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Abstract. The article presents an algorithmic method of improving the efficiency of imaging the interior of flood embankments using electrical 
impedance tomography (EIT). The concept of optimizing hyperparameters of several selected machine learning models was presented, thanks to 
which the efficiency of generating accurate/faithful tomographic images was increased. In electrical impedance tomography, machine learning 
models are used to transform measured voltages into output images. This transformation consists in resolving the so-called inverse problem. In all 
machine learning models, the selection of hyperparameters plays a significant role. This selection is the goal of the model learning process. 
Therefore, the effectiveness of the algorithms that optimize this choice directly impacts the quality of the reconstruction. This article presents 
examples of algorithmic ways to optimize machine learning models based on linear regression, artificial neural networks, and classification models 
using the k-nearest neighbour's method. The above models were implemented in an electrical tomography system to monitor the internal integrity of 
flood embankments, dams, dykes and/or dams. The results of the conducted experiments confirm the effectiveness of the proposed solutions. 
 
Streszczenie. W artykule przedstawiono algorytmiczny sposób poprawy skuteczności obrazowania wnętrza wałów przeciwpowodziowych przy 
użyciu elektrycznej tomografii impedancyjnej (EIT).  Zaprezentowano koncepcję optymalizacji hiperparametrów kilku wybranych modeli uczenia 
maszynowego, dzięki której zwiększono efektywność generowania dokładnych/wiernych obrazów tomograficznych. W impedancyjnej tomografii 
elektrycznej modele uczenia maszynowego są wykorzystywane do przekształcania zmierzonych wartości napięć na obrazy wyjściowe. Ta 
transformacja polega na rozwiązaniu tzw. inverse problem. We wszystkich modelach uczenia maszynowego niezwykle ważną rolę odgrywa dobór 
hiperparametrów. Dobór ten jest celem procesu uczenia modeli. Dlatego skuteczność algorytmów optymalizujących ten wybór ma bezpośredni 
wpływ na jakość rekonstrukcji. W niniejszym artykule przedstawiamy przykłady algorytmicznych sposobów optymalizacji modeli uczenia 
maszynowego w oparciu o regresję liniową, sztuczne sieci neuronowe, a także modele klasyfikacyjne z wykorzystaniem metody k-najbliższych 
sąsiadów. Powyższe modele zaimplementowano w systemie tomografii elektrycznej, do monitorowania integralności wewnętrznej wałów 
przeciwpowodziowych, zapór, grobli i/lub tam. Wyniki przeprowadzonych eksperymentów potwierdzają skuteczność proponowanych rozwiązań. 
(Algorytmiczne metody poprawy obrazowania wnętrza wałów przeciwpowodziowych z wykorzystaniem tomografii elektrycznej). 
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Introduction 
Human health and life safety are always paramount, and 

damage to dykes, dams, flood banks and levees can have 
disastrous effects. Due to the potential danger to humans, 
animals, infrastructure, the natural environment, and entire 
human populations, flood embankments are frequently 
equipped with sophisticated early warning systems, 
including monitoring systems. Dams and flood 
embankments are monitored on a cyclical basis by 
designated individuals. More modern monitoring techniques 
include using electronic equipment that allows for the 
reading of parameters provided by unique probes and 
sensors installed inside flood dams. The shortcoming of 
traditional monitoring systems is their local / point-to-point 
character. Individual moisture measurements from test 
probes do not offer a complete cross-section of the dyke's 
interior. Only tomographic technologies allow for imaging a 
cross-section or a spatial image of the interior of flood 
embankments, dykes, and dams. This fact served as a 
direct basis and impetus for addressing this subject. 

Many different methods are used to solve optimisation 
problems [1-5]. Machine learning techniques have grown in 
prominence in recent years. They are also employed in 
tomography because the inverse problem must be solved. 
Machine learning techniques are used to convert input 
measurements to tomographic images in this manner. The 
measurement set, particularly in electrical tomography, 
contains values that correlate with the voltages obtained at 
the various electrode pairs. The output values are in the 
form of real numbers corresponding to conductivity. 
However, these results should not be interpreted as a 
measure of conductivity but rather as a correlation between 
specific numbers and electrical conductivity. Each pixel in 
the output image is allocated a unique real number that is 
translated to a colour. Appropriate calibration, i.e. colour 

matching, enables the identification of moisture and other 
structural anomalies in the tomographic image of the shaft. 

A cross-sectional view of the dyke's interior can be 
produced using electrical tomography and electrode rods 
put across the dam [6]. The article introduces a novel 
concept for reconstructing electrical impedance tomography 
(EIT) images [7,8]. The novel strategy is based on the 
integration of many machine learning approaches so that 
the optimal technique for each pixel of the tomographic 
picture may be selected [9]. Additionally, the provided 
notion has the advantage that the optimal procedure for 
each pixel is determined by the measurement set for the 
particular scenario. This property makes the strategy 
versatile, and while it does require training an additional set 
of classification models, the resulting performance 
improvement more than compensates for the added 
computational burden [10]. The research employed various 
machine learning techniques, including Elastic Nets, 
Support Vector Machines, and Artificial Neural Networks 
[11,12]. Comparing the novel concept to established 
approaches demonstrates that the new methodology's 
reconstructions are superior to those created using 
standard machine learning methods, owing to hybrid pixel-
oriented learning. 

The authors' primary contribution is the invention of a 
concept for selecting the appropriate reconstruction 
approach for each image pixel. In addition, training models 
based on linear regression and kNN take the automatic 
optimization of hyperparameters into account. In the case of 
linear regression, it is the choice of the more favourable 
learner, while in the case of the kNN classifier, it is the 
selection of the optimal distance function. The new 
approach employs hybrid learning and makes more efficient 
use of the computational capacity of the PC to improve 
imaging precision. 
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Materials and Methods 
A physical model was created using the flood bank of 

the largest post-flotation waste reservoir in Europe (Żelazny 
Most, Poland), which served as the basis for the model. A 
total of 96419 training instances for electrical impedance 
tomography (EIT) were developed based on this information 
[13]. Each value in the measurement set was associated 
with the number of voltage drops. The reconstructed image 
had a resolution (number of pixels) of 1721 pixels, which 
was a high number. In addition, there was a 2D cross-
section of the embankment that was subjected to 
tomographic reconstruction. 

The physical model of the segment of the flood 
protection embankment that was tested is depicted in 
Figure 1. It was necessary to validate the algorithmic model 
in a laboratory setting, and the model was equipped with a 
system of sixteen measuring electrodes. 
 

 
Fig. 1. Flood bank model with electrodes and EIT device [14]. 

The electrodes were distributed evenly across the dam. 
Additionally, the model incorporates an impedance 
tomography (EIT) device that generates an electric current 
with precise parameters (voltage, current, frequency, and 
amplitude) for each pair of electrodes. The tomograph 
measures the voltages between the individual electrodes 
and transmits this information to the output port in a manner 
suitable for subsequent processing. 

As previously stated, a simulation set of training data 
was constructed to train the models using machine learning. 
The training data were generated using the extended finite 
element approach implemented in the Eidors toolbox 
[15,16]. Figure 2 illustrates a single scenario of a partially 
flooded embankment for which electrical measurements 
were created using simulation. A cross-section of the dam 
is shown on the left side of the figure, separated into pixels 
using a finite element mesh. The sixteen green circles 
indicate the location of the electrodes. On the right, a graph 
of values correlated with input voltages (arbitrary units) for 
each of the 96 measurements taken from the 16 electrodes 
is displayed.  

 
 

 
Fig. 2. An example of generating a measurement vector for a given 
infiltration in a dam 

Electrical tomography's primary challenge is resolving 
the so-called inverse and ill-posed problem. This type of 
issue arises when the number of mathematical model 
arguments (measurements, inputs) is insufficient compared 
to the needed number of outputs (image pixels). This study 
aims to create a cross-sectional image of moisture in 1721 
pixels using a vector of 96 measurements. To reduce the 
level of complexity associated with generating images with 
a large number of finite elements, single models with 96 
values at the input and only one pixel at the output are 

trained (96-model-1). The pixel-oriented hybrid technique 
(POH) concept is illustrated in Figure 3. 
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Fig. 3. The pixel-oriented hybrid method's idea. 

The number of models generated by the POH idea is 
equal to the total number of pixels (finite elements) in the 
cross-section mesh, 1721. Therefore, it should not surprise 
that it can generate colour values for many different pixels 
using the same input values. It is feasible because, when 
training a predictive model (e.g., elastic net, linear 
regression, or neural network), each model uses a unique 
set of coefficients, parameters, and hyperparameters that 
determine how input values are transformed into output 
values. It was noted that if several different homogeneous 
methods were used for a particular measurement case (e.g. 
linear regression with least-squares learner LR-LS, linear 
regression with support vector machine learner LR-SVM, 
artificial neural networks ANN, elastic net, Lasso, etc. ), the 
results from either of the above methods would be inferior. 
Generally, one of the approaches is more effective than the 
others depending on the test object and even the 
measurement circumstance. 

Furthermore, we obtain the POH approach to the value 
of a single-pixel if we reduce the aforementioned 
assumption from the whole number of pixels in the 
reconstruction image to the value of a single pixel within a 
particular measurement scenario. After training many 
models (LR-LS, LR-SVM, and ANN), the best 
reconstruction for a given pixel must be determined. As a 
result, the POH technique also presupposes building a 
classification model with the same number of classes as 
previously developed homogeneous methods (in our case, 
these are 3 methods: LR-LS, LR-SVM and ANN). The 
classification model was chosen using the k-nearest 
neighbours (kNN) method, which was likewise trained using 
the identical 96-element input vectors. As with regression 
models, the kNN model distinguishes classes (outputs) 
based on both the measurement vector and the pixel count. 

The proposed new POH approach is based on the 
proper adjustment of numerous homogenous machine 
learning algorithms' coefficients and hyperparameters. It 
raises the demand for computing power but results in 
higher-quality tomographic images. The rapid advancement 
of technology in information technology and the ongoing 
trend toward lower computational costs warrant the 
employment of POH and comparable technologies. 

By selecting a more effective learner, the implemented 
algorithm optimizes the linear regression model. There are 
two types of learners available: least squares and support 
vector machine (SVM). The linear regression (LR) model 
employs the least squares or support vector machine (SVM) 
learner depending on the reconstructed pixel and the input 
data. Linear regression (LR) and support vector machines 
(SVM) are used in the LR-SVM technique. The algorithm 
has been optimized for input data consisting of a 96-
element vector. The absolute shrinkage and selection 
operator (LASSO) use the L1 regularization technique to 
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create a regression model that includes the "absolute size" 
of the coefficient as a penalty component in the loss 
function. A linear regression model based on the SVM 
approach was utilized as the learner. Formula 𝑓ሺ𝑥ሻ ൌ 𝑥𝛽 ൅
𝑏 describes the loss function for a linear regression model 
where 𝛽 is a vector of p coefficients, 𝑥 represents an 
observation of p predictor variables, and 𝑏 represents a 
bias. The mean square error (MSE) is computed as a loss 
function in the implemented method and has the form 
ℓሾ𝑦, 𝑓ሺ𝑥ሻሿ ൌ max ൣ 0,  |𝑦 െ 𝑓ሺ𝑥ሻ| െ 𝜀൧ where 𝑦 ∈ ሺെ∞, ∞ሻ is the 
response value reconstruction. Equation (1) denotes the 
LASSO cost function 
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where n is the number of observations, 𝒙௜
் denotes a 

transposed vector of length p in observation i, 𝑦௜ denotes a 
pixel reconstruction in observation i, and λ denotes a non-
negative regularization parameter. In this research, 𝜆 is 
equal to 1/n. The parameters b and β are, respectively, a 
scalar deviation and a vector of length p. The number of 
non-zero parameters β lowers as λ rises. LR-SVM is a term 
that refers to a combination of regulated support vector 
machines (SVM) and least squares regression. The model 
minimizes the objective function via stochastic gradient 
descent (SGD), which significantly shortens the calculation 
time. The proposed approach employs support vector 
machines with a ridge penalty and optimizes the SVMs 

using double SGD. The formula ቛ
஻೟ି஻೟షభ

஻೟
ቛ ൏ 𝜘 denotes the 

end of the iteration process, where ϰ is the relative 
tolerance for the linear coefficients 𝛽௧

,  and the load term 𝑏௧, 
and 𝐵௧ ൌ ሾ𝛽௧

, , 𝑏௧ሿ. 
The response area for a randomly chosen instance and 

pixel of the image is shown in Figure 4. The blue dots 
indicate the 30 iterations required for the method to 
maximize learner selection in linear regression. A red star 
shows the minimal objective function. In the given instance, 
the learner of choice was determined to be SVM. The 
values of the goal function acquired in successive 
reiterations are shown in Figure 5.  

 

 
Fig. 4. Objective function model (linear regression with least 

squares or SVM learner) for a randomly selected pixel 

As can be seen, the predicted minimal objective curve 
resembles a hyperbola, indicating that the optimization 
process followed the right path. 

The response surface created during the kNN 
optimization procedure is depicted in Figure 6. The 
algorithm's objective was to choose one of the 11 distance 
functions. The algorithm's objective was to choose one of 
the distance functions. 

 

 
Fig. 5. Minimum objective vs. a number of function evaluations for 
the linear regression model training. 

 
Fig. 6. The objective function in the kNN model for a randomly 
selected pixel 

 
Fig. 7. Minimum objective vs. number of function evaluations for 
kNN model training. 

The optimization solution in the investigated situation 
was the city block approach, commonly known as 
Manhattan distance [17]. The values of the objective 
function for the kNN technique obtained over repeated 
iterations are shown in Figure 7. As illustrated in Figure 5, 
the minimum objective function's curve resembles a 
hyperbola, demonstrating the optimization process's 
validity. 
Results 

Figure 8 illustrates two test cases used to validate the 
presented notion. The reference photos are located in the 
first row (Pattern). The following four lines contain images 
generated using ANN and LR algorithms, while the final line 
(POH) has output images formed by utilizing ANN, LR-
SVM, or LR-LS depending on the pixel. 

The data in Table 1 match to those in Figure 8. It 
compares the produced reconstructions using three types of 
indicators: Mean Squared Error MSE ൌ ∑ ሺ∆𝑦௜ሻ௡

௜ୀଵ
ଶ 𝑛⁄ , 

Relative Image Error RIE ൌ ‖∆𝑦௜‖ ‖𝑦ො௜‖⁄ , and Image 
Correlation Coefficient (ICC). The formula for calculating the 
ICC, often known as the Pearson correlation coefficient, is 
given below (4) 
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where 𝑦ത denotes the pattern image's mean conductivity and 
𝑦ොത denotes the reconstructed image's mean conductivity. 
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Fig. 8. Comparative reconstructions 

. The two cases depicted in Figure 8 illustrate 
reconstructions with varying degrees of seepage. Visual 
evaluation of reconstruction is always harmed by 
subjectivism. As such, it can be used in conjunction with the 
objective assessment based on the MSE, RIE, and ICC 
indicators. Nonetheless, it can be shown that the pixel-
dependent hybrid reconstructions appear to be the most 
comparable to the reference images. 
 

Table 1. Comparison of image reconstructions 

Methods 
Evaluation 

metrics 
Investigated cases 

Average 
#1 #2 

ANN 
MSE 2.680 2.143 2.411 
RIE 0.691 0.678 0.684 
ICC 0.935 0.920 0.927 

LR-LS 
MSE 0.114 0.144 0.129 
RIE 0.142 0.175 0.158 
ICC 0.941 0.926 0.933 

LR-SVM 
MSE 0.020 0.028 0.024 
RIE 0.061 0.077 0.069 
ICC 0.966 0.962 0.964 

New POH 
concept 

MSE 0.008 0.021 0.014 
RIE 0.040 0.068 0.054 
ICC 0.969 0.965 0.967 

Is MSE for POH the smallest? YES YES YES 
Is RIE for POH the smallest? YES YES YES 
Is ICC for POH closest to 1? YES YES YES 

 

When the metrics in Table 1 are reviewed, it is clear that 
the new POH approach produces the best outcomes in all 
four analyzed scenarios. The final column of Table 1 
contains the mean values of the MSE, RIE, and ICC 
indicators for all cases evaluated. The final three lines of 
Table 1 summarize the detailed comparison of the metrics 
for the ANN, LR-LS, and LR-SVM approaches with the 
novel POH pixel dependent selection idea. In all 
comparisons, the new POH concept produced the highest-
quality reconstructive images. 
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