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Combinatorial algorithm of enumeration the failure states of 
complex systems 

 
 

Abstract. A method of enumeration failure states of complex electrical systems was developed as a combinatorial problem of forming the classes of 
cross-sections. An example of the presented algorithm work is given 
 
Streszczenie. Opracowano metodę wyliczania stanów awaryjnych złożonych układów elektrycznych jako kombinatorycznego problemu tworzenia 
klas zbiorów krytycznych. Podano przykład działania prezentowanego algorytmu. (Kombinatoryczny algorytm wyliczania stanów awaryjnych 
złożonych systemów). 
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Introduction 
While considering different states of the system's 

elements it is also necessary to consider different states for 
the whole system, particularly, the failure states. It is natural 
to suppose that each failure state contributes to the 
resulting indices of the system reliability. This originates 
typical combinatorial problems of the classification of failure 
states into classes on the basis of their contribution to the 
resulting indices of the system reliability and the problems 
of enumeration of all representatives of these classes. 
 
The formulation of the problem 

Let L={El : l = 1, 2, …, n} be a set of system elements. 
Each element of the system E can be in one of three states 
E   {N, R, S}, where EN is an operating state (state of 
normal work), ES is a state between the fault and switching 
(before switching), ER is a repair state (after switching). 
Transitions between states for one element are described 
by EN  ES  ER  EN  ... .  

State of the system  is determined by state of each 
element and can be described as a set =(L)={(El) : 
ElL, l = 1, 2, …, n} = {El

l
 : ElL, l  {N, R, S}, l = 1, 2, …, 

n}. Let us denote Ω={} the set of all system`s states; 
ZEn=Ø, ZEr={E}, ZEsL(EZEs) are zones of influence of 
elements E in different states (finding of the element E in 
state S is equal to finding of the set of elements ZEs  in state 
R; finding of the element E in the state ER corresponds to 
the removal of this element from the system, i.e. 
consideration of the system L\E elements); T=(ErE)  
(EsZEs)L the set of failing elements in state ; 
R={r : rL, |r|≤3} is a set of assemblages of elements which 
synchronous finding in state R leads to system failure. The 
state  is a system failure state, if exist rR, such as rT, 
or a operating state (state of successful work) otherwise. 
Thus Ω=ΩFΩW  (ΩFΩW = ), where ΩF is a set of failure 
states, ΩW – set of operating states (states of successful 
work). A failure state is a minimal-cut failure state (МС-
state) [1], if for all E the translation of element E from 
state ER into state EN, or from state ES into state ER, returns 
the system into operating state (state of successful work). It 
is required to enumerate all the minimal-cut failure states 
(МС-state). 
 

The classification of cross-section on the basis of 
minimal-cut failure states (МС-states) 

Consideration of set Ω(J)={ : JL, EL\JEn} of 
states of elements JL. Lets each set of system elements 

be characterised by the set of states Ω(J)=Ω(J)\IJ(I≠J)Ω(I) 
and for any IJ Ω(I)Ω(J)= is true. The set JL is a cross-
section, if МС(Ω(J) ). The set of all cross-sections will be 
denoted by .  

Let function  : LL be a bijection. Determine  
 

() = ((L)) = ({E1
1

, E2
2

,… En
n

}) =  

          = {(E1
1

), (E2
2

),… (En
n

)} =  

          = {(E1)1
, (E2)2

,… (En)n
} = ((L)) =  

 

 the transformation of state  into state η. The cross-section 
I,J we will consider to be θ-equivalently (I≡J(θ)), if there 
is a bijection IJ so as IJ(МС(Ω(I))) = МС(Ω(IJ(I))) = 
МС(Ω(J)). 

Consideration of the factorset of cross-section set 
according to equivalently  

 

/θ = {[J]θ} = {[Ji]θ : i=1, 2, …, 15},  
 

where J1=J2=(I) are one-element cross-sections, 
J3=…=J6=(I, K) – two-element cross-sections, 
J7=…=J15=(I, K, O) – three-element cross-sections,  gives us 
the classification of cross-sections on the basis of МС-
states:  

 

МС(Ω(J1)) = {IR},  
МС(Ω(J2)) = {IS},  
МС(Ω(J3)) = {IRKR},  
МС(Ω(J4)) = {ISKR},  
МС(Ω(J5)) = {ISKS},  
МС(Ω(J6)) = {ISKR, IRKS},  
МС(Ω(J7)) = {IRKROR},  
МС(Ω(J8)) = {ISKROR},  
МС(Ω(J9)) = {IRKSOS},  
МС(Ω(J10)) = {ISKSOS},  
МС(Ω(J11)) = {ISKROR, IRKSOR},  
МС(Ω(J12)) = {IRKSOS, ISKROS},  
МС(Ω(J13)) = {ISKROR, IRKSOS},  
МС(Ω(J14)) = {ISKROR, IRKSOR, IRKROS},  
МС(Ω(J15)) = {IRKSOS, ISKROS, ISKSOR}. 
 

Thus, instead of enumeration of all МС-states we can 
enumerate the assemblages of system elements, belonging 
to the different classes of the equivalently. The advantages 
of such a method are usage of subset of a system element 
and decreasing of dimensions of the considered set, 
because one subset of system elements can be 
characterised by more than one МС-states. The presented 
classification specifies the classification [2], in which both 
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passive and active failures are considered. Proposed 
algorithm of forming the classes of cross-sections.  
 

Algorithm of forming the classes of cross-sections 
Let us consider forming the classes of cross-sections on 

the basis of sets R i ZIS
 (I  L). Suppose that {I, K} = {K, I}, 

(I, K)  (K, I), (I, {K, O}) = (I, {O, K}), (I, {K, O})  (K, {I, O}), 
(I, {K, O})  (O, {I,K}). 

 

Zx = {I : I  L, x  ZIS
} for all x  L. 

 

In addition let us suppose that for all r  R set r does not 
contain identical elements.  

 

M1 = {I (IR  ΩF) : {I}  R}; 
M3 = {{I, K} (IRKR  ΩF) : {I, K}  R, I  K, I  M1, 

K  M1}; 
M7 = {{I, K, O} (IRKROR  ΩF) : {I, K, O}  R, I  K , I  O , 

K  O, I  M1, K  M1, O  M1, {I, K}  M3, {I, O}  M3, 
{K, O}  M3}. 

 

On giving a system by a graph one-, two- and three-
element cuts of the graph could be taken instead of sets M1, 
M3, M7. 

 

Q2
1 = {I : x  M1, I  Zx};  

Q2
2 = {I : {x, y}  M3, I  Zx Zy};  

Q2
3 = {I : {x, y, z}  M3, I  Zx Zy Zz};  

M2 = {I (IS  ΩF) : I  Q2
1 Q2

2 Q2
3, I  M1}; 

Q4
2 = {(I, K) : {x, K}  M3, I  Zx, I  K};  

Q4
3 = {(I, K) : {x, y, K}  M7, I  Zx Zy, I  K};  

Q4 = {(I, K) (ISKR  ΩF) : (I, K)  Q4
2Q4

3, I  M1, I  M2, 
{I, K}  M3};  

M6 = {{I, K} (ISKR, IRKS  ΩF) : (I, K)  Q4 and (K, I)  Q4};  
M4 = {(I, K) (ISKR  ΩF) : (I, K)  Q4 and (K, I)  Q4 }; 
Q5

2 = {{I, K} : {x, y}  M3, I  Zx, K  Zy, I  K};  

Q5
3 = {{I, K} : {x, y, z}  M7, I  ZxZy, K  Zz, I  K};  

M5 = {{I, K} (ISKS  ΩF) : {I, K}  Q5
2Q5

3, I  M1, I  M2, 
K  M1, K  M2, {I, K}  M3, (I, K)  Q4, (K, I)  Q4}. 

 

The sets M2, M4, M5, M6 forming with some other 
suppositions was considered in [3]. 

 

Q8 = {(I, {K, O}) (ISKROR  ΩF) : {x, K, O}  M7, I  Zx, 

I  K , I  O, (I, K)  Q4, I  M2, I  M1, {I, K}  M3, (I, 
O)  Q4, {I, O}  M3, {I, K, O}  M7}. 

 

Let us clear up forming the set Q8 (see class МС(Ω(J8)). 
It is formed in such a way, that ISKROR is a minimal-cut 
failure state, ISKROR  ΩF, and states ISKR (OR  ON), ISOR 
(KR  KN), IRKROR (IS  IR)  ΩW (see changes in Fig.1). In 
Fig.1. the circles corresponding to the failure states are 
filled in, and the circles corresponding to the МС-states are 
enlarged and signed. The circles corresponding to the 
states of successful work and against which checks are 
carried out are highlighted with a thick line and signed. 

 The states IRKSOR, IRKROS, IRKSOS could be as the 
operating states so the failure states. That is why it requires 
additional checks (see bellow) for to form class [J8]θ from 
set Q8. State ISKROR  ΩF, this belonging is determined by 
the way of forming the set Q8: {x, K, O}  M7 (xRKROR  ΩF), 
IZx (ISKROR  ΩF); besides by checking I  K, I  O 

(|{I, K, O}| = 3) is protected (provided). To check that ISKROR 
is МС-state is quite complicated. Thus, checking ISKR  ΩW 
is done in several steps: either ISKR (OR  ON) is not 
minimal-cut failure state ((I, K)  Q4), or IS (KR  KN) … 
(I  M2), or IR (IS  IR) … (I  M1), or IRKR (IS  IR) … 

({I, K}  M3), or IR (KR  KN) … – has been already 
checked, or KR (IR  IN) … – checked during forming the set 
M7. Analogous checks are required for to determine 
ISOR  ΩW (additionally (I, O)  Q4, {I, O}  M3 are checked) i 
IRKROR  ΩW (additionally {I, K, O}  M7 is checked). These 
checks are determined by the states, to which it could be 
transitioned from state ISKROR (see Fig.1), and known to this 
step minimal-cut failure states (sets M1, M3, M7, M2, Q4, M5). 
Fig.2 illustrates two symmetrical cases. In practice, the 
checks are similar, only they are applied to some 
permutation (you need to change the order of the elements 
during the checks). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Forming the set Q8  
 

 
 
 
 
 
 
 
 
 
 
 
Fig.2. Symmetrical cases the set Q8  
 
 

Q9 = {(I, {K, O}) (IRKSOS  ΩF) : {I, y, z}  M7, K  Zy, 

O  Zz, I  K , I  O, K  O, K  M1, K  M2, O  M1, O  M2, 

{I, K}  M3, {I, O}  M3, {K, O}  M3, (K, I)  Q4, (O, I)  Q4, 
(O, K)  Q4, (K, O)  Q4, {I, K, O}  M7, {K,O}  M5, 
(O,{I,K})  Q8, (K,{I,O})  Q8}; 

M8 = {(I, {K, O}) : (I, {K, O})  Q8, (I, {K, O})  Q9, (K, {I, 
O})  Q8, (O, {I, K})  Q8}; 

M9 = {(I, {K, O}) : (I, {K, O})  Q9, (I, {K, O})  Q8, (K, {I, 
O})  Q9, (O, {I, K})  Q9}; 

M10 = {{I, K, O} (ISKSOS  ΩF) : {x, y, z}  M7, I  Zx, 

K  Zy, O  Zz, I  K , I  O, K  O, I  M1, I  M2, K  M1, 

K  M2, O  M1, O  M2, {I, K}  M3, {I, O}  M3, 
{K, O}  M3, (I, K)  Q4, (K, I)  Q4, (I, O)  Q4, (O, I)  Q4, 
(K, O)  Q4, (O, K)  Q4, {I, K}  M5, {I, O}  M5, 
{K, O}  M5, {I, K, O}  M7, (I, {K, O})  Q8, (K, {I, O})  Q8, 
(O, {I, K})  Q8, (I, {K, O})  Q9, (K, {I, O})  Q9, 
(O, {I, K})  Q9}; 

M11 = {({I, K}, O) : (I, {K, O})  Q8 and (K, {I, O})  Q8 
and (O, {I, K})  Q8}; 
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M12={({I, K}, O) : (I, {K, O})  Q9 and (K, {I, O})  Q9 and 
(O, {I, K})  Q9}; 

M13= Q8Q9; 
M14 = {{I, K, O} : (I, {K, O})  Q8 and (K, {I, O})  Q8 and 

(O, {I, K})  Q8}; 
M15 = {{I, K, O} : (I, {K, O})  Q9 and (K, {I, O})  Q9 and 

(O, {I, K})  Q9}. 
 
On done suppositions in result we receive  
 
Mi = [Ji]θ, i = 1, 2, …, 15.  

 
Example 

1. Initial given (sets R, ZEs): R={1}; Z2s={1} (simplified for 
the sake of brevity, actually Z2s={1,2}).  

L={1,2}, Ω={1N2N, 1R2N, 1S2N, 1N2R, 1R2R, 1S2R, 1N2S, 1R2S, 
1S2S}; Ω(1)={1N2N, 1R2N, 1S2N}, T1r2n=T1s2n={1}, 1R2NΩF, 
T1n2n=, 1N2NΩW, МС(Ω(1))={1R}; Ω(2)={1N2N, 1N2R, 1N2S}, 
T1n2s={1,2}, 1N2SΩF, T1n2r={2}, 1N2RΩW, МС(Ω(2))={2S}. The 
classes of cross-sections (sets Ji): J1=(1), J2=(2); 
[J1]θ={J1}={1}, [J2]θ={J2}={2}. 

2. R={{1, 2}}; Z3s={1,2}. J3=(1,2), J2=(3). 
3. R= {{1, 2}}; Z3s={1}. J3=(1,2), J4=(3, 2).  
4. R={{1, 2}}; Z3s={1}, Z4s={2}. J3=(1,2), [J4]θ ={(3, 2), (4, 

1)}, J5=(3, 4). 
5. R={{1, 2}, {1, 4}, {2, 3}}; Z3s={1}, Z4s={2}. [J3]θ ={(1, 2), 

(1, 4), (2, 3)}, J6=(3, 4). 
6. R={{11, 12, 13}}; Z1s={11,12,13}. J2=(1), J7=(11, 12, 

13). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Fragment of electric system scheme 

 
7. R={{1, 11, 12}}; Z2s={11, 12}. J4=(2, 1), J7=(1, 11, 12). 
8. R={{11, 12, 13}}; Z1s={11}, Z2s={12, 13}. J4=(2, 11), 

J5=(2, 1), J7=(11, 12, 13), J8=(1, 12, 13). 
9. R={{1, 12, 13}, {1, 2, 14}}; Z2s={12,13}, Z1s={14}. J6=(2, 

1), [J7]θ ={(1, 12, 13), (1, 2, 14)}. 
10. R={{1, 2, 3}}; Z4s={1}, Z5s={2}, Z6s={3}. J7=(1, 2, 3), 

[J8]θ ={(6, 1, 2), (5, 1, 3), (4, 2, 3)}, [J9]θ ={(3, 4, 5), (2, 4, 6), 
(1, 5, 6)}, J10=(4, 5, 6). 

11. R={{1, 12, 13}, {11, 2, 13}}; Z1s={11}, Z2s={12}, 
Z3s={13}. [J7]θ ={(1, 12, 13), (11, 2, 13)}, [J8]θ ={(3, 1, 12), (3, 
11, 2)}, J11=(2, 1, 13), J12=(1, 2, 3). 

12. R={{11, 2, 3}, {1, 12, 13}}; Z1s={11}, Z2s={12}, 
Z3s={13}. [J7]θ ={(11, 2, 3), (1, 12, 13)}, [J8]θ ={(3, 1, 12), (2, 
1, 13)}, J13=(1, 2, 3). 

13. R={{11, 2, 3}, {1, 12, 13}, {1, 2, 13}}; Z1s={11}, 
Z2s={12}, Z3s={13}. [J7]θ ={(11, 2, 3), (1, 12, 3), (1, 2, 13)}, 
J14=(1, 2, 3). 

14. R={{1, 12, 13}, {11, 12, 3}, {11, 2, 13}}; Z1s={11}, 
Z2s={12}, Z3s={13}. [J7]θ ={(1, 12, 13), (11, 12, 3), (11, 2, 13)}, 
[J11]θ ={(3, 1, 12), (2, 1, 13), (2, 3, 11)}, J15=(2, 1, 3). 

15. Fig.3 shows the fragment of a part of electric system 
representing the circuit of the substation, the sets 
R = M3 = {{14, 13}, {8, 7}, {19, 18}, {6, 18}, {19, 5}, {6, 5}, 
{30, 29}, {8, 13}, {19, 7}, {6, 7}, {30, 5}, {14, 7}, {8, 18}, 
{8, 5}, {6, 29}}; Z5 = {18, 20, 28, 29}, Z6 = {19, 20, 30, 31}, Z7 
= {13, 18, 26}, Z8 = {14, 19, 27}, Z13 = {7, 18, 26}, Z14 = {8, 
19, 27}, Z18 = {5, 7, 13, 20, 26, 28, 29}, Z19 = {6, 8, 14, 20, 
27, 30, 31}, Z29 = {5, 18, 20, 28}, Z30 = {6, 19, 20, 31}. 

List all minimal cross-sections (minimal-cut failure 
states), where number of elements in states R и S does not 
exceed quantity 2: M2 = {{20}}, M4 = {(26, 14), (27, 13), 
(26, 8), (27, 7), (26, 19), (27, 18), (28, 19), (31, 18), (13, 6), 
(26, 6), (28, 6), (14, 5), (27, 5), (31, 5), (28, 30), (31, 29), 
(30, 7), (31, 7), (28, 8), (29, 8)}, M5 = {{27, 26}, {14, 28}, 
{14, 29}, {27, 28}, {27, 29}, {30, 13}, {30, 26}, {31, 13}, 
{31, 26}, {31, 28}}, M6 = {{18, 14}, {19, 13}, {29, 19}, 
{30, 18}}. An example of the operation of a computer 
program for the formation of cross-sections is shown in 
Fig. 4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Computer program for the formation of minimal cross-
sections (minimal-cut failure states) [Ji]θ : i = 2, 3, 4, 5, 6 

 
Conclusions 

The concept of a cross-section of a complex system is 
introduced and a classification of sections is obtained based 
on the contribution to the resulting reliability indicators.  

Fifteen different classes of sections are identified in the 
set of one-, two- and three-element sections, and a 
combinatorial algorithm for the formation of these classes is 
developed. 

The presented model can be used to form failure states 
of real electric power systems. 
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