
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 7/2022 181

Fitsum Gizachew Deriba1, Ayodeji Olalekan SALAU 2,*, Shaimaa Hadi Mohammed3,
 Tsegay Mullu Kassa 4, Wubetu Barud Demilie 5

Department of Computer Science, Wachemo University Hossana, Ethiopia (1),
Department of Electrical/Electronics and Computer Engineering, Afe Babalola University Ado-Ekiti, Nigeria (2),

 Department of Computer Science, Summer University, Iraq (3)
Department of Information Technology, Wachemo University, Hossana, Ethiopia (4), (5)

doi:10.15199/48.2022.07.30

Development of a Compressive Framework Using Machine
Learning Approaches for SQL Injection Attacks

Abstract. Web applications play an important role in our daily lives. Various Web applications are used to carry out billions of online transactions.
Because of their widespread use, these applications are vulnerable to attacks. SQL injection is the most common attack, which accepts user input
and runs queries in the backend and returns the desired results. Various approaches have been proposed to counter the SQL injection attack;
however, the majority of them have most times failed to cover the entire scope of the problem. This research paper investigates the frequent SQL
injection attack forms, their mechanisms, and a way of identifying them based on the SQL query's existence. In addition, we propose a
comprehensive framework to determine the effectiveness of the proposed techniques in addressing a number of issues depending on the type of the
attack, by using a hybrid (Statistic and dynamic) approach and machine learning. An extensive examination of the model based on a test set
indicates that the Hybrid approach and ANN outperforms Naive Bayes, SVM, and Decision tree in terms of accuracy of classifying injected queries.
However, with respect to web loading time during testing, Naive Bayes outperforms the other approaches. The proposed Method improved the
accuracy of SQL injection attack prevention, according to the test findings.

Streszczenie. Aplikacje internetowe odgrywają ważną rolę w naszym codziennym życiu. Różne aplikacje internetowe służą do przeprowadzania
miliardów transakcji online. Ze względu na ich szerokie zastosowanie aplikacje te są podatne na ataki. Wstrzyknięcie SQL jest najczęstszym
atakiem, który akceptuje dane wejściowe użytkownika i uruchamia zapytania w zapleczu oraz zwraca pożądane wyniki. Zaproponowano różne
podejścia do przeciwdziałania atakowi SQL injection; jednak większość z nich przez większość czasu nie obejmowała całego zakresu problemu. W
tym artykule badawczym przeanalizowano częste formy ataków typu SQL injection, ich mechanizmy oraz sposób ich identyfikacji na podstawie
istnienia zapytania SQL. Ponadto proponujemy kompleksowe ramy do określania skuteczności technik, które rozwiązują określone problemy w
zależności od rodzaju ataku, z wykorzystaniem podejścia hybrydowego (statystycznego i dynamicznego) oraz uczenia maszynowego. Obszerne
badanie modelu na podstawie zestawu testowego wskazuje, że podejście hybrydowe i SNN przewyższają Naive Bayes, SVM i drzewo decyzyjne
pod względem dokładności klasyfikacji wstrzykiwanych zapytań. Jednak pod względem czasu ładowania sieci podczas testowania, Naive Bayes
przewyższa inne podejścia. Zgodnie z wynikami testów, zaproponowana metoda poprawiła dokładność zapobiegania atakom typu SQL injection.
(Opracowanie spójnego systemua z wykorzystaniem metod uczenia maszynowego w atakach typu SQL Injection)

Keywords: SQL injection, Machine Learning, Security flaw.
Słowa kluczowe: Wstrzyknięcie SQL, uczenie maszynowe, luka w zabezpieczeniach

Introduction
Web attacks are one of the most important topics to

research in network security. Despite the fact that there are
numerous web attacks, SQL injection is one of the most
common and is predicted to be one of the top five web
attacks in 2021, according to the OWASP report [1]. This
attack gives attackers unrestricted access to databases that
contain sensitive information [2]. To attack a web application,
the attacker must first recognize and identify the system's
weaknesses. A web application comprises of three levels,
such as: The First is presentation tier which collects user
feedback and displays the processing results of the user.
The user is directly communicated via the presentation tier.
The second control layer, server script, processes data
entered by the user and sends the results to the database
tier. The database tier sends the processed data to the
Control tier, which then sends it to the presentation tier for
the user to view [3-6]. As a result, data processing in the
web application occurs on the control stage, which can be
implemented in a variety of server scripting languages.
Finally, the Database (DB) stage saves and retrieves the
data. All sensitive web application data are stored and
managed in the database. Because this layer is directly
connected to the Control tier and has no security checks,
data in the database can be exposed and modified if the
Control tier is successfully attacked. The general concept of
web-based architecture is depicted in Figure 1. The difficulty
in perceiving the injected query at the database layer
necessitates a system that controls and filters the query at
the presentation layer [7] based on predetermined
parameters. Various studies have been conducted to identify
and prevent the injected Queries.

Fig. 1: Web application architecture.

The bulk of them, however, do not identify all types of
SQL injection, but they fared better on a handful or in the
statistical or dynamic portions. Vulnerabilities in web apps
can exist if the sanitization function does not correctly
sanitize user input. Static analysis cannot tell whether or not
the inputs have been sanitized properly. Vulnerabilities often
go unnoticed due to such flaws in static assessments. SQL
prevents such parameter checks on generated queries and
gives an alert when an HTTP request parameter influences
the syntax structure of the query [8]. User inputs are tracked
using dynamic approaches, and a profile to check queries is
created. This technique suffers from false positives and false
negatives due to its inability to encapsulate input in the
application that generates the query [9]. As a result, we've
discovered that the SQL injection attack forms still have a
number of limitations.The primary goal of this research study
is to examine current SQL injection attacks, identify their
methodologies, strengths, weaknesses, and finally propose
a thorough detection method to tackle some of the identified
challenges. As a result of the SQL Injection attacks, there is
a need to develop a better SQL Injection detection system.

Web
browse
r

Html/J
ava
script

JSP,
ASP,
PHP

DB

Presentation Control DB

182 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 7/2022

The main contributions to this work are:
 Authors identify the nature of SQL injection attacks, as

well as develop a prevention mechanisms.
 Authors present a comprehensive framework for

detecting all types of SQL attacks.
The remaining parts of this paper are arranged as

follows: section 2 offers basic information on various current
SQL injection methods. Section 3 outlines the most SQL
injection attack types and examines them. Then, in section
4, methods employed in developing a compressive
framework for SQL injection are presented, while section 5
presents the results and discussion. Finally, in section 6,
the paper is concluded.

Existing methods for SQL injection detection and
prevention

Several approaches have been proposed to detect and
prevent SQL injection (SQLI) attacks; some focusing on
statistical analysis [10-14] or dynamic analysis [15], [16],
others used Hybrid approaches [17], [18]. These approaches
are used for vulnerability analysis, scanning, mitigation,
detection and prevention, and attack avoidance of web
applications. There have been numerous studies to
investigate vulnerability analysis through a detailed
examination of a web application's security holes [19]. This
has also been investigated in previous studies by
vulnerability scanning tools used in [20]. Many authors have
recognized detection and prevention as one of the best ways
to avoid attack of web applications [21]. For instance, the
following studies were conducted on the detection and
prevention of SQL injection attacks (SQLIAs);
Authors in [22] examin all the SQL injection attack types and
also different tools which can detect or prevent these
attacks. All types of SQL injection attacks are discussed, as
well as various techniques for detecting and preventing
them. In [23], a comprehensive review of different types of
SQL injection detection and prevention techniques was
presented. Authors in [24] propose a method for increasing
the system's capability to detect and prevent SQL injection
attacks based on the removal of SQL query attribute values
and a honeypot for trapping attackers. Authors in [25]
examine the SQL injection attack types in an open-source
database in MySQL. The detection and prevention of attacks
were successfully performed using various approaches
including machine learning, hybrid, and web-based tools.
These approaches are most times adopted because
database server security mechanisms such as
authentication, authorization, server roles, database roles,
system and object privileges are built-in and do not include
all security features. Therefore, there is still a security issue
when an attack with features other than its built-in function
is performed.In addition, database types also differ from
one another.

Machine Learning approach
Machine learning approaches can be used to develop

vulnerability predictors, according to a variety of studies such
as [26–29]. The goal, regardless of the technique used, is to
learn data associated with injection, which can then be used
to predict vulnerability for new injection. A vulnerability
analysis method needs to be able to adapt when more
advanced security threats are discovered. Machine learning
allows for re-training to respond to new vulnerability trends.

Hybrid (Statistic and Dynamic)
Majority of prior research have applied the hybrid

approach such as [8], [18], and [30]. This was achieved by
comparing the structure of the queries to detect the attacks.
Initially, it detects if a dynamically generated query [31] has
a different structure or grammar that meets certain

requirements like data length, range, and form. This is done
by Input validation and input purification by allowing only
predefined characters and refusing all others, including
those with unique significance to the interpreter [32]. A new
approach is therefore needed for SQLI attacks.

Developing a web-based framework
Many frameworks such as [33]–[35] have been

developed and tested with various parameters. This has
been presented by a number of authors in literature.
Authors in [32] present a framework that can be used to
handle tautology-based SQL injection attacks using the
post-deployment monitoring technique. Authors in [34]
introduce a novel traffic-based SQLIA detection and
vulnerability analysis framework named DIAVA, which can
proactively send warnings to tenants promptly. Authors in
[36] propose a framework based on misuse and anomaly
detection techniques to detect SQL injection attacks.
Authors in [37] discuss a secure mechanism for protecting
web applications from SQL Injection attacks by using
framework and database firewall. Authors in [38] present a
Runtime Monitoring Framework to detect and prevent SQL
Injection Attacks on web applications. Authors in [39]
present a cloud computing adoption framework (CCAF)
security suitable for business clouds. Authors in [40]
propose a SQL injection intrusion detection framework as a
service for SaaS providers, SQLI IDaaS, which allows a
SaaS provider to detect SQLIAs targeting several SaaS
applications without reading, analyzing, or modifying the
source code. This helped raise the awareness of the
seriousness of SQLIAs. On some given parameters, some
of the methods performed well, while others did not. As a
consequence, these frameworks detect the injected queries
but they have no control over them. Looking at the reviewed
literatures on SQL injection attacks, some gaps and
shortcomings were identified. Implementing detection types
for a single attack type has its own drawback in that it does
not detect other attack types other than the one for which it
was designed.

Common SQL injection attack
To address the issues raised in this paper, we provide a

detailed overview of the various types of SQL injection
attacks discovered to date. For each type of attack, we
provide explanations and examples of how such attacks
can be carried out, as well as explicit mitigation
mechanisms. Finally, we propose a comprehensive
framework that protects against all types of attacks.

Table 1: Common tautology attacks.
Type of
injection

Nature of attack Approach for
Detection

String SQL
injection

Bypassing Authentication,
identifying injectable parameters
using string data type, extracting
data

Rule-based

Numeric
SQL
injection

Bypassing Authentication,
identifying injectable parameters
using numeric data type
extracting data

Rule-based

Comment
attack

Bypassing Authentication,
identifying injectable parameters
using the comment form,
extracting data

Rule-based

Tautology attack
In this attack, the attacker attempts to use a conditional

question argument to test the validity of a tautology attack.
Using the WHERE clause, the attacker injects the condition
and transforms it into a tautology that is always valid [41].

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 7/2022 183

Table 1 describes the most common type of tautology
attack, their nature, and the methods used to detect them.

The SQL query results convert the original condition into
a tautology, allowing an unauthorized user to access all
records in the database table, for example. Guardium
detects many variants on tautological statements in
database requests and prevents this form of attack.
Previous studies were limited to investigating the common
tautology attack, but still, there is need to study all forms of
the tautology attack that leads to injection. Due to this, this
study investigates the types of attacks and recommends
approaches that are appropriate for each attack.

Union Query

In this category of attack, the UNION operator is only
used for both queries which have the same form. The
attacker constructs a SELECT statement that is similar to
the original query [29]. To do so, in the first query, you must
know the correct table name, as well as the number of
columns and their data types.

As a result, two conditions must be met or a Union
query attack will be launched, and each query returns the
same number of columns [42]. If the data type of a column
is incompatible with the string data, the injected query will
fail. Table 2 presents details of the Union Injection Attack
based on the nature of the attack.

Table 2: Union Injection Attack.
Type of
injection

Nature of attack Recommended
approach

Union Query
attack

Bypassing authentication,
extracting data using union
operation are
characteristics of this attack

Rule-based

Mostly the second query in a union is malicious [43],

and for instance the text after (--) is ignored since it acts as
a comment for the SQL Parser. Taking advantage of this,
the attacker uses this query to target the online application
or website.

Piggybacked Query
Data extraction, data addition or modification, denial of

service, and remote command execution are all examples
of attack determined by a Piggybacked Query. In this type
of attack, an attacker attempts to inject additional queries
into the original query. This form is distinct from others in
that attackers attempt to add new and distinct queries that
"piggyback" on the original query rather than changing it
[44], [45]. As a result, several SQL queries are sent to the
database. Table 3 states the nature and appropriate
approach used for this type of attack.

Table 3: Piggy Backed Query
Type of
Injection

Nature of attack Recommended
approach

Piggybacked
query

Adding or altering data,
performing denial of service,
and executing remote
commands are all examples
of data extraction

Machine
Learning

.These kinds of criminal behaviors can be prevented by

first finding the right SQL Query via adequate validation or
by employing various detection mechanisms. Static analysis
can prevent this form of attack, and run-time monitoring is
not required.

Illegal/incorrect Query
This attack's goal includes identifying injectable

parameters, performing database finger-printing, and

extracting data. This attack helps an attacker to collect
crucial information about the type and function of a Web
application's back-end database [37]. The attack is thought
to be a practice run for future attacks aimed at gathering
information. This attack takes advantage of the fact that the
default error pages [46] of application servers are frequently
overly descriptive. As a result, Table 4 indicates the
recommended approach for this attack.

Table 4: Illegal or Incorrect Query.
Type of Injection Nature of attack Recommended

approach
Illegal/ incorrect
Query

Error messages ignored by
the client are used to locate
useful data, allowing the
backend database to be
injected more easily

Machine
Learning

In general, this attack takes advantage of the error

message produced by the database when a query is wrong.

Stored Procedure Query
Users can save their features and access them at any

time. Most collections of SQL queries include the ability to
use them. The intruder executes the database's built-in
stored procedures using malicious SQL Injection codes
[47]. As a result, the cached stored procedure query plans
are recompiled. The constraint of a Stored Procedure is that
it can only be used in the database. Table 5 shows the best
way to counter this attack.

Table 5: Stored Procedure Query
Type of
Injection

Nature of attack Recommended
approach

Stored
procedure

query

Performing privilege
escalation, denial of service,
and remote command
execution

Rule-based

Inference Query
The query is recast as an operation in this attack, and it

is executed based on the response to a true/false question
about database data values [48]. The attacker attempts to
break into a site that has been sufficiently secured, so that
when an injection is successful, there is no accessible
feedback in the form of database error messages. Because
database error messages do not provide feedback,
the attacker must rely on another method to obtain a
response from the database. Table 6 shows various types
of attacks under inference queries.

Table 6: Common inference Query attack
Types of

attack
Nature of attack Recommended

approach
Blind SQL

injection [41]
Collect valuable data by
inferring from the page's
answers after asking the
server a set of true/false
questions

Machine
Learning

Timing Attack
[45]

Observe the response
time, which will help the
attacker to make an
informed decision about
which injection method to
use

Machine
Learning

Database
backdoor

attack

Set a trigger to collect the
user's feedback and send
it to his or her e-mail
address

Machine
Learning

Command
SQL injection

The attack's main goal is
to inject and execute
system-level commands
through a vulnerable
program

Rule-based

184 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 7/2022

.Table 7: Alternative encoding Query.
Type of
Injection

Nature of attack Recommended
approach

Alternative
Encoding

Query

Safe protective coding
and automatic
prevention systems
are used to keep this
attack from being
detected

Machine
Learning

Alternative Encoding Query

The injected text is changed in this attack to avoid
detection by protective coding practices as well as several
automated prevention techniques. This form of attack is
used in combination with others [49]. To intend their attack
they use the regular expression [21]. This implies they do
not offer a special way to target an application; rather, they
are an enabling technology that enables attackers to
bypass detection and prevention strategies and exploit
vulnerabilities which are described in Table 7. Due to all the
attacks discussed in this paper, an improved prevention and
detection mechanism is required to prevent the Injection
attacks.

Methodology
Proposed framework

To develop our framework, we studied the existing
approaches and their attacking methods and limitations. To
combat the challenges, we propose a comprehensive
framework that encompasses solving all vulnerabilities that
exist in previous works. In the proposed framework, the
attacker must first open his browser to carry out the activity
or perform an attack task. Initially, the intruder either enters
his password into the application or requests authorization
to access the web service via the internet if the application
is open. The intruder must first get past the firewall checker.

Then web server accepts the user input by various
mechanisms such as user input validation and then uses
the input to create queries to the underlying database [42].
This can be accomplished by identifying injection
parameters, determining the type and version of the
database used by a Web application, and determining
database schema. If permission was granted based on the
request, the attacker will request the application server
access again. However, in this situation, we suggested a
model for evaluating whether or not the requested access
involves a SQL injection which is shown in Figure 2.

Fig. 2: Proposed frame work for SQL injection detection.

Before the classification of SQL queries, there were
several stages. The first is feature extraction which is
performed by using static and dynamic analysis to check
whether the requested queries are injected with either
approach. The classifier accepts queries and matches them
with the trained dataset based on the requested query.
Then the machine learning classifier accepts the extracted
features and trains the model to identify the injected query.
In literature SVM [50], [51], Decision tree, Naive Bayes [18],
[52], [53], and other machine learning approaches [20],
[54]–[57] have been proposed to solve the classification
problem. The trained model comprises of stages such as
pre-processing and feature extraction [58]. The classifiers
are trained to recognize different types of SQL injection
attacks according to the trained machine learning model
and hybrid approach used in the feature extraction stage.
The model matches the pattern of each line query
requested based on the trained pre-fetched and trained
dataset. If the SQL query is injected with one form of
qualified attack, the model will either reject the request or
submit it to the application server and database server to
access the requested operation if the query is pure SQL or
no injection. As a result, we suggest creating a new
architecture based on two methods (hybrid approach and

machine learning approach) to obtain the best results
possible when dealing with SQL query injection attacks.

The proposed method used supervised learning in order
to train and test the model. Initially, the user acquires the
dataset and then train and test are put as predefined
datasets to train the model. This is followed by validation of
the query. The flowchart of the proposed method is
presented in Figure 3.

Results and discussion

Key insights and parameters for this study were
obtained from the reviewed works which helped to analyze
and evaluate the proposed methodology. Therefore, in this
study, we employed three injection parameters which have
various forms. The first is a user input field, which allows a
web application to request information from a backend
database using HTTP POST and GET, and the second is
through cookies, which may be used to restore a client's
state information when they return to a Web application. If a
Web application uses the contents of cookies to construct
SQL queries, an attacker can exploit this vulnerability to
change cookies and submit them to the database server.
Finally, by analyzing session usage information and
recognizing browsing behaviors, a server variable can be
created. Because attackers can forge the values that are

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 7/2022 185

placed in HTTP and network headers by entering malicious
input into the client-end of the application or by crafting their
request to the server, if these variables are logged to a
database without sanitization, this could result in SQL
injection vulnerability. This attacks parameters include all of
the attack types mentioned in this paper. The acquired
dataset was obtained from various sources, which include
manual data collection via tutorials and public access
(GitHub, hacker challenge websites), automatic tool
payloads and recordings (SQLmap, OWASP Xenotix XSS
Exploit Framework, XSSer, Metasploit Framework), and
publicly available datasets (CIC IDS, NSL-KDD).

Fie 3: Flow chart of the training model.

All attacks sent to the server are logged and kept in the
database as attack log data. In addition, the attack log data
is separated into two categories: attacks and normal data.
We collected around 11,847 thousand weblogs, cookies,
and session information from real environment to train and
test the model. There are around 7621 thousand SQL
normal logs and 4226 thousand injection attack logs among
them. All logs are URL access records with query
statements for user fields. The dataset is utilized as training
data for the Naive Bayes, Decision Tree, SVM, and Hybrid
methods to avoid SQL injection attacks. The dataset is
trained before being utilized for classification. Python3 was
used as the programming language and the
experimentation was performed using a laptop. Keras
framework based on TensorFlow was used with Python for
the experimentation. The results of the classifiers during the
training phase are presented in Table 8. The results show
an accuracy rate of 99.16% for ANN and the hybrid
approach has a rate of 99.6%, making it the best trained
among the others. The training time for Naive Bayes and
SVM, on the other hand, is extremely short as presented in
Table 9.

Table 8: Results of different approaches on the training set

Approaches Training set
accuracy

Training time
(sec)

Naïve Bayes 0.87301 5.2
Decision tree 0.9526 47.8

SVM 0.9843 16.5
ANN 0.9916 2453

Hybrid 0.9960 2609

Table 9: Result of different approaches on the test set.
Approaches Test set accuracy Testing

time (ms)
Naive Bayes 0.872 0.38
Decision tree 0.9413 0.67

SVM 0.9681 0.96
ANN 0.9852 3.11

Hybrid 0.9927 5.49

In Table 9, the Hybrid method and ANN outperform
SVM, Decision Tree, and Naive Bayes on the test set. In
contrast to the other two approaches, Naive Bayes,
Decision tree, and SVM are better in terms of time used
during testing. When it comes to detecting SQLI, ANN
consistently outperformed other machine learning
algorithms.

Conclusion

In this paper, we evaluated different techniques for
detecting and preventing SQL Injection. To begin with, we
defined the various forms of SQL injection that have been
discovered thus far. After that, we evaluated the techniques
under various consideration in terms of their ability to detect
and prevent SQL attacks. We also investigated the various
mechanisms and decided which techniques was capable of
dealing with each mechanism. Thereafter, we identified
each technique's specifications and developed a
comprehensive framework to detect and prevent SQL
injection attacks using a hybrid approach and machine
learning techniques. Based on our models evaluation, we
found that the hybrid approach and ANN are the best
approaches to classify SQL injection. In this study, we used
a small dataset for training and testing, but maximizing the
dataset and implementing the model in practice is
recommended for future studies.

Authors:
Mr. Fitsum Gizachew Deriba, Department of Computer Science,
Wachemo University Hossana, Ethiopia, E-mail:
computer.fitsum@gmail.com;
Dr. Ayodeji Olalekan Salau, Department of Electrical/Electronics
and Computer Engineering, Afe Babalola University Ado-Ekiti,
Nigeria, E-mail: ayodejisalau98@gmail.com;
Mrs. Shaimaa Hadi Mohammed, Department of Computer Science,
Summer University, Iraq;
Mr. Tsegay Mullu Kassa, Department of Information Technology,
Wachemo University Hossana, Ethiopia, E-mail:
tsegaymullu6@gmail.com;
Mr. Wubetu Barud Demilie, Department of Information Technology,
Wachemo University Hossana, Ethiopia, E-mail:
wubetubarud@gmail.com

REFERENCES
[1] M. A. Yunus et al., “Review of SQL Injection : Problems and

Prevention,” International Journal on Informatics Visualization,
vol. 2, pp. 215–219, 2018. DOI:10.30630/JOIV.2.3-2.144

[2] A. Kumar and S. Binu, “Proposed Method for SQL
Injection Detection and its Prevention,” vol. 7, pp. 213–216,
2018.

[3] G. Hendita and A. Kusuma, “Analysis of SQL Injection Attacks
on Website Service,” IEEE, vol. 1, no. 1, 2018.

[4] O. C. Abikoye, A. Abubakar, A. H. Dokoro, and O. N. Akande,
“A novel technique to prevent SQL injection and cross-site
scripting attacks using Knuth-Morris-Pratt string match
algorithm,” EURASIP J. on Info. Security, 14, 2020. DOI:
10.1186/s13635-020-00113-y

[5] T. Qais, T. Mohammad, I. Jamil, A novel method for preventing
SQL injection using SHA-1 algorithm and syntax-awareness,
International conference on information and communication
Technologies for Education and Training and international
conference on Computing in Arabic (ICCA-TICET) (IEEE,
Khartoum), pp. 1–4, 2017.

186 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 7/2022

[6] A. Alazab, “New Strategy for Mitigating of SQL Injection
Attack,” International Journal of Computer Applications, vol.
154, no. 11, pp. 1–10, 2016.

[7] A. Gurina and V. Eliseev, “Anomaly-Based Method for
Detecting Multiple Classes of Network Attacks,”
Information, vol. 10, no. (3), 84; pp. 1–24, 2019. DOI:
10.3390/info10030084.

[8] R. Jahanshahi, A. Doupé, and M. Egele, “You shall not pass :
Mitigating SQL Injection Attacks on Legacy Web Applications,”
Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, ASIA CCS 2020, pp. 445–457,
2020.

[9] I. Medeiros, M. Beatriz, N. Neves, and M. Correia, “SEPTIC:
Detecting Injection Attacks and Vulnerabilities Inside the
DBMS,” IEEE Trans. Reliab., vol. 68, no. 3, pp. 1168–1188,
2019, DOI: 10.1109/tr.2019.2900007.

[10] M. K. Gupta, M. C. Govil, and G. Singh, “Static analysis
approaches to detect SQL injection and cross-site scripting
vulnerabilities in web applications: A survey,” Int. Conf. Recent
Adv. Innov. Eng. ICRAIE 2014, pp. 9–13, 2014, DOI:
10.1109/ICRAIE.2014.6909173.

[11] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A
static analysis framework for detecting SQL injection
vulnerabilities,” Proc. - Int. Comput. Softw. Appl. Conf., vol. 1,
no. Compsac, pp. 87–94, 2007, doi:
10.1109/COMPSAC.2007.43.

[12] M. Alenezi and Y. Javed, “Open source web application
security: A static analysis approach,” Proc. - 2016 Int. Conf.
Eng. MIS, ICEMIS 2016, 2016, doi:
10.1109/ICEMIS.2016.7745369.

[13] F. Spoto et al., “Static Identification of Injection Attacks in
Java,” vol. 41, no. 3, 2019.

[14] bhayakumara S. Basutakara and D. J. P N, “A Review of Static
Code Analysis Methods for Detecting Security Flaws,” J. Univ.
Shanghai Sci. Technol., vol. 23, no. 06, pp. 647–653, 2021,
DOI: 10.51201/jusst/21/05320.

[15] D. Das, U. Sharma, and D. Bhattacharyya, “An Approach to
Detection of SQL Injection Attack Based on Dynamic Query
Matching,” Int. J. Comput. …, vol. 1, no. 25, pp. 28–34, 2010.

[16] S. Nanda, L. C. Lam, and T. C. Chiueh, “Dynamic multi-
process information flow tracking for web application security,”
Proc. 8th ACM/IFIP/USENIX Int. Conf. Middlew. 2007,
Middleware’07, pp. 1–20, 2008, DOI:
10.1145/1377943.1377956.

[17] A. Makiou, Y. Begriche, and A. Serhrouchni, “Hybrid approach
to detect SQLi attacks and evasion techniques,” Collab. 2014 -
Proc. 10th IEEE Int. Conf. Collab. Comput. Networking, Appl.
Work., pp. 452–456, 2015, DOI:
10.4108/icst.collaboratecom.2014.257568.

[18] F. Y. Hernawan, I. Hidayatulloh, and I. F. Adam, “Hybrid
method integrating SQL-IF and Naïve Bayes for SQL injection
attack avoidance,” vol. 1, no. 2, pp. 85–96, 2020.

[19] S. P. K and A. Murugan, “Analysis of Vulnerability Detection
Tool for Web Services,” vol. 7, pp. 773–778, 2018.

[20] P. Techniques et al., “Design and Implementation of SQL
Injection Vulnerability Scanning Tool Design and
Implementation of SQL Injection Vulnerability Scanning Tool,”
2020, DOI: 10.1088/1742-6596/1575/1/012094.

[21] B. J. S. Kumar and P. P. Anaswara, “Vulnerability detection
and prevention of SQL injection,” International Journal of
Engineering and Technology, vol. 7, pp. 16–18, 2018.

[22] A. Tajpour, M. Massrum, and M. Z. Heydari, “Comparison
of SQL injection detection and prevention techniques,” ICETC
2010 - 2010 2nd Int. Conf. Educ. Technol. Comput., vol. 5, pp.
174–179, 2010, DOI: 10.1109/ICETC.2010.5529788.

[23] A. Sadeghian, M. Zamani, and A. A. Manaf, “A taxonomy of
SQL injection detection and prevention techniques,” Proc. -
2013 Int. Conf. Informatics Creat. Multimedia, ICICM 2013, pp.
53–56, 2013, doi: 10.1109/ICICM.2013.18.

[24] S. Djanali, F. X. Arunanto, B. A. Pratomo, A. Baihaqi, H.
Studiawan, and A. Mazharuddin, “Aggressive Web Application
Honeypot for Exposing Attacker ‟ s Identity,” no. November
2014, DOI: 10.1109/ICITACEE.2014.7065744.

[25] W. G. J. Halfond and A. Orso, “Detection and Prevention of
SQL Injection Attacks,” Adv. Inf. Secur., vol. 27, no. 7, pp. 85–
109, 2007, DOI: 10.1007/978-0-387-44599-1_5.

[26] T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja, and T.
Wadile, “Detection of SQL Injection using Machine Learning : A

Survey,” pp. 239–246, 2019.
[27] M. Zolanvari, S. Member, M. A. Teixeira, S. Member, L. Gupta,

and S. Member, “Machine Learning Based Network
Vulnerability Analysis of Industrial Internet of Things,” pp. 1–14.

[28] M. A. Azman, M. F. Marhusin, R. Sulaiman, U. Sains, M. F.
Marhusin, and U. Sains, “Machine Learning-Based Technique
to Detect SQL Injection Attack,” pp. 1–8, 2021, DOI:
1.3844/jcssp.2021.296.303.

[29] S. S. A. Krishnan, A. N. Sabu, P. P. Sajan, and A. L. Sreedeep,
“SQL Injection Detection Using Machine Learning,” vol 11, no.
3, pp. 300–310.

[30] B. J. S. Kumar and K. Pujitha, “Web Application Vulnerability
Detection Using Hybrid String Matching Algorithm,” vol. 7, pp.
106–109, 2018.

[31] S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia:
Detecting code injection attacks with precision and efficiency,”
Proc. ACM Conf. Comput. Commun. Secur., no. 2, pp. 1181–
1191, 2013, DOI: 10.1145/2508859.2516696.

[32] R. Dharam and S. G. Shiva, “Runtime monitors for tautology
based SQL injection attacks,” Proc. 2012 Int. Conf. Cyber
Secur. Cyber Warf. Digit. Forensic, CyberSec 2012, pp. 253–
258, 2012, DOI: 10.1109/CyberSec.2012.6246104.

[33] D. Y. Kao, C. J. Lai, and C. W. Su, “A Framework for SQL
Injection Investigations: Detection, Investigation, and
Forensics,” Proc. - 2018 IEEE Int. Conf. Syst. Man, Cybern.
SMC 2018, no. 1, pp. 2838–2843, 2019, DOI:
10.1109/SMC.2018.00483.

[34] H. Gu et al., “DIAVA: A Traffic-Based Framework for Detection
of SQL Injection Attacks and Vulnerability Analysis of Leaked
Data,” IEEE Trans. Reliab., vol. 69, no. 1, pp. 188–202, 2020,
DOI: 10.1109/TR.2019.2925415.

[35] Q. I. Li, W. Li, and J. Wang, “A SQL Injection Detection Method
Based on Adaptive Deep Forest,” pp. 145385–145394, 2019,
DOI: 10.1109/ACCESS.2019.2944951

[36] S. Ezzat, M. I., L. M., and Y. K., “Web Anomaly Misuse
Intrusion Detection Framework for SQL Injection Detection,” Int.
J. Adv. Comput. Sci. Appl., vol. 3, no. 3, pp. 123–129, 2012,
DOI: 10.14569/ijacsa.2012.030321.

[37] Y. V. N. Manikanta, “Protecting Web Applications from SQL
Injection Attacks,” pp. 609–613, 2012.

[38] R. Dharam and S. G. Shiva, “Runtime Monitoring Framework
for SQL Injection Attacks,” vol. 6, no. 5, 2014, DOI:
10.7763/IJET.2014.V6.731.

[39] V. Chang, Y. H. Kuo, and M. Ramachandran, “Cloud computing
adoption framework: A security framework for business clouds,”
Futur. Gener. Comput. Syst., vol. 57, pp. 24–41, 2016, DOI:
10.1016/j.future.2015.09.031.

[40] M. Yassin, H. Ould-Slimane, C. Talhi, and H. Boucheneb,
“SQLIIDaaS: A SQL Injection Intrusion Detection Framework as
a Service for SaaS Providers,” Proc. - 4th IEEE Int. Conf.
Cyber Secur. Cloud Comput. CSCloud 2017 3rd IEEE Int.
Conf. Scalable Smart Cloud, SSC 2017, pp. 163–170, 2017,
DOI: 10.1109/CSCloud.2017.27.

[41] G. Yiğit and M. Arnavutoğlu, “SQL Injection Attacks Detection &
Prevention Techniques,” vol. 9, no. 5, 2017, DOI:
10.7763/IJCTE.2017.V9.1165.

[42] L. Erdődi, Å. Å. Sommervoll, and F. M. Zennaro, “Journal of
Information Security and Applications Simulating SQL injection
vulnerability exploitation using Q-learning reinforcement
learning agents,” J. Inf. Secur. Appl., vol. 61, no. July, p.
102903, 2021, DOI: 10.1016/j.jisa.2021.102903.

[43] “An Improved SQL Injection Attack Detection Model Using
Machine Learning Techniques,” vol. 11, no. 1, pp. 53–57, 2021.

[44] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “DAPASA:
Detecting Android Piggybacked Apps Through Sensitive
Subgraph Analysis,” IEEE Trans. Inf. Forensics Secur., vol. 12,
no. 8, pp. 1772–1785, 2017, DOI: 10.1109/TIFS.2017.2687880.

[45] B. Shunmugapriya and B. Paramasivan, “Protection Against
SQL Injection Attack in Cloud Computing,” vol. 9, no. 02, pp.
502–510, 2020.

[46] K. Varshney and R. L. Ujjwal, “LsSQLIDP : Literature survey on
SQL injection detection and prevention techniques,” J. Stat.
Manag. Syst., vol. 22, no. 2, pp. 257–269, 2019, DOI:
10.1080/09720510.2019.1580904.

[47] K. Ahmad and M. Karim, “A Method to Prevent SQL Injection
Attack using an Improved Parameterized Stored Procedure,”
vol. 12, no. 6, pp. 324–332, 2021.

[48] M. Kareem, “Prevention of SQL Injection Attacks using AWS

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 7/2022 187

WAF,” p. 47, 2018, [Online]. Available:
http://repository.stcloudstate.edu/cgi/viewcontent.cgi?article=10
94&context=msia_etds.

[49] S. Mohammed, H. Chaki, and M. M. Din, “A Survey on SQL
Injection Prevention Methods,” vol. 9, no. 1, pp. 47–54, 2019.

[50] R. Rawat, “SQL injection attack Detection using SVM,” no.
March 2012, 2020, DOI: 10.5120/5749-7043.

[51] Z. Chen and M. Guo, “Research on SQL injection detection
tchnology based on SVM,” vol. 01004, pp. 1–5, 2018.

[52] A. Banchhor and T. Vaidya, “SQL Injection Detection Using
Baye’s Classification,” pp. 313–317.

[53] M. Olalere et al., “A Naïve Bayes Based Pattern Recognition
Model for Detection and Categorization of Structured Query
Language Injection Attack,” vol. 7, no. 2, pp. 189–199, 2018.

[54] M. Liu and T. Chen, “DeepSQLi : Deep Semantic Learning for
Testing SQL Injection,” pp. 286–297.

[55] T. Liu, Y. Qi, L. Shi, and J. Yan, “Locate-Then-Detect : Real-
time Web Attack Detection via Attention-based Deep Neural
Networks,” pp. 4725–4731, 2016.

[56] M. Volkova, P. Chmelar, and L. Sobotka, “MACHINE Learning
Blunts The Needle Of Advanced Sql Injections,” vol. 25, no. 1,
pp. 23–30, 2019.

[57] X. I. N. Xie, C. Ren, Y. Fu, J. I. E. Xu, and J. Guo, “SQL
Injection Detection for Web Applications Based on Elastic-
Pooling CNN,” IEEE Access, vol. 7, pp. 151475–151481, 2019,
DOI: 10.1109/ACCESS.2019.2947527.

[58] Salau, A. O. and Jain, S. (2019). Feature Extraction: A Survey
of the Types, Techniques, and Applications. 5th IEEE
International Conference on Signal Processing and
Communication (ICSC), Noida, India, pp. 158-164. DOI:
10.1109/ICSC45622.2019.8938371

