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A RBF artificial neural network to predict a fuel cell maximum 
power point 

 
 

Abstract. In this article, an artificial neural network (ANN) based maximum power point tracker (MPTT) for proton exchange membrane fuel cell 
(PEMFC) is proposed. For this purpose, a Radial Basis Function Artificial Neural Network (RBF ANN) is used to predict the voltage and the current 
of a fuel cell maximum power point at different fuel cell operating conditions. To train the proposed artificial neural network, a set of maximum power 
points defined by their corresponding current and voltage values is generated using a validated electrochemical fuel cell model. To ensure the 
validity of the ANN, we compare the results found by the ANN to those obtained using the electrochemical PEMFC model. The results show that the 
developed ANN can accurately and quickly predict current and voltage fuel cells at maximum power point for any operating conditions. 
 
Streszczenie. W tym artykule zaproponowano śledzenie maksymalnego punktu mocy (MPTT) oparte na sztucznej sieci neuronowej (ANN) dla 
ogniwa paliwowego z membraną do wymiany protonów (PEMFC). W tym celu wykorzystuje się sztuczną sieć neuronową Radial Basis Function 
(RBF ANN) do przewidywania napięcia i prądu punktu maksymalnej mocy ogniwa paliwowego w różnych warunkach pracy ogniwa paliwowego. Aby 
wytrenować proponowaną sztuczną sieć neuronową, przy użyciu sprawdzonego modelu elektrochemicznego ogniwa paliwowego generowany jest 
zestaw maksymalnych punktów mocy określonych przez odpowiadające im wartości prądu i napięcia. Aby zapewnić wiarygodność ANN, 
porównujemy wyniki uzyskane przez ANN z wynikami uzyskanymi przy użyciu elektrochemicznego modelu PEMFC. Wyniki pokazują, że 
opracowana SSN może dokładnie i szybko przewidywać prąd i napięcie ogniw paliwowych w punkcie maksymalnej mocy w dowolnych warunkach 
pracy. (Sztuczna sieć neuronowa RBF do przewidywania maksymalnego punktu mocy ogniwa paliwowego) 
 

Keywords: Artificial neural network (ANN), Proton exchange membrane fuel cell (PEMFC), Maximum power point tracker (MPPT),. 
Słowa kluczowe:  sztuczna sieć neuronowa, ogniwo paliwowe, maksymalny punkt mocy 
 
 

Introduction 

The constant depletion of fossil fuels reserves and their 
harmful atmospheric impact has attracted alternative green 
energy power sources including solar, wind, hydrogen, and 
hydropower, to be the most preferred by energy producers 
[1-3]. Praised by environmentalists and by many large 
industrial groups, hydrogen is often presented as a pillar of 
the global energy transition. In this context, the fuel cell, 
which is the unique converter of the chemical energy of 
hydrogen into electrical energy, has reached a high level of 
maturity thanks to the development efforts of several 
industrialized countries. Several fuel cell technologies exist. 
The PEMFC (Protons Exchange Membrane Fuel Cell) 
technology, suitable for car and residential applications due 
to its low operating temperature, high power density, quiet 
operation and zero gas emission, concentrates the most 
research efforts [4]. 

The output power of a PEMFC is not constant and 
fluctuates substantially depending on cell temperature, 
membrane water content, and partial pressures of hydrogen 
and oxygen gases [5]. In addition, a fuel cell has a non-
linear current-voltage characteristic with a single point 
defined by its corresponding current   Impp and voltage 

 Vmpp, where the output power produced, is maximum, like 

photovoltaic panels [6, 7]. This point is called Maximum 

Power Point (MPP). A system allowing the fuel cell to 
operate around the MPP for any operating conditions is 
needed to continually extract the maximum power from a 
fuel cell. This system is called Maximum Power point 

Tracker (MPPT) [8]. MPPT algorithms for fuel cell 

applications are explained in various ways [9-12]. Because 
of its easy implementation and its low cost, the Perturb and 
Observation (P&O) method is by far the most widely utilized 
in practice in fuel cells [1, 5]. The sluggish convergence 
speed and oscillations around MPP are the main 
shortcomings of the P&O method [5,7,13,14]. Artificial 
neural network (ANN) algorithms, on the other hand, can 
uncover complicated non-linear relations between 
independent and dependent variables without requiring a 

precise mathematical model of the system [5]. Therefore, 
MPPT controllers based on ANN techniques have been 
proposed to solve these problems regarding the 
improvement of the dynamic performance of MPP tracking 
[15-18].  

In this work, a Radial Basis Function Artificial Neural 
Network (RBF ANN) is proposed to predict the Maximum 
Power Point of a PEMFC for any operating conditions. 
Neural networks (RBFN) are simple to design, generalize 
well, and are unaffected by noisy input [18, 19]. In our 
study, the proposed RBF ANN calculates the current and 
the voltage corresponding to the maximum power point for 
different operating fuel cell conditions (temperature, 
hydrogen partial pressure, oxygen partial pressure, and 
membrane hydration rate).  
 

Fuel cell electrochemical model  

A proton exchange membrane fuel cell is made up of a 
proton exchange membrane inserted between two platinum 
catalyst-coated electrodes. The anode receives hydrogen, 
where the cathode receives oxygen. 

The operating principle of the fuel cell is based on the 
reverse process of electrolysis of water. A redox process 
produces electricity, water, and heat by reacting hydrogen 
and oxygen (Fig.1) [20, 21]. 

 

 
 

Fig.1. PEMFC principle [22] 
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All resulting chemical reactions are expressed as follows: 
Oxidation reaction at the anode: 

       H2 → 2H + 2e− (Anode)                                           

Reduction reaction at the cathode: 

       O2+4e−+4H+ → 2H2O (Cathode)                                

Ref [16] gives the entire chemical reaction of the PEMFC: 

       
1

2
O2 + 2H+ + 2e− → H2O +heat + electricity                

 At standard test conditions (operating temperature of 
298.15 K and pressure of 1 atm), the Nernst potential 
(theoretical thermodynamic potential) of a single fuel cell is 
on the order of 1.229 V [20, 21]. 

When the current is non-zero, the voltage of the fuel cell 

will be lower than the voltage 𝐸𝑁𝑒𝑟𝑠𝑡.This is mostly owing to 

irreversible losses namely the ohmic overvoltage, the 
concentration overvoltage, and the activation overvoltage 

[20, 24]. The output voltage VCell of a single cell can be 

described by the following equation when these losses are 
taken into account. [20, 24, 25]: 

(1)  𝑉𝐶𝑒𝑙𝑙  =𝐸𝑁𝑒𝑟𝑠𝑡–𝑉𝑎𝑐𝑡– 𝑉𝑜ℎ𝑚– 𝑉𝑐𝑜𝑛  

Where: 𝐸𝑁𝑒𝑟𝑠𝑡  – Nernst potential (V), 𝑉𝑎𝑐𝑡 – activation 

overvoltage (V), 𝑉𝑜ℎ𝑚– ohmic overvoltage (V), 𝑉𝑐𝑜𝑛– 

concentration overvoltage (V). 

  The open_ circuit cell potential  of 𝐸𝑁𝑒𝑟𝑠𝑡each cell of 

the PEMFC is calculated by the Nernst equation. This 

voltage is a function of the operating temperature T (K) and 

the partial pressures 𝑃𝐻2
 of hydrogen (atm) and 𝑃𝑂2

 of 

oxygen (atm) [20, 24]. The Nernst equation can be written: 
 
(2)          𝐸𝑁𝑒𝑟𝑠𝑡 = 1,229 − (8,5. 10−4). (T-298.15)+ 

                                  4,308.10−5).T.[ln(𝑃𝐻2
) +

1

2
ln (𝑃𝑂2

)]                      

  The activation overvoltage is due to the start of 
chemical reactions at the anode and cathode. A part of the 
available energy is used to break and reform chemical 
bonds at the electrodes. Activation overvoltage, 
predominant at low current densities, is given in the model 
proposed by J.C.Amphlet et al. [20, 24, 25] by the equation:  

(3)           𝑉𝑎𝑐𝑡= 𝜉1 + 𝜉2.T + 𝜉3.T. ln (𝐶𝑂2
) + 𝜉4.T. ln (I)  

where: 𝐶𝑂2
- Oxygen concentration in the cathode catalyst 

interface (mol/cm
3
), I- current delivered by the fuel cell (A), 

𝜉1, 𝜉2, 𝜉3 and 𝜉4 - parametric coefficients determined for the 

modeled fuel cell stack from theoretical equations of Kinetic, 
thermodynamic and electrochemical basis. The expression 

of 𝜉
2
 is given by [24, 26]:  

(4)         𝜉2=0, 00286+0, 0002.log (A) +0, 000043.log (𝐶𝐻2
) 

where: A - cell active area (cm
2
) of the membrane, 𝐶𝐻2

 -

effective hydrogen concentration at the anode catalyst sites 

(mol/cm
3
).  

      Which can be approximated, by the hydrogen 
concentration at the anode water-gas interface, is 

expressed as follow [26, 27]: 

(5)                𝐶𝐻2
=

𝑃𝐻2

1090000.exp(
77

𝑇
)
   

   The oxygen concentration at the cathode water-gas 

interface is expressed as [26, 27]: 

(6)            𝐶𝑂2
=

𝑃𝑂2

5,08.10
6

.𝑒
−(

408
𝑇

)
  

  The ohmic losses are due to the resistance of the 
bipolar plates to the circulation of electrons and the 
resistance of electrolyte to the protons flow [27]. The 
corresponding voltage drop is written as follow [16]: 

(7)          𝑉𝑜ℎ𝑚 =I. (𝑅𝑚+𝑅𝑐)                                

where: 𝑅𝑚  –  resistance to proton flow (Ω), 𝑅𝑐  –  resistance 

to electrons flow.  𝑅𝑐  is usually considered constant while 

𝑅𝑚 is calculated by the following equation[25,27]: 

 

(8)           𝑅𝑚 =
𝜌𝑚.𝑡

𝐴
                                                            

where: t – polymer membrane thickness (cm), 𝜌𝑚 –   
specific membrane resistivity (Ω.cm) . 𝜌𝑚 is given by 

[23,24,25,28]: 

(9) 

 
             𝜌𝑚=

181,6.[1+0,003.(
𝐼
𝐴

)+0,062.(
𝑇

363
)2.(

𝐼
𝐴

)2,5]

[𝜆−0,634−3.(
𝐼
𝐴

)].exp [4,18.(
𝑇−303

𝑇
)]

                           

 
where: 𝜆 -adjustable parameter,        𝜆 has a value ranging 

from 14 under 100% relative humidity conditions to 22-23 % 
under ultra-saturated conditions.   
       The concentration losses linked to the kinetics of gas 
diffusion across the electrodes become prominent at high 
current densities, and they are expressed as [16, 20]. 

 (10)       𝑉𝑐𝑜𝑛  = −𝐵. ln (1−
𝐽

𝐽𝑚𝑎𝑥
)                             

where: B (V) - empirical coefficient, J - actual current density 

of the cell (A/cm2), 𝐽𝑚𝑎𝑥 -maximum current density (A/cm2). 
B varies depending on the type of fuel cell and its state of 

operation[20,25].The power P delivered by the fuel cell is 
equal to the product V. I (W). 

The equivalent static electrical circuit of a PEMFC is 
shown in figure (2): 

 

 
 

Fig.2. Equivalent static electrical circuit of PEMFC  

 The voltage of a fuel cell stack formed by N cells in 
series is expressed as follow: 

 (11)  V=N.𝑣𝑐𝑒𝑙𝑙                                                    

In this work, we use an Avista SR12 PEMFC. The 
specifications of this fuel cell taken from its Technical Data 
Sheet are presented in table 1. MATLAB® software is used 
to fit the current-voltage of the Avista SR12 and then to 
calculate the maximum power point for different gas partial 
pressures, temperature, and membrane hydration rate 
levels. 

 

Table 1. Avista SR12 PEMFC simulation parameters  
Parameter Value Parameter Value 

ξ1  -0.948     A   62.5 𝑐𝑚2 

ξ3 0.0000722     B   0.15 V 

ξ4 −0.0001061     Rc  0.0003Ω 

          Jmax   42 𝐴 𝑐𝑚2⁄      N     48 
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Radial Basis Function Artificial Neural Network 

The RBFN consists of three layers, the input layer, the 
hidden layer, and the output layer as shown in figure 3 [29]. 

 
Fig.3. Radial basis function neural network 

 

Each neuron is fully connected to the neurons of the 
following layer, and the connections are not recurrent. In 
RBF neural networks, synaptic weights between the input 
and hidden layers have a unit value [18]. The Gaussian 
function, whose parameters are the center c and the radius 
σ, is the most widely employed radial function as an 
activation function [18, 30]. A Gaussian function responds 
only to a limited portion of the input space where it is 
centered. Its general expression is as follows [18, 30]: 

(12)      f(y)=exp(- 
(𝑦−𝑐)2

2𝜎2 ) 

where: y - input scalar and σ > 1. 
 

Each node I in the hidden layer of an RBF neural 
network represents a Gaussian function Fi defined by its 
center ci and radius σi [18, 30]. These neurons calculate the 
distance from the input to their centers and respond with  
activation in proportion to that distance. The output of the 
network is a linear combination of the outputs of the hidden 
layer neurons multiplied by the weights of their respective 
connections.  

The Levenbreg-Marquardt Backpropagation algorithms 
are most widely used for ANN training. It is a sophisticated 
gradient algorithm that is used to improve the performance 
of an ANN by altering the weights of each node and the 
bias terms until the output value at the output layer as 
nearly as possible predicts the real outputs, resulting in a 
reduction in the training error [31].  

 The mean square error (MSE) performance index is 
used to verify network convergence. Network converges 
mean that the training error goal is lower than the 
predefined MSE [32]. 
 

Proposed Artificial Neural Network 

To achieve the prediction of maximum power points of a 
fuel cell, we have opted for the architecture of the RBF 
neural network with a Gaussian function. The input layer 
includes four neurons (temperature, hydrogen partial 
pressure, oxygen partial pressure, and membrane hydration 
rate) while the hidden layer has ten neurons and the output 
has two neurons ( Vmppand  Impp). Figure 4 shows the 

general schematic of the Neural Network model. 

 

Fig. 4. Proposed ANN inputs outputs 

 Simulation results 

First, we generated training data set samples for the 
proposed artificial neural network. For this, Training data set 
containing 108 fuel cell maximum power points defined by 
their currents and voltage is generated using the 
electrochemical model detailed above. These samples 
correspond to varying operating conditions: the operating 
temperature varies from 290 K to 390 K, gas pressures vary 
from 0.5 atm to 1.5 atm while the membrane hydration rate 
varies from 7 and 14. These intervals correspond to the 
practical PEMFC operating conditions. Training data was 
divided into a training set of 70% and a test set of 30% of 
total examples.  

The root Mean Square Error (MSE) is used as an 
indicator of the accuracy of the proposed artificial neural 
network. Figure 5 shows the MSE evolution. 

 

 
Fig.5. Training Mean Squared Errors evolution 

The performance curve plot shows the root mean 
square error against iterations and it shows the best training 
performance is 0.00035338 at the 234

th
 iteration. This 

suggests that the proposed network is precise enough. 
This is confirmed by the regression line (Figure 6). This 

means that after successful training, all data points 
displayed as circles should be on this line, indicating that 
the ANN has trained successfully, highlighting the 
importance of this extremely strong non-parametric process 
modeling technique. 

 

 
Fig.6. Training regression lines  
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The developed ANN is finally used to predict fuel cell 
maximum power points for operating conditions values 
other than those used for ANN training (Fig 7). 

 

 

Fig.7. Proposed ANN generalization test 

Maximum power points predicted by the proposed RBF 
Artificial Neural Network are very close to those calculated 
by the electrochemical model. That means the ANN 
generalizes well and then it can accurately predict the 
current and the voltage of the fuel cell Maximum Power 
Point for any fuel cell operating conditions. 

Conclusion 

This article demonstrates the capability of an artificial 
neural network to predict the voltage and the current of the 
maximum power point of a fuel cell. Indeed, RBF ANN has 
been developed to predict the maximum power point of the 
AVISTA SR12 PEMFC whatever the operating conditions 
(temperature, gas pressures and membrane humidity 
levels). The developed ANN is characterized by a fast 
learning with a reduced number of samples. Amphlet's 
electrochemical model was used to generate the training 
data set as well as to validate the simulation results. The 
simulation results show that the proposed ANN can predict 
with good accuracy the maximum power point of the fuel 
cell for any operating condition. This work will be used in 
future study to develop an overall fuel cell MPPT system 
including fuel cell system, the developed ANN, static 
converters and corresponding control. 
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