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A review and analysis of Quade’s fundamental geometric 
time domain concept for the summation of non-active powers of 

poly-phase systems 
 
 

Abstract. How to determine the total non-active power of arbitrary periodical poly-phase loads or in other words: how to sum non-active 
powers resulting from non-sinusoidal and unbalanced voltages and currents? With algebraic summation or via aggregate power like the 
standards propose? In the time domain or with harmonic decomposition? What is the genuine meaning of non-active and apparent power? 
The reader may be amazed by questioning these problems which seem to be solved. Instead this article shows that the general solution is 
not that of the standards which define limiting cases but one that exists since a long time in the form of the geometric power concept of W. 
Quade that is commonly unkown today. The geometric method is compared to the concepts of aggregate power (Rechtleistung) and the 
algebraic summation of fictitious non-active powers. The consequences and meaning of the different concepts are analyzed. 
 
Streszczenioe. Jak wyznaczyć całkowitą moc nieczynną dowolnych okresowych odbiorników wielofazowych, czyli inaczej: jak zsumować moce 
nieczynne wynikające z niesinusoidalnych i niezrównoważonych napięć i prądów? Z sumowaniem algebraicznym czy za pomocą sumarycznej mocy, 
jak proponują normy? W dziedzinie czasu czy z rozkładem harmonicznym? Jakie jest prawdziwe znaczenie nieaktywnej i pozornej mocy? Czytelnik 
może być zdumiony kwestionowaniem tych problemów, które wydają się być rozwiązane. Zamiast tego artykuł ten pokazuje, że generalnym 
rozwiązaniem nie jest rozwiązanie norm definiujących przypadki graniczne, ale takie, które istnieje od dawna w postaci koncepcji geometrycznej 
potęgi W. Quade, która jest dziś powszechnie nieznana. Metodę geometryczną porównuje się z pojęciami zagregowanej mocy (Rechtleistung) i 
algebraicznym sumowaniem fikcyjnych mocy nieczynnych. Analizowane są konsekwencje i znaczenie różnych pojęć. (Koncepcja w dziedzinie 
czasu do sumowania mocy nieczynnych układów wielofazowych) 
 
Keywords: power, vector space, orthogonality, interference, geometric summation, poly-phase circuit, fictitious starpoint 
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Introduction 

The determination (measurement) of the total non-active 
power magnitude Q of a poly-phase system requires the 
consideration of superposition (interference) of non-active 
power oscillations Qµk(t) of the linearly independent circuit 
loops. This is because non-active power is not an average 
value (not a scalar quantity) like active power. The algebraic 
summation of non-active power magnitudes is generally 
wrong. It is shown that the interferences are considered by 
the geometric method established by W. Quade. The total 
powers summed geometrically will be called “actual” powers 
in the following because they determine the condition of the 
load in terms of power. We distinguish the “actual” powers 
from technical power definitions (like aggregate power) 
related to optimal utilization and compensation concepts 
that aim to “condition” the load seen by the supply grid by 
means of component systems (goal: symmetry and 
sinusoidality). We “unmask” the technical apparent and 
non-active power definitions as limiting cases. The 
geometric power concept presented explains the basic 
nature of non-active power and provides the poly-phase 
generalization of the single-phase power orthogonality 
relation, i.e. it provides the summation law of non-active 
powers. 
 
Two-pole power orthogonality relation and vector 
space – Quade’s geometric concept 

It is commonly agreed that in the special case of single-
phase systems (two-pole, one linearly independent loop), 
figure 1, the power orthogonality relation for the root mean 

squares (RMS) of periodical voltage and current oscillations 
U and I holds: 

 

Fig. 1. Electric two-pole (single-phase system) with periodical 
voltage and current 
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S is the apparent power, P the active power and Q the non-
active power (the term “reactive” power shall be used only 
in the sinusoidal case). S. Fryze showed that the load 
current oscillation of the two-pole can always be split into 
two orthogonal components [1], [2] and therefore proved the 
general validity of (1). One current component (iprop) is 
proportional, the other (iorth) is orthogonal to the periodic 
supply voltage oscillation. Active (transformable) power 
results from the identity 
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For non-active power no such identity exists because of the 
orthogonality relation 
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There is no useful energy transformation (no work done) 
over one or more (N) full periods NT. The value Q is 
determined solely by the RMS of the orthogonal current 

component: orthIUQ  . It indicates that part of the load 

current uselessly loads the supply, causes losses and 
reduces utilization. The RMS of proportional and orthogonal 

current components are related by 
222
orthprop III   which 

leads to equation (1) when multiplied with the square of the 
RMS two-pole voltage. Of course the power orthogonality 
relation does not provide information about how active and 
non-active powers are constituted (phase shift, harmonic 
content). 

The non-active power value Q is a measure for the degree 
of non-proportionality of voltage and current oscillations of a 
circuit (linearly independent loop). 

The instantaneous power p can be split accordingly into 
proportional and orthogonal power components: 

(4) )()( tptpiuiuiup orthproporthprop   

The first summand of p generates a positive power 
oscillation pprop(t) around it’s average, the active power P. 
Only equal order harmonics of voltage and current are 
contained. The second summand is a power oscillation 
porth(t) with average zero, so with no useful effect. 
Harmonics of equal and unequal order are contained. p(t) 
has got negative parts if porth(t) is greater than zero 
instantaneously; in other words: the negative parts of p 
represent non-active (non-transformable) power. Figure 2 
illustrates the power oscillations for a stationary sinusoidal 
condition (index 1). Note that Q1 is the peak value of porth(t) 
that appears instantaneously, not as an average. 

 

Fig. 2. Power oscillations, sinusoidal case 
 

The power oscillations pprop(t) and porth(t) do also appear 
at each linearly independent loop of a multi-pole. Due to the 
connection of the linearly independent loops of poly-phase 
systems the non-active power oscillations in loops 
superimpose (interfere with) each other. This central 
property must be considered in a basic power theory. It is 
insufficient to regard magnitudes from RMS only when non-
active powers are summed. 

W. Quade showed that the power orthogonality relation 
that results from orthogonal functions corresponds to a 
formulation in vector space [3 – 5]. It is shown in the 
following how the interference of oscillations is considered 
by the vector space Ansatz. Unfortunately this has not been 
widely recognized to date and it is therefore the aim of this 
article to bring Quade’s method to attention (which was 
published only in German 1933-1937). The presentation 
provided here can not be found in Quade’s original 
publications. 

The correspondence is based on the properties of a 
(Euclidean) vector space of all real-valued continuous 
functions f(t), g(t) on a closed interval [a,b] which is an inner 
product space, where an inner (scalar) product is defined by 

(5)  
b

a
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Orthogonality is defined by this inner product: in a 

Euclidean vector space the vectors gf


,  are orthogonal if 
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. The inequality of Cauchy-Schwarz holds: 
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, where the determinant is 

called Gram’s determinant. This is only equal to zero if the 
vectors are linearly dependent, i.e. proportional. Gram’s 
determinant can be extended to a n-dimensional vector 
space and thus generalizes the inequality of Cauchy-
Schwarz. The connection of orthogonal functions, vector 
space and power is obvious and allows to apply the laws of 
vector algebra to the determination of powers as follows. A 
three-dimensional Euclidean vector space is sufficient. The 
scalar product of the spatial vectors (not phasors) of voltage 

U


 and current I


 equals the temporal average of the 
product of their time functions u and i, this is the active 
power P of the period T: 
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Active power is zero if IU
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 , then 0 IU
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, and 
accordingly if the functions u and i are orthogonal. The 

magnitude of a voltage or current vector V


 equals the 
RMS of it’s time function v(t), this is V, of the period T: 
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Apparent power is the product of the magnitudes of 
voltage and current vectors: 

(8) IUS


  

It is obviously equal to the scalar product of the collinear 
voltage and current vectors. The inequality of Cauchy-
Schwarz applies accordingly: 

(9) IUIU

  

SP  or II prop   happens only if the vectors resp. 

oscillations of voltage and current are proportional, i.e. 
having equal curve form and being in phase, a 
proportionality of the oscillations on an instantaneous basis. 
This condition only occurs at an ohmic resistor. 

Consequently, as is well known, the meaning of apparent 
power S at the two-pole is that it equals the active power of 
the equivalent proportional circuit (S=Pprop) which 
represents the limiting case of complete energy 
transformation in the load (if the load could be made 
proportional) with =P/S=1, depicted in the following figure 
3. 

1   2   3  

Fig. 3. Power orthogonality relation: 1 general, 2 equiv. proportional 
case, 3 compensated case 
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In practice a load will have a certain steady proportion of 
active and non-active power, say SLoad-initial. It can not be 
made proportional. If the non-active power is compensated 
at the terminals then the grid currents supplied to the load 
reduce to the “active” currents. Thus the supply is 
disburdened from the non-active load currents (and related 
losses) but the (internal) condition of the load does not 
change. Only the grid sees that now SLoad-comp = PLoad and 
SLoad-comp < SLoad-initial. The compensated load is the new 
equivalent proportional system as seen by the supply grid. 
Now it is essential to notice that in three-dimensional inner 
product spaces the specialized form of the identity of 
Lagrange holds: 

(10)   2222
IUIUIU


  

This is the power orthogonality relation in vector space. 
By comparing relation (10) with relation (1) we find 

(11a) QIU 
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This is the central conclusion. In vector space formalism 
non-active power is determined by the vector product (cross 
product) of the vectors of voltage and current: 

(11b) UIIUQ


  

The scalar product ),cos( IUIUIU


  is the 

generalization of the sinusoidal P1=U1 I1 cos(1) and the 

vector product ),sin( IUIUIU


  is the 

generalization of the sinusoidal Q1=U1 I1 sin(1). 
The vector character of Q is not just a formality as will 
become clear in the following and it leads to the following 
visualization as depicted in figure 4. 

 
Fig. 4. Visualization of the vector character of non-active power 
 

In the sinusoidal regime Q and S lie in the complex 
plane and Q is always parallel to the imaginary axis (im, y). 

With harmonics present the vectors Q


 and S


 extend into 
the third dimension (z). P always lies on the real axis (re, x) 

and is orthogonal to Q and to Q


. Q


 always lies in a plane 
parallel to the y-z-plane. 
 

Total “actual” power of poly-phase systems (multi-
poles) 

In this context a multi-pole (npole), figure 5, is a AC 
poly-phase system (e.g. polygon or star connected or a 
combination) with imposed periodical supply voltages of 
360/n degrees phase shift and the condition that the 
instantaneous sum of all pole (“phase” or “line”) currents 
and of all phase-phase voltages is zero (a neutral conductor 
is not a voltage “phase”). k is the number of the voltage 
measurement reference conductor (which can be anyone of 
the poles). A power per phase is not measurable without 

further provisions if there is no physical neutral conductor N. 
For the sake of simplicity but without lack in generality the 
following derivations are basically that of the three-pole. 

 
Fig. 5. Electric n-pole in general 
 

The total instantaneous power of an arbitrary circuit with 
m impedances Z is the sum of the instantaneous powers of 
the individual impedances of the circuit, simultaneously 
measured: 

(12a) 


 
m

iup
1

  

Active and non-active power at each individual 
impedance can be determined and then summed. But this 
is not practicable. It is also not necessary because it is 
equivalent to determine the total active, non-active and 
apparent power with a measurement of the voltages and 
currents at the terminals as indicated in figure 5. 
With n terminals n1 linearly independent loop voltages and 
loop currents can be measured. The total instantaneous 
power of a multi-pole with n terminals and arbitrary internal 
structure is completely determined by the sum of the n1 
linearly independent loop instantaneous powers related to 
an arbitrary reference conductor k: 

(12b) 
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n

k iup
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where 0 µµk iu  if µ = k. If there is a neutral conductor N 

then the reference conductor is N. A three-phase system 
without neutral conductor has got 2 linearly independent 
loops, e.g. 1-2 and 3-2, the one with neutral conductor has 
got 3 linearly independent loops: 1-N, 2-N, 3-N. The 
instantaneous „Aron“ power of the three-pole for conductor 
number k as the reference and µ  k is: 

(12c) 331221 iuiup  , k=1 or 

(12d) 332112 iuiup  ,  k=2 or 

(12e) 223113 iuiup  ,  k=3 

Note that 2112 uu   etc. The instantaneous total power of 

the four-pole with neutral conductor k:=N as the reference 
and µ  k is: 

(12f) 332211 iuiuiup NNN   

Energy is a scalar quantity and the total active power is 
the algebraic sum of the active powers of the linearly 
independent loops: 
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For the three-pole: 231332123121 PPPPPPP  . 

How to sum the non-active powers of linearly 
independent circuit loops? The integration of the porth-µk(t) 
results in zero and is a “dead end”. The following was 
Quade’s assessment of the situation [5] (author’s translation 
from German): 

“Given an arbitrary AC network with non-sinusoidal 
voltages and currents: according to which law do non-active 
powers and apparent powers sum? The question is easily 
answered for the active powers because due to the 
conservation of energy the resulting total active power is the 
algebraic sum of the single active powers. Because 
according laws for non-active and apparent powers were 
not available, all efforts to make progress in the question of 
definition of non-active and apparent power have failed so 
far. This gap became especially sensible with the attempt to 
define the different powers for poly-phase systems.” 

The problem is solved without harmonic decomposition 
by applying identity (11a) resp. (11b) with which we can 
sum the vector representations of the porth-µk(t): 

(14) 


 
n

µ
µkQQ

1


 

For the three-pole: 231332123121 QQQQQQQ


 . 

The important point is that the phase information of the porth-

µk(t) is still contained in the vector representation as will 
become clear in the following. 

Now relation (10) is used. The square of the unknown 

vector Q


 is: 
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Note that the same procedure is valid for a three-phase 
system with neutral conductor N: 

(16) 
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Scalar products appear in the equation which we may 
call interference terms that represent the superposition of 
the oscillations of linearly independent loops. The scalar 

product is computed by cos22 32123212  QQQQ


 where 

cos  is the cosine of the angle between both vectors. This 
phase shift is missing in the simple application of algebraic 
summation. cos  is zero for 90°, i.e. when both vectors 
are perpendicular (functions orthogonal). This is the case if 
only oscillations with 90° phase shift are contained in both 
Qµk or – which is similar – if only harmonics of unequal 

order are contained. Only then 02
32

2
12

2  QQQ  and each 

Qµk equals an apparent power Sµk. Generally  µ µkQQ 22
 

and thus also  µ µkSS 22
 holds. Also harmonic non-active 

powers generally sum geometrically because of phase 
shifts of equal order harmonics of voltage and current of 
one loop. However, harmonic apparent powers always sum 
quadratically because they are constituted of the RMS of 

harmonic voltages Uh and currents Ih and  h hH UU 22
 and 

 h hH II 22
 holds. The flaw in the algebraic non-active 

power summation is that Q is not an average like P that 
covers a time span, e.g. an oscillation period T=t2t1>0, but 
the peak value of an oscillation porth-µk(t) that appears at just 

a moment in time t2t1=0. The point is that peaks of different 
oscillations typically appear at different points in time 
because of phase shifts. Interestingly, it is the shortcoming 
of C. Budeanu’s concept [8] (thorougly analysed in [9]) not 
to consider this and we can easily construct scenarios 
where the algebraic summation of non-active power 
magnitudes leads to contradictions. 

To get a concrete solution from (15) or (16), the scalar 

product 3212 QQ

  is now expressed by substituting the µkQ


 

with the vector products of loop voltage and loop current 
vectors: 
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This is resolved using the identity of Lagrange to 
substitute the unknown vector products by solvable scalar 
products of measured voltages and currents: 

(18) 
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If 3212 UU
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  and 31 II


  then the specialized form of the 

identity of Lagrange follows and thus the two-pole power 
orthogonality relation. With the non-active power 
magnitudes squared of the two linearly independent loops 
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equation for the actual total non-active power of the three-
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By applying the correspondence (5) vector space  
periodical functions, (19) is mapped into 

(20) 
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where the integrals are the “interference” terms (the phase 
information). Equation (20) is valid for any curve form of 
voltage and current oscillations and is directly measurable 
without harmonic decomposition. Under sinusoidal 
conditions the three-dimensional vector space is reduced to 
two dimensions and becomes equivalent to the complex 

plane. Then    *

332

*

112 ImIm IUIUQ  . 

If the three-phase system contains a neutral conductor N 
and k:=N then the result is 
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Having derived 
2

Q , it is easy to state the expression for 

2
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Eventually we arrive at the multi-pole generalization of the 
two-pole power orthogonality relation that satisfactorily 
unifies the description of single- and poly-phases systems: 

(24) 
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with µk. This is equivalent to the algebraic sum of the 
active powers and the geometric sum of the non-active 
powers of the individual impedances of a load. It is the 
generalization of the complex arithmetic of the sinusoidal 
case and always yields the actual total powers related to 
the load impedances for any condition. Remarkably (24), 
when resolved, contains RMS and temporal averages which 
can be easily measured with digital meters. The equation 
continuously reduces into the correct two-pole power 
orthogonality relation under single-phase conditions (just 
one loop current not zero) as well as into the sinusoidal 
result in absence of harmonics. 

The geometric summation of non-active powers results in a 

total apparent multi-pole power S  that equals the total 

active power of the equivalent proportional poly-phase 
system (if the load could be made proportional). It 
represents the limiting case of complete energy 
transformation in the load, exactly like at the two-pole, and 
is therefore the closest possible connection to active power 
(to physics), in other words: it is the “rock bottom” definition 
of apparent power. 

What is the value of the total non-active power for a 
proportional (ohmic) and asymmetric load? It is zero. This is 

only natural. The energy transformation is complete in a 
proportional and asymmetric poly-phase load because 

   µ µLoadµ RIPS 2
, thus 0Q  at the terminals. The 

currents are proportional to the voltages over the load 
resistances. The indicator for the completeness of energy 

transformation in the load is 1  SP . There is no 

“asymmetry non-active power” on physical grounds. The 
characterization of poly-phase system asymmetry by a non-
active power value is only a technical definition. If a poly-
phase circuit contains switches (semiconductors) then non-
active power will be “generated” by the switching which 
produces non-proportionality by discontinuity. If the load 
impedances are ohmic then only active power is 
transformed there though non-active power from switching 
is measured at the terminals of the multi-pole. This shows 
the degree of non-proportionality in the load and thus the 
“under-utilization”. 

The rated (layout, setpoint) total apparent power of 
electrical equipment is defined by the rated values of 

equipment voltage LLrU  and current LrI  for symmetric and 

sinusoidal conditions (U12r=U23r=U31r, I1r=I2r=I3r): 

(25) LrLLrr
IUS  3  

Contrary to the two-pole where the apparent power 
represents the equipment load as well, the total apparent 

power S  represents the equipment load only in the 

proportional or in the sinusoidal and symmetric case 
because of interference. Generally the loop non-active 
power vectors, or equivalently the non-active power vectors 

of the individual impedances, are not collinear. Also S  

does not indicate an asymmetric condition and how the load 
is distributed. Therefore it is necessary to assess the 
apparent power of each linearly independent loop. Each 
one needs to keep the limit on average, at the three-pole 
without neutral: 

(26) 3/
112 

r
SIU   and  3/

332 
r

SIU  

At the three-pole with neutral: 

(26a) 3/11  rN SIU   and  3/22  rN SIU   and 

 3/33  rN SIU  

Note that an overload seems to be a nominal load if e.g. 

LLrUU 12  and LrII 1  at the same time and vice versa. 

The apparent power is equivocal in this case. The powers 
always need to be measured on the supply side to include 
the equipment impedance (e.g. on the supply side of a 
transformer). Overload means that the rated apparent 
power is exceeded in the temporal average with the 
consequence that the rated lifetime of the equipment is 
reduced. How much it is reduced depends on the built-in 
safety margin (over-dimensioning). Load is determined by 
temperature rise during onload and offload times (ageing of 
insulating material), by current (local current density, 
magnitude of magnetic forces) and by voltage (local 
electrical field strength, strain of insulating material). 
If we want to include the supply system in the evaluation of 
utilization then we need to distinguish between the 
transformation of energy in the load and the utilization of 
energy in the system supply+load. Asymmetric load 

currents cause losses  µ µSupplyµ RI 2
 in the symmetric 
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energy supply impedances that are greater than with 
symmetric currents (similarly this applies to the resistances 
(losses) in the load). Thus the total active power supplied is 
smaller for an asymmetric load than it could be with the 
symmetric one (the total instantaneous power is an 
oscillation with an asymmetric load and can be constant for 
a symmetric one). The total utilization of the system is not 
optimal. Therefore the goal of compensation is simply to 
make the feeding currents proportional to and as symmetric 
as the symmetric and sinusoidal supply voltages, more 
exactly: fictitious starpoint voltages (and to stabilize these). 
How to achieve this result is a technical problem which is 
not related to the determination of actual total powers of a 
poly-phase load. A possible solution is provided by the 
standard DIN 40110-2:2002-11. Before we explore the 
meaning of the definitions of the standard and the related 
aggregate power (Rechtleistung) concept, we turn to a 
commonly used method applied with power measurements 
in poly-phase systems (but not with compensation concepts) 
and analyse it’s peculiarities. 
 
Algebraic summation concept 

The method is the algebraic summation of fictitious 
phase powers. This requires the provision of a fictitious 
starpoint “0” as the reference. The phase values are 

determined with the fictitious starpoint voltages 0µu  which 

are computed from the terminal voltages µu  (including 

phases and neutral), no physical resistor starpoint is 
required [7]: 

(27) 




n

µ

µµ u
n

u





1

0

1
, µ=1..n 

Like the phase-phase voltages uµ, the uµ0 are so called 

“zero sum quantities” because always 0
1

0 


n

µ
µu . Often the 

voltages uµ0 are measured against a grounded PT starpoint 
(e.g. high voltage supply system). This approximates the 
fictitious starpoint voltages. However the “real” fictitious 
starpoint voltages (27) could be easily determined by a 
digital power analyzer. This would simplify the 
measurement because no special provision needs to be 
taken for a V-connected PT for example. In a scenario with 
neutral conductor N the conductor number µ runs from 1 to 
n and conductor n is the neutral N. Power analyzers support 
a voltage measurement against a real neutral (for low 
voltage systems). If this is used then in the following 
equations the index “µ0” is to be exchanged with “µN” and 
the conductor number runs from 1 to n-1 only, with N as the 
reference conductor. Then the following quantities are not 
fictitious any more. 
The phase fictitious active powers are 

(28)  
T

µµµ dtiu
T

P
0

00

1
 

The phase fictitious apparent powers are 

(29) µµµ IUS  00  

The phase fictitious non-active powers are 

(30) 2

0

2

00 µµµ PSQ   

Note that the 0µQ  are positive magnitudes. The total active 

power is 

(31) 


 
n

µ
µPP

1
0  

and the total fictitious non-active power is defined by 

(32) 


 
n

µ
µQQ

1
00  

The total fictitious apparent power results from the two-pole 
orthogonality relation: 

(33) 
2

0

22

0   QPS  

Only if all 0µS  vectors have equal direction, i.e. all power 

factors 000 µµµ SP  are equal, we may calculate 




 
n

µ
µSS

1
00 . What are the basic assumptions of this 

method? Linearly dependent fictitious starpoint voltages 
and pole (line) currents are used. Because the fictitious 
starpoint voltages are always as symmetric as the usually 
symmetric supply voltages uµ, the asymmetry measured 
depends basically only on the currents. The phase powers 
determined do not tell anything about the distribution of 
power in the load. This would require the knowledge of the 
voltages and currents of all load impedances. The algebraic 
summation of the phase fictitious active powers is always 
correct. 

The main premise of this method is the wrong assumption 
that fictitious non-active powers can as well be summed 
algebraically in general. 

The assumption is only partly correct in the sinusoidal 
regime because phase shifts are neglected. Their 
consideration would require the knowledge of the 
fundamental oscillations of voltages and currents (sign of Q). 
Under asymmetric condition the summation of magnitudes 
results in so called “fictitious asymmetry non-active power” 
(term coined by M. Depenbrock) because the fictitious 
phase to starpoint voltages are proportional to the related 
pole (and neutral) currents only for an ohmic and symmetric 
multi-pole or for a compensated one. If the load is non-
linear (non-proportional) then the harmonic contents of the 
currents result in another artificial increase of total non-
active power. In poly-phase systems harmonics usually 
interfere with each other by superposition of oscillations due 

to the connection of star or polygon because 0
1




n

µ
µi . This 

effect is neglected by summing magnitudes. The algebraic 
summation method is frequently used but the described 
effects are typically not considered. Concluding, from a 
physical viewpoint this method is correctly usable only for 
(quite) symmetric and (quite) sinusoidal loads in regards 
total non-active and apparent powers. 
The fictitious starpoint concept, that is part of DIN 40110-
2:2002-11, is as well the basis to determine the required 
(shunt) compensator currents. In this context the standard 
also includes the definition of “aggregate” or “collective” 
voltage, current and apparent power (originally: 
“Rechtleistung”, literally ”right power” [5, 10], term coined by 
F. Emde and first used by W. Quade). The fictitious 
starpoint and aggregate power concept has been compared 
formally to the geometric concept with mathematical rigour 
by H.D. Fischer [6]. The aggregate power concept is 
examined in the following and it’s meaning is analysed. 
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“Aggregate” power concept 
This is a technical concept. Aggregate power results 

from quadratic averaging of linearly dependent RMS values 
of the fictitious starpoint voltages and pole currents. 
Aggregate non-active power is a derived quantity, not one 
resulting from first principles like in W. Quade’s geometric 
concept. 
The aggregate voltage of a three-pole is 

(34a) 
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For a four-pole with a neutral conductor N it is 

(34b) 
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The aggregate current of a three-pole is 

(35a) 2

3

2

2

2

1 IIII Agg   

For a four-pole with a neutral conductor N it is 

(35b) 22

3

2

2

2

1 NAgg IIIII   

The aggregate power (“Rechtleistung”) is 

(36) AggAggAgg IUS    

The aggregate non-active power is declared by 

(37) 
222

  PSQ AggAgg  

P  results from (31). What are the premises and 

consequences of aggregate power? How is (37) justified? 
Similar to the algebraic summation, (mainly) current 
harmonics increase the result of (37) and the quadratic 
averaging of magnitudes leads to a further increase by 
asymmetry which is as well “fictitious asymmetry non-active 

power”. What is the value of AggS  if one pole current 

continuously reduces to zero, i.e. the three-pole reduces 
into a two-pole? This is a case happening regularly at 
electric arc furnace operation for example. From a physical 
(circuit theoretical) or measurement point of view we should 
expect that then the total apparent power becomes identic 
to that of the two-pole, like (24) does. But this is not the 

case for AggS . Instead it’s value remains too large by a 

factor of 2  if we assume symmetric phase-phase 
voltages u12, u23, u31: 

(38) IUIUS phAgg  10

22

101 2323  

The reason is the artificial quadratic averaging obviously. 

phAggS 1  does not equal the apparent power of the two-pole. 

The single-phase condition illustrates that the aggregate 
power is not a generally applicable apparent power value in 

regards load analysis. Instead AggS  is a limiting case of S  

and  SS Agg  only if the load is symmetric and sinusoidal. 

This means that AggQ  has got a proper meaning only in the 

symmetric and sinusoidal case which is indicated by the 

factors 31  and 21  in equations (34a) and (34b) that are 

only meaningful for symmetry. The orthogonality relation 
(37) is thus justified by the limting case. 

AggS  equals the total active power of the equivalent 

symmetric and sinusoidal and proportional poly-phase 

system [5] and is a special limiting case of S  in which 

equation (37) is valid. AggS  then reduces into the simple 

form 112110 33 IUIUS Agg  . 

Why was aggregate power included in DIN40110-2? 
Because it is not meant to determine the present (actual) 
state of a dynamical load, it results from a concept that is 
rooted in optimal utilization which is achieved when 

0AggQ . Optimal utilization occurs if the load is perfectly 

compensated. The intended (technical) meaning (this is the 
premise) of aggregate power becomes clear by analysing 
the definitions of DIN40110-2:2002-11 which are based on 
the FBD (Fryze-Buchholz-Depenbrock) method [11]. 
Generally speaking, the standard defines how to determine 
per phase the fictitious active and non-active current 
components with the fictitious starpoint voltages. These 
fictitious current components are generally completely 
different from the genuine proportional and orthogonal 
components of the load currents which determine the active 
and non-active powers of the load. The load current 
components could be determined would the voltage over 
the load impedances be known. But this is not the purpose 
of the standard. The purpose is to determine fictitious non-
active current components such that the grid currents 
become symmetric and proportional to the fictitious 
starpoint voltages that represent the supply voltages. Thus 
the (shunt) compensation ideally symmetrizes the 
asymmetric load, even if this is in a single phase condition 
like with an electric arc furnace. If this is economically 
meaningful in practice is another question. For 
compensation the powers are not of interest but current 

decomposition is. The aggregate non-active power AggQ  is 

determined by the aggregate fictitious non-active current 
component and the aggregate voltage. It is connected to 

the aggregate apparent power AggS  via the power 

orthogonality relation. Vice versa, AggQ  is computed directly 

via (37). AggS  is just a means to an end to determine AggQ  

that is basically the required compensation power. 
Unreflectedly, a typical user with a typical power analyzer 
interpretes the measured aggregate power as the actual 
total apparent power of the load, contrary to the premise on 
the one hand and contrary to the real meaning as a special 
limiting case on the other hand. It is a shortcoming of 
DIN40110-2:2002-11 not to explain the meaning of 
aggregate power but just to define it. Also part 2 of the 
standard is mistaken to be the generalization of part 1 
which it is clearly not. This causes confusion. Part 1 
presents Fryze’s concept for single-phase systems. 
Quade’s concept is the natural generalization to poly-phase 
systems. 

However, in practice usually the aggregate as well as 
the algebraic power concept are a sufficient approximation 
to the actual total power if the multi-pole load is (quite) 
symmetric and (quite) sinusoidal. 
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Comparing the three “power determination methods” 

presented, generally AggQQQ   0  holds, thus 

AggSSS   0 . 

Under sinusoidal (with phase shift) and symmetric condition 

00   AggQQQ . 

Under sinusoidal (with phase shift) and asymmetric 

condition   00   AggQQQ . 

Under sinusoidal and proportional (no phase shift) and 

symmetric condition 00   AggQQQ . 

Under proportional and asymmetric condition 0Q  and 

  00   AggQQ . 

An indication for the utilization of energy in the system 
supply+load are the power factors of each linearly 

independent loop   1 µµkµkµk IUP  which include 

distortion and represent asymmetry. Only if all µk  are unity 

and all loop voltages and currents are sinusoidal then the 
utilization of load and supply is optimal. A penalty for 
harmonic contents or asymmetry can be based on the 

assessment of the µk . 
 

Conclusion 
The geometric concept of W. Quade is fundamental 

(built on first principles), illuminating and instructive. It 
considers the interference (superposition) of oscillations in 
connected linearly independent circuit loops and determines 
the actual total non-active and apparent powers of a poly-
phase load in arbitrary condition and provides the 
generalization of the two-pole power orthogonality relation. 
Generally the total apparent power is equal to the total 
active power of the equivalent proportional system. Non-
active power is a measure for non-proportionality. Logically 
equation (24) follows. The aggregate power concept of F. 
Buchholz and of DIN 40110-2 is based on the premise of 
optimal utilization of the power supply by means of 
compensation. It defines aggregate non-active and 
apparent power as according secondary indicators that are 
limiting cases of the actual powers. Apparent and non-
active power values of the three concepts described 
become equal for a sinusoidal (with or without phase shift) 
and symmetric load. A close physical relation of total non-
active and apparent power to active power is only provided 
by the geometric concept. The aggregate power concept is 
a technical one (a means to an end). It is a central aim of 
this article to show this basic difference between the 
concepts of Fryze / Quade (physical basis) and Buchholz / 
DIN40110-2 (component systems). The physical connection 

of the geometric concept has got the consequence that a 
load needs to be analysed in a multi-dimensional way and 
not just by one non-active power value. But this is quite 
natural when analysing complex systems. W. Quade’s 
geometric power concept could be easily implemented in 
digital power analyzers. This would complement the usual 
measurement of fictitious phase powers and aggregate 
powers and provide a more comprehensive and 
theoretically more satisfactory analysis of any poly-phase 
load. 
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