FPGA szybkie, dwukierunkowe,
równoległe obliczanie histogramu dla szarego obrazu)

Keywords: FPGA, Histogram, Parallel, RAM
Słowa kluczowe: FPGA, histogram, obraz

1. Introduction
 A histogram is a graphical diagram that shows the
number of pixels of a video frame or digital image Have a
contain intensity. It has one of image processing application
[1]. Histogram extracting features from images that is
simple and its features are fixed to image rotation.
Histogram plots the number of an image pixels'
distribution for each tonal value. The histogram for a dark
image will have generality of its data points on the center
and left side of the image, otherwise the histogram for a
bright image with some shadows or dark places will have
generality of its data points on the center and right side of
the image. Finally, improvements in picture brightness and
contrast can thus be obtained. The size of the histogram
array is dependent on how many bits per pixel (bpp). If the
bpp = n, 2n elements exist in the histogram array that
implements a flexible hardware architecture that is able to
compute a range of histogram-based descriptor variants
has several advantages. It can be modified with completely
resynthesizing and reprogramming the FPGA [2]. The
introduction of High-Level Synthesis (HLS) techniques and
tools, as well as new features in high-end FPGAs including
multi-port memory interfaces, has enabled designers to use
FPGAs for memory-bound tasks along with compute-bound
tasks. This article explains how to parallelize histogram as a
memory-bound task using the OpenCL framework running
on FPGA [3] efficiently. Parallel histogram computing
necessitates a thorough rewrite of the method. In this
context, this research eliminates memory access conflicts
from histogram computing, allowing for a more flexible and
effective parallelism utilization. While the planned pipeline
architecture supports the streaming paradigm (each FSM
state may be performed in only one clock cycle), it causes a
memory access conflict that must be resolved [4]. To
calculate the histogram of an image, an architecture is
presented. This design achieves parallelism but requires
sufficient resources and provides higher performance than
prior serial techniques. This is one of the better methods for
histogram computation in FPGA if resources are not a
problem (Field Programmable Gate Array). Alternative ways
are presented too to use the same design with fewer
resources, resulting in a performance reduction [9]. In
computer vision systems, image feature separation is a key
stage in image segmentation. Unsupervised clustering of
the generated data set can be one efficient and powerful
way, although it is a computationally costly operation. A

high-performance architecture for unsupervised data
clustering is presented in this study [5.] Contextual Contrast
Limited Adaptive Histogram Equalization (C-CLAHE) is a
useful technique for reducing the noise amplification impact
of adaptive histogram equalization (AHE) and improving
picture visibility of local features. Despite the fact that C-
CLAHE uses less memory than CLAHE, the interpolation
method' complexity significantly increases the compute
requirement [6].

Literature Review
 In 2006, Orlando J. Hernandez, Member, provides a
special-purpose VLSI architecture with high performance for
the high-dimensional feature clustering in real time where
data from images or video frames is taken. The design has
been costed in hardware and prototyped in an FPGA
environment. [5].
 In 2007, Burak Unal, Ali Akoglu, implemented CLAHE
is processed in real time thanks to the use of a large
memory bandwidth. We present a method for implementing
Contextual CLAHE via real-time interpolation. This is the
first interpolation-based CLAHE implementation that is done
on the FPGA, to our knowledge [6].
 Module parallelism was proposed by Ernest Jamro,
Maciej Wielgosz, and Kazimierz Wiatr in 2007, when a
single module could take multiple input data in a single
clock cycle. The fundamental disadvantage arises from this
design. One is that the number of BRAMs which is required
in total for parallel histogram calculations (or LUT
programming) and the reading of the histogram is the
product of the two (LUT conversion). As a result, the level of
parallelism inside modules is quite limited [7].
 In 2007, Shahbahrami, Ben Juurlink, and Stamatis
Vassiliadis presented a method for counting the number of
identical sub-words within a media register using parallel
comparators. The numbers are then summed to the
histogram array’s values at the same time. Experiments
using the Simple Scalar toolset reveal that the proposed
solutions boost performance by a factor of 7.37 and 5.52,
respectively, when compared to the fastest scalar version
[8].
 In 2016, Krishna Swaroop and Gautam Uurmi
introduced a novel architecture for calculating the histogram
in FPGA using 256-ways calculation and the generalized
form of it, the n-ways calculation of the histogram. The
presented architectures, both the n-ways or the 256-ways,

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 1/2023 121

are superior compared to the old technique in regards of
performance. Almost by 256 or n times, However, they use
256 or n times more resources, according to the analysis
and results [9].

3. Histogram technique
At the first glance the histogram Treatment starts from

(0 to 255) depending on the gray levels, (0) represents the
dark area or blackness in the picture, while the number
(255) represents the white color in the picture, and between
two numbers are the gray gradations between the two
colors [10][11]. A memory Block RAM (BRAM) needed to
store the values of the histogram, where each value of the
image will be the index of the histogram memory. Storing
input image (128 * 128) pixels gray level needed a BRAM.
The size of this BRAM is 16K bit, this is equivalent to
16,384 memory addresses for an image [12].

4. Hardware implementation of histogram calculation
 First, the image is read via MATLAB program and
converted into a gray-level image, and then the image is
converted into an array of numbers and stored as a text file
with the extension. coe, the next step is to call the .coe-
extension text file. Store it in FPGA memory.
 As illustrated in Fig. 1, the calculation module is made
up of (BRAM) memory and incremental logic. The following
shows how the module works: The BRAM is addressed by
the input data (of which the histogram is being analyzed).
The BRAM data out displays the number of previous
occurrences of Data in at the BRAM address bus. The
count is then increased by one and written back to the
BRAM at the same location; and so forth.
 The block diagram below shown in fig. 1 indicates to
the mechanism for calculating the histogram in a serial
method with a consumption of three clock cycles per pixel

Fig. 1: Serial Method Histogram

5. Parallelizing Histogram Implementation Details
 Memory conflicts must be avoided by the implementing
hardware. Our presented concept makes use of a dual-
ported memory which is then divided into two phases, as
shown in Fig. 2 above. Two histogram arrays are computed
in parallel in the first phase, one is for the pixels with
addresses that are even-numbered. The other phase is for
the addresses that are odd-numbered. The stored values in
one memory of array addresses are utilized in the form of
indices to the histogram array, according to the histogram
functions. The pixel values can be read through both ports
dout1A and dout1B in the first part of the cycle, as shown in
Fig. 2. The incremented values of the histogram elements
(updated values) are stored in the second part of the cycle.
If the values of even and odd location in the image are
different, then the value stored in histogram array indexed
with the content of the odd location of image is incremented
and content of the even location of image is incremented

too, while if the values of even and odd location in the
image are same, then the value stored in histogram array
indexed with the content odd location of image is
incremented by 2, while the even location is ignored.
 The histograms arrays, which include the histogram
values of even and odd numbered addresses, are
combined in second phase. The final output is saved in a
single histogram array.

Fig. 2: Parallel method histogram

 The execution time between Fig. 1 and Fig. 2 is
difference. First figure takes 16384 clocks otherwise the
second figure is consumes half of the previous time.

Fig. 3 illustrates the flowchart of serial histogram
computation, while Fig. 4 shows the flowchart of parallel
histogram computation.

Fig. 3: serial histogram computation

Table 1: Execution time using MATLAB, Serial and sequential
using FPGA with and without drawing processes with speedup

122 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 1/2023

Fig. 4: Parallel histogram computation

5. Results
 The histogram calculation (serial and parallel) was
implemented using MATLAB, serial in and parallel in FPGA.
Table 1 illustrates the execution time using MATLAB, Serial
and sequential using FPGA with and without drawing
processes with speedup. It is cleared that the execution
time using parallel method using FPGA is faster than
sequential method and the execution time using serial
method using FPGA is faster than MATLAB.
 The speedup is (128.3550) between MATLAB and
sequential on FPGA, while speedup is (135.2060) between
MATLAB and sequential on FPGA (with drawing image and
histogram).
 The speedup is (35.5265) between MATLAB and
sequential on FPGA, while speedup is (71.0530) between
MATLAB and sequential on FPGA (only histogram
computation).
Table 2 shows that the speedup between serial and parallel
methods on FPGA is 2. It means that the speedup was
ideal.

Table 2: Speedup between serial and parallel methods on FPGA

 The evaluation environment and evaluate the
performance of the proposed hardware technique then
compare it with the performance of the MATLAB
implementation. Fig. 5 clarifies the execution in MATLAB
program with drawing figures (Image and Histogram), while

Fig. 6 illustrates the execution in MATLAB program without
drawing figures.

Fig. 5: Histogram implementation in MATLAB with drawing figures
(Image and Histogram)

Fig. 6: Histogram implementation in MATLAB without drawing
figures

 Fig. 7 has been implemented using VHDL that utilized
Xilinx FPGA3E embedded dual-ported block memories
(BRAMs) primitives.
 The BRAM width for image data corresponds to the
size of the utilized bpp (bit per pixel) and the depth
corresponds to the number of pixels in an image. These
parameters are changed for each particular bit/pixel and
image size.
 As already mentioned, the total capacity of the BRAMs
in the FPGA-3E is 16×1Kbytes = 16384 bytes. This capacity
is not sufficient to implement large image sizes, Therefore,
the memory capacity of the FPGA device is a limitation. The
simplest way to overcome on this limitation is, using new
devices which have much more BRAMs units. However, the
number of BRAMs units in these devices is still limited.

\Fig. 7: Histogram implementation using FPGA

Fig. 8: number of clock cycles needed to implement serial
histogram with drawing figures (Image and Histogram)

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 1/2023 123

Fig. 9: number of clock cycles needed to implement serial
histogram without drawing figures

Fig. 10: number of clock cycles needed to implement parallel
histogram with drawing figures (Image and Histogram)

Fig. 11: number of clock cycles needed to implement parallel
histogram without drawing figures

 Fig.8 shows the number of clock cycles needed to
implement serial histogram with drawing figures (Image and
Histogram), while Fig. 9 illustrates the number of clock
cycles needed to implement serial histogram with drawing
figures.
 Fig.10 shows the number of clock cycles needed to
implement parallel histogram with drawing figures (Image
and Histogram), while Fig. 11 illustrates the number of clock
cycles needed to implement serial histogram with drawing
figures.
 Table 3 represents the chip area occupation for the
Histogram designed architecture. Which is also created
during synthesizes stage for Spartan-3E XC3S1600E that
are used to implement the hardware unit of this design,
while Spartan-3E XC3S500E recourses are not enough to
implement this architecture.

Table 3: Chip area occupation for Parallel Histogram

6. Conclusions:
 In this paper, a hardware technique for parallel
histogram computation has been proposed. The novel
hardware unit avoids memory collisions in the histogram
functions by using a dual-ported memory. The proposed
hardware calculates the histogram of an image in two
phases. First, image pixels are store into block RAM each
port is read address even- and odd-numbered addresses
respectively. The pixel values stored in one array of matrix
each pixel in image is considered indices of these
histogram arrays. Therefore, in half of a cycle, these pixel
values are read from dual-ported memory and in other half
of the cycle updated values of histogram elements are
stored. Experimental results obtained by Mat lab and FPGA
implementation have shown that the proposed techniques
improve the performance.

Authors: Riyadh Zaghlool Mahmood, University of Mosul, College
of computer science and mathmatics, Software Department.
Mosul, Iraq, E-mail: riyadh.zaghlool@uomosul.edu.iq
Hiba-Aallah Tariq Abdullah, Northrern Technical University,
Engineering Technical College of Mosul.
Mosul, Iraq, E-mail: hibatallahtariq@ntu.edu.iq

REFERENCES

1. Asadollah Shahbahrami, Jae Young Hur , Ben Juurlink , and
Stephan Wong, “FPGA Implementation of Parallel Histogram
Computation”, 2nd HiPEAC Workshop on Reconfigurable
Computing.

2. Murad Qasaimeh, Joseph Zambreno and Phillip H. Jones, “A
Runtime Configurable Hardware Architecture for Computing
Histogram-based Feature Descriptors”, 2018 International
Conference on FieldProgrammable Logic and Applications.

3. Mohammad HOSSEINABADY 1 , Jose Luis NUNEZ-YANE,
“Pipelined Streaming Computation of Histogram in FPGA
OpenCL”, In Parallel Computing is Everywhere (pp. 632-641).
(Advances in Parallel Computing; Vol. 32). IOS Press.
https://doi.org/10.3233/978-1-61499-843-3-632.

4. Luca Maggiani, Claudio Salvadori, Matteo Petracca, Paolo
Pagano, Roberto Saletti, “Reconfigurable architecture for
computing histograms in real-time tailored to FPGA-based
smart camera”, 2014 IEEE 23rd International Symposium on,
Jun 2014, Istanbul, Turkey. ff10.1109/ISIE.2014.6864756ff.
ffhal-01205924f.

5. Orlando J. Hernandez, Member, IEEE, “A High-Performance
VLSI Architecture for the Histogram Peak-Climbing Data
Clustering Algorithm”, IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14,
NO. 2, FEBRUARY 2006.

6. Burak Unal, Ali Akoglu, “Resource Efficient Real-Time
Processing of Contrast Limited Adaptive Histogram
Equalization”, 2016 26th International Conference on Field
Programmable Logic and Applications (FPL).

7. Ernest Jamro, Maciej Wielgosz, Kazimierz Wiatr, “FPGA
implementation of strongly parallel histogram Histogram
Equalization” 1-4244-1161-0/07/$25.00 ©2007, IEEE

8. Shahbahrami, Ben Juurlink, Stamatis Vassiliadis, “SIMD
Vectorization of Histogram Functions”, 2007 IEEE International
Conf. on Application-specific Systems, Architectures and
Processors (ASAP).

9. Krishna Swaroop and Gautam Uurmi, Solutions Pvt. Ltd.,
“Parallel Histogram Calculation for FPGA”, 2016 IEEE 6th
International Conference on Advanced Computing (IACC).

10. H.D. Cheng and X.J. Shi, “A simple and effective histogram
equalization approach to image enhancement”, Digital Signal
Processing 14 (2004) 158–170

11. Komal Vij, Yaduvir Singh, “Enhancement of Images Using
Histogram Processing Techniques”, Komal Vij,Yaduvir Singh
Int. J. Comp. Tech. Appl., Vol 2 (2), 309-313

12. Ernest Jamro, Maciej Wielgosz, Kazimierz Wiatr, “FPGA
Implementation of Strongly Parallel Histogram Equalization”, 1-
4244-1027-4/07/$25.00 ©2007 IEEE

