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A dead-beat internal model control for trajectory tracking in 
discrete- time linear system  

 
 

Abstract. In this paper, a robust control law is applied. This command is called dead-beat internal model control. The application of this command 
on a discrete-time linear system presents good performance in precision, low overshoots and tracking of reference trajectories, which shows the 
effectiveness of the proposed command. The effect of the controller by dead-beat internal model that the error vanishes in a finite and minimal 
number of sampling periods and remains zero thereafter. 
 
Streszczenie. W niniejszym artykule zastosowano solidne prawo kontrolne. To polecenie nazywa się kontrolą martwego modelu wewnętrznego. 
Zastosowanie tego polecenia na liniowym systemie dyskretnym daje dobre wyniki w precyzji, małych przeregulowaniach i śledzeniu trajektorii 
odniesienia, co świadczy o skuteczności proponowanego polecenia. Efekt działania regulatora przez martwy model wewnętrzny polegający na tym, 
że błąd zanika w skończonej i minimalnej liczbie okresów próbkowania, a następnie pozostaje zerowy. (Wewnętrzna kontrola modelu martwego 
uderzenia do śledzenia trajektorii w dyskretnym systemie liniowym) 
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Introduction 
When the classic PI and IP controllers do not make it 

possible to obtain the desired performance and when there 
is not enough computing power to implement a standard 
predictive regulation, the Internal Model Control or IMC 
(Internal Model Control), turns out to be an interesting 
approach [1, 2]. Indeed, this type of controller is robust, 
easy to adjust online and easy to maintain, i.e., to estimate 
with the process, because it contains an explicit model of 
the process. In addition, several system methodologies of 
this controller have been developed, which makes its 
design simple. The interest of the IMC approach is to show 
how a performance-robustness compromise can be made 
depending on the uncertainty of the model parameters        
[4, 5]. 

For complex systems, for which an equivalent classic 
controller does not exist, IMC synthesis provides a simple 
controller, offering good performance, and for which, again, 
the performance-robustness trade-off can be easily chosen. 
We can even imagine adjusting it online thanks to the 
design parameters [6]. 

The most interesting design step of this internal model 
control strategy is based on the choice of the controller. In 
general, the presence of a compensator is necessary when 
designing the controller which must, however, be physically 
feasible, stable and ensure certain performance [7, 8]. 

However, if the system is subject to disturbances, the 
difference between the output of the system and that of the 
model is non-zero, which makes it necessary to add a filter, 
called robustness, to ensure the stability of the system and 
improve its closed-loop robustness with respect to noise 
and modeling errors. To respect the closed-loop dynamic 
behavior of the system, a reference model at the setpoint 
level can be implemented according to the characteristics of 
a perfect controller [9]. 

The objective of internal model control for discrete 
systems is to design a digital controller such that the 
position error of the controlled system, controlled in discrete 
time, is strictly zero at any instant kT. Suppose the process  
contains an integrator (its continuous-time transfer function 
has a zero pole). Note first that if the position error and all  
its derivatives are zero at time k0, it suffices that the 
command be zero at any time k≥k0: indeed, if the command 
is canceled at instant k0, the integrator ensures that the 

output retains the constant value it has at instant k0. We are 
therefore looking for a control sequence of maximum length 
k0, such that the error in response to a setpoint step is zero 
for all k≥ k0 [10].       

To cancel the static error in finite time a combination 
between the dead-beat response method and the control by 
internal model will be realized in this paper. In fact, the 
dead-beat response method is part of the class of so-called 
"model" methods. The idea is to design a controller that 
responds in finite absolute time, while ensuring zero static 
error with respect to a particular input. 

The adjustment of this system adds an additional 
specification, since such a system is said to be dead-beat 
response when the output stabilizes at the desired value 
without oscillation between the sampling instants, for a 
given input-type, in a finite number of samples, without 
overshoot. 

This paper is organized as follows. Section II presents a 
generality on the internal model control strategy. Section III 
presents dead-beat internal model control. In section IV, an 
example is employed to illustrate the effectiveness of the 
proposed controller. Some conclusions are drawn in    
section V. 

Internal Model Control  
 In the late 1970s and early 1980s, a control algorithm 
known as the internal model was developed. The 
development of this algorithm was intended to take 
advantage of open loop regulators. These advantages are 
the ease of the synthesis of the controller, the possibility of 
systematically considering the robustness, and the 
advantages in closed loop which are the possibility of 
obtaining zero error in steady state at setpoint steps or at 
disturbances of non-zero mean [1, 11]. 

Internal model control is based on knowledge of an 
assumed model of the process. The uncertainty of the 
model is directly considered. It is possible to compensate 
the performance of the control system by its robustness to 
process modifications or modeling errors. 
Indeed, this type of controller is robust, easy to adjust and 
easy to maintain that's to say to evolve with the process 
[12]. The struc 

Wewnętrzna kontrola modelu martwego uderzenia do 
śledzenia trajektorii w dyskretnym systemie liniowym ture of 
the internal model controller is given by Fig. 1. 
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Fig.1. Structure of internal model control 

In the internal model structure, the regulation part is 
composed of two parts: the controller C(z) and the model 
M(z). 

In the internal model structure, the effect of the 
manipulated variables is subtracted from the output of the 
process. If we assume that the model is perfect and that the 
system is not subject to any disturbance, then the feedback 
signal, the difference between the output of the process and 
that of the model, is identically zero [6, 7]. 

The command U is defined as a function of the setpoint 
R and the disturbance by the following equation, knowing 
that   1F z    

(1) 
   

( ) ( )
( ) ( )

1 ( ) ( ) ( ) 1 ( ) ( ) ( )

C z C z
U z R z P

C z G z M z C z G z M z
 

   
 

The expression of the response Y(z) is described by the 
following equation: 

(2) 
   
( ) ( ) 1 ( ) ( )

( ) ( )
1 ( ) ( ) ( ) 1 ( ) ( ) ( )

C z G z C z M z
Y z R z P

C z G z M z C z G z M z


 

   
 

In the case of the perfect model, this difference is equal 
to the disturbances. Under this perfect model assumption, 
the system is open-loop and therefore [11], [12]: 
- The stability problems encountered in classic loops 
disappear. The looped system is stable if and only if the 
model M(z) and the internal model controller C(z) are 
stable. 
- The role of the controller is therefore in a way to reverse 
the model. In other words, the internal model controller can 
be seen as an open loop feedforward controller. However, it 
does not have the disadvantages of a pure open loop 
because the feedback signal, which is equal to the process 
model deviation, that's to say to the disturbances, makes it 
possible to modify the setpoint in an adequate manner. 

DEAD-BEAT internal model op control 
Dead-beat internal model control consists in determining 

a controller C(z) such that the error vanishes in a finite and 
minimal number of sampling periods and remains zero 
thereafter. Such that, for a step setpoint, the output signal 
becomes equal to the setpoint as quickly as possible and 
without oscillations of the output between the sampling 
periods, Fig.2 [13]. 
 

 

 
Fig.2. Evolution of system output in discrete time 
 

To have a dead-beat response output, the control signal 
must be constant or zero after a certain number of sampling 
periods, Therefore, the control signal U(z) must be a finite 
polynomial in z 1, without integrator if G(z) contains one or 
with integrator if G(z) does not contain one [14, 15]. 

A discrete- time linear system controlled by a dead-beat 
internal model controller represented by Fig. 3: 
 

 

Fig.3. Control system by dead-beat response with IMC  

Conditions for obtaining a dead-beat response 
Condition 1:  

The steady state error is zero   0    

This condition results in: 

(3)            
     1

z R z d z R z Y z Ym z

H z R z Ym z

       
    

 

(4) 
     

        

1

1

1

1
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z

z

z z

z H z R z Ym z

 







  

      
 

 where H(z) is the closed loop transfer function without 
disturbance P(z)=0, is describe by the following equation 
[16]. 

(5) 
 

( ) ( ) ( )
( )

( ) 1 ( ) ( ) ( )

Y z C z G z
H z

R z C z G z M z
 

 
 

We consider that the model is perfect, which gives us 
that M(z)=G(z), the transfer function in the closed loop 
becomes [16]: 

(6) 
( )

( ) ( ) ( )
( )

S z
H z C z G z

R z
   

R(z) is the input is defined as follows: 

(7) 
1

1 1 1

( ) ( )
( ) ( )

( 1) (1 )

m m m
m

m m

T L z T z L z
r t t R z

z z

 

     
 

 

(8)  with L(z) : a polynomial such that (1) 0L   

To get   0    it's necessary: 

(9)        111 1
m

H z z Q z
      

 
Condition 2:  

The transient error is limited to a finite number of error 
samples is of finite duration, it is necessary that Q(z) must 
be a polynomial, and for this number to be minimal, it is 
necessary that the degree of Q (z) is minimal, hence [17]: 

(10) Q(z)=1 

Thus the closed loop transfer function must have this 
form: 

(11) 1 1( ) 1 (1 )mH z z     
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H(z) are called polynomials are called minimal 
prototypes. The inputs of the real systems in the industry 
are inputs of the types: position, velocity and acceleration. 
For these inputs the polynomials H(z) are given respectively 
by equations (12), (13) and (14). 

(12) Position error is zero (m = 0) : 1( )H z z  

(13) Velocity error is zero (m = 1) : 1 2( ) 2H z z z    

(14) Acceleration error is zero (m=2) : 
1 2 3( ) 3 3H z z z z      

 

Fig.4. Evolution of system output in dead-beat response 
 

 The internal model controller is described by two 
equations equation (15) and equation (16). Equation (15) 
describes the first controller expression for perfect modeling 
if the model ( ) ( )M z G z .  

The expression of the first controller is described by the 
following equation: 

(15) 
( )

( )
( )

H z
C z

G z
  

 In most cases, we do not know exactly the mathematical 
modeling of the physical system that we are going to 
control. In this case, we will consider in the second 
expression of the controller by internal model that the 
modeling is imperfect ( ) ( )M z G z .  

 The controller equation is defined as follows: 

(16) 
 
( )

( )
( ) ( ) ( ) ( )

F z
C z

G z F z G z M z


 
 

 In the case of an imperfect modeling, we will use the 
identification techniques of the systems. We propose a 
structure between its input and its output and to determine 
from the input-output couple, the values of the parameters 
of the model. The model thus found must, in its domain of 
validity, behave like (physical) reality or at least approach it 
as closely as possible. 
 Among the identification techniques, we can cite the 
methods of Strejc-Davoust, Broida and closed-loop 
identification. 

Simulations Results 
In this section, we will show the robustness of our proposed 
control law. We consider a linear discrete system and 
perform the necessary simulations to test the feasibility, 
efficiency and robustness of the dead-beat internal model 
control structure. 

The study system is described by the following equation: 

(17)     1

( ) 2 0.5

y z
G z

r z z
 


 

 This system is stable in open loop, it admitted a pole          

1 0.25p   . The modulus of 1p  is less than 1 [18]. 
 

1st scenario: Perfect modeling 
 A perfect modeling of process dynamic behavior is 
considered in this simulation section, such that the model is 

identical to that of process (M(z)=G(z)). Simulations were 
made for this scenario knowing that the input is a unit step. 
 Fig. 5 shows the evolution of the output in a dotted line 
and its unit step reference in a solid line. We note that the 
output y(t) perfectly and quickly converges its setpoint. The 
steady-state static error is zero. 
 The control by internal model with dead-beat response 
made it possible to have a steady state without error in finite 
time for a step type input. 

 
Fig.5. The step response of output y1(t) 

 
Fig. 6 presents the temporal evolution of the dead-beat 

internal model control u(t). 

 

Fig.6. The control input u(t) 

2nd scenario: Imperfect modeling 
 Modeling is imperfect if the model is unable to perfectly 
describe the dynamic behavior of the process such that 

( ) ( )M z G z  [19].  

The input of the system is a position step of amplitude 
0.5. 

The model of the internal model command structure is 
defined as follows: 

(18)   2
M z

z
  

 Fig.7 presents the time evolution of the system 
response y(t) which is stabilized in zero period, which was 
predictable from the behavior model. There is no hidden 
oscillation since the control, too, stabilizes in zero period, 
Fig.8. 

 
Fig.7: The step response of output y1(t) 
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Fig.8: The control input u(t) 

 
 Fig. 9 presents the temporal evolution of the output y(t) 
in dotted line and its reference in solid line. The input 
considered in this simulation is a unit slope ramp type input. 
We notice that the output evolves without overshoot with a 
steady-state error is zero when input is unit ramp signal. 
 This applied control law makes it possible to follow the 
setpoint perfectly without permanent position or velocity 
errors. 

 

Fig.9: The control input u(t) 

Conclusion 
 In this work, we applied the dead-beat internal model 
control on a discrete linear system. Two structures of 
controllers are proposed for our study system.  

The simulation results show that the proposed control 
structure is robust. The output of the discrete system is 
stable and reaches its steady state for different types of 
canonical inputs in a finite number of samples without 
overshoot. 
 The results are satisfactory have proved the 
effectiveness and reliability of the proposed method. 
 Generally, this new method is simple, has robust 
performance and easy to implement in engineering 
processes. 
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