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analysis 

 
 

Streszczenie: Układ elektroenergetyczny uszkadza się głównie na skutek czynników o charakterze losowym. W takim przypadku bardzo pomocne 
są komputerowe metody pozwalające na symulacje zjawisk zachodzących w systemie. Metody te wraz z rozwojem technik komputerowych stały się 
coraz częściej używanym narzędziem badawczym. Do prawidłowego zamodelowania działania elementów systemu elektroenergetycznego 
niezbędne jest odwzorowanie rozkładów funkcji niezawodności oraz funkcji odnowy poszczególnych elementów, Rozkłady prawdopodobieństwa 
czasu poprawnej pracy lub czasu trwania awarii elementów składowych można zamodelować przy pomocy wybranych generatorów liczb 
pseudolosowych. W artykule zaprezentowane i przetestowane zostaną generatory podstawowych, najczęściej wykorzystywanych w analizach 
niezawodnościowych układów elektroenergetycznych, rozkładów (rozkładu normalnego, rozkładu Weibulla, rozkładu wykładniczego i rozkładu 
logarytmiczno - normalnego). 
 
Abstract: An electric power system is damaged mainly due to random factors. In this case, computer methods that allow simulation of phenomena 
occurring in the system are very helpful. These methods, along with the development of computer techniques, have become an increasingly used 
research tool. In order to properly model the operation of the electric power system elements, it is necessary to map the distributions of the reliability 
function and the renewal function of individual elements. The probability distributions of the correct operation time or the failure duration of the 
components can be modelled using selected pseudorandom number generators. The article presents and tests the distribution generators most 
often used in reliability analyses of electric power systems, and which are considered the standard - normal distribution, Weibull distribution, 
exponential distribution and log-normal distribution. (Generatory liczb pseudolosowych stosowane w analizie niezawodnościowej układów 
elektroenergetycznych). 
 
Słowa kluczowe: generatory liczb pseudolosowych, metody komputerowe, dystrybuanta. 
Keywords: pseudo-random number generators, computer methods, cumulative distribution function. 
 
 
Introduction 

The available (universal and Polish) literature describes 
the simplest random number generators – exponential and 
normal distribution generator. In reliability analysis, when 
evaluating the renewal function or the failure duration 
function, often Weibull distributions or log-normal 
distribution are encountered. Today, computer simulations 
are very often applied to analyse the operation and 
reliability of electric power systems. The use of 
pseudorandom number generators allows modelling the 
operation of individual devices. However, this cannot be 
done properly without knowing the computations for other 
distributions. 

Generating pseudorandom numbers with an appropriate 
distribution is possible by many methods, differing in ways 
of approximation or time of finding the appropriate random 
number. However, a true random number cannot be 
obtained as a result of software-generated random 
numbers. This is only possible through a physical 
generator.  

The generators used in the software are based on a 
uniform distribution generator from 0 to 1. With the uniform 
distribution generator, the results obtained are converted 
into numbers with a required random distribution. With a 
suitable approximation, it can be assumed that the numbers 
obtained are random numbers with a required distribution, 
although in fact, the numbers are pseudorandom numbers 
and the distributions by which they are generated do not 
fully reflect the nature of the interval, especially at its ends. 
[1, 2] 

This article presents and tests the generators most 
frequently used to describe the reliability of electric power 
systems. These include exponential distribution, Weibull 
distribution, normal distribution and log-normal distribution. 
[3] 
 

Characteristics of the developed pseudorandom 
number generators 
 The authors of the publication have created a computer 
application that models the generation of pseudorandom 
numbers according to a given distribution with specific 
parameters. Below is a description of the mathematical 
relations to be entered into the simulation software.  
 For the three tested distributions, the cumulative 
distribution function was used.  
 Suppose that a random variable R is a uniformly 
distributed variable over the interval [0, 1]. Let F be a 
continuous and strictly different distribution function of some 
probability distribution. We define it as: 
 

(1) )(X 1 RF   

Exponential distribution generator 
 The random variable W has an exponential distribution if 
its distribution is expressed by the formula [4]: 
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Where c > 0 is a certain constant (1/c is the expected 
value of a random variable W). Let [4]: 

(3)  WcX    

 The random variable X therefore has an exponential 
distribution with an expected value of one. Because from a 
variable of exponential distribution with expected value c = 
1 it is possible to obtain a random variable with exponential 
distribution with any value of parameter c, for further 
calculations, only the random variable X [2] can be adopted. 
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 To generate numbers according to the exponential 
distribution, the inverse distribution function method is 
applied.  
 If F(x) is a cumulative distribution function of exponential 
distribution:  

(4) 
xxF  exp1)(  

Then: 

(5) )1ln()(1 rrF 
 

where: r – number generated with uniform distribution over 
the interval [0, 1]. 
 
 The scheme for generating random numbers is as 
follows: 

1. Generate number rn with uniform distribution over 
the interval [0, 1], 

2. Calculate the number: 

(6) )1ln( rxn   

 The presented method calculates a random variable 
with the parameter c = 1, however, if the parameter c≠1, the 
formula can be shown as: 
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Weibull distribution generator 

 A random variable X has Weibull distribution with 
parameters (, α) if its probability distribution density is 
expressed by the formula [4]:  
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where  > 0, α > 0 are constants.  

 The cumulative distribution function of this distribution 
takes the form: 

(9) 0],exp[1)(  xxxF   

 The inverse cumulative distribution function method 
leads to the following algorithm: 

(1) Generate a random variable R with uniform 
distribution over the interval [0, 1], 

(2) Calculate:  
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 For Weibull distribution, parameters b and ν are most 
commonly applied and a conversion should also be used as 
follows: 
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 To generate the variables according to a normal 
distribution, a central limit theorem method should be 
applied. This method consists of generating a random 
variable X with a normal distribution and approximating it 
using aggregated independent random variables R1, R2, …, 
Rn with the same uniform distribution in the interval [0, 1]. 

Because the expected value ERi = ½ and D2Ri = 1/12, thus 
for sufficiently large n random variable [5, 6, 10]: 
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has a normal distribution N(0, 1). Assumed n = 12 (the so-
called "right of the dozen"), then the denominator in formula 
11 is equal to unity and there is no need to perform division. 

Log-normal distribution generator 

 If a random variable X has a normal distribution with 
parameters (µx, δx), then the variable  
 Y= exp x has a log-normal distribution with parameters  
(µy, δy), the expected value of which and variance are 
equal, respectively, to: [6] 
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(14) ]1exp[]2exp[ 222  xxxy    

 The following algorithm has been applied to generate 
the random variable Y for data x and δx: 

(1) Generate a random variable X according to a 
normal distribution with parameters N(0, 1), 

(2) Calculate: 

(15) ]exp[ yyXY    

Testing random number generators 
 Pseudorandom number generators are treated as being 
random generating devices such as a tossed coin when in 
use. The next number Xn produced by this generator is 
therefore taken as a random variable and the verification 
whether the generator produces random numbers with the 
desired probability distribution comes down to verifying 
whether the sequence X0, X1, …, Xn-1 can be treated as a N 
– element simple sample of a specific population - so 
whether it is a series of independent random variables with 
the same probability distribution. [7] 
 Statistical tests designed to verify random number 
generators can be divided into two groups: independence 
tests and distribution compliance tests. 
 In the case of pseudorandom number generators as 
applied in electric power system reliability analyses, 
distribution compliance tests are crucial. Using Pearson's 
chi-squared tests and  - Kolmogorov's tests, the 
hypothesis that a given sample of drawn numbers comes 
from a population with a given probability distribution has 
been verified. This verification has been made for the four 
pseudorandom number generators described earlier. Tests 
have been conducted to verify the given hypothesis for 50, 
100 and 1000 drawn numbers.  
 Relations and symbols used for Pearson's test 2 (for all 
distributions) [8, 9] 
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where: 2 – the statistical value determined, 
2 – the 

statistical value read from Pearson's 2 distribution, ni – 
number of elements in a given class interval, pi – the 
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probability that a random variable will take values of class 
'i', 

(17) 1 krLss  

where:Lss – degrees of freedom, r – number of intervals, k – 
number of distribution parameters.  
 Relations and symbols used for the Kolmogorov’s  test: 
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where: nsk – accumulated population size, ni – number of 
elements in a given class interval, 
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where: Fn(x) – empirical distribution function, n – sample 
size 
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where: F1(x) – a theoretical distribution function for 
exponential distribution, F2(x) – a theoretical distribution 
function for Weibull distribution, F3(x) – a theoretical 
distribution function for normal distribution (read from the 
tables), F4(x) – a theoretical distribution function for log-
normal distribution, T – class interval end, θ – mean value. 

(23) )()(sup xFxFD n   

(24) nD   

where:  - statistical value,  - the statistical value for the 
statistical significance α = 0,05, = 1,358. 
 The article, due to its volume, includes test results 
(without detailed calculations) and a graphical presentation 
of empirical distributions for individual analyses. 
 
Table 1. Results of calculations for the exponential distribution 
generator 

 50 generated 
values 

100 
generated 

values 

1000 
generated 

values 
Kolmogorov’s λ 

test 
λ = 0,35 
λ < λ α 

The following 
hypothesis 
should be 
adopted 

λ = 0,5 
λ < λ α 

The following 
hypothesis 
should be 
adopted 

λ = 0,158 
λ < λ α 

The following 
hypothesis 
should be 
adopted 

Pearson’s 2 
test 

2 = 2,62 
2

α= 9,49 
2<2

α 
The following 

hypothesis 
should be 
adopted 

2 = 0,95 
2

α = 5,99 
2<2

α 
The following 

hypothesis 
should be 
adopted 

2 = 1,61 
2

α = 11,07 
2<2

α 
The following 

hypothesis 
should be 
adopted 

Exponential distribution generator 
 On the basis of data obtained with the use of an 
exponential distribution generator, tests have been 
performed to verify the hypothesis that a given generator 
produces numbers according to exponential distribution. 
Table 1 summarises the results obtained from the tests. 

 For the analysis, a distribution with the parameter  
λ = 0,1542 has been adopted. Using the developed 
simulation software, 50, 100 and 1000 random number 
values have been generated. 
 On the basis of empirical data, a hypothesis on the 
exponential distribution of generated values has been 
established.  
 Below, Figures 1, 2 and 3 show the graphs for matching 
the theoretical distribution to empirical values, developed in 
Statistica software for 50, 100 and 1000 generated values, 
respectively. 

 
Fig. 1. Empirical distribution determined by simulation for 50 
generated values according to exponential (bar chart) and 
theoretical (solid line) distribution 

 
 

Fig. 2. Empirical distribution determined by simulation for 100 
generated values according to exponential (bar chart) and 
theoretical (solid line) distribution 

 
Fig. 3. Empirical distribution determined by simulation for 1000 
generated values according to exponential (bar chart) and 
theoretical (solid line) distribution 
 

Normal distribution generator 
 On the basis of data obtained with the use of a normal 
distribution generator, tests have been performed to verify 
the hypothesis that a given generator produces numbers 
according to normal distribution. Table 2 summarises the 
results obtained from the tests.[10] 
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 The distribution with the parameters m = 17,8699  
δ = 8,7684 has been adopted for analysis. Using the 
simulation software, 50, 100 and 1000 random number 
values have been generated. 
 On the basis of empirical data, a hypothesis on a normal 
distribution of generated values has been established. 
Table 2. Results of calculations for the normal distribution 
generator 

 50 generated 
values 

100 
generated 

values 

1000 
generated 

values 
Kolmogorov’s λ 

test 
λ = 0,71 
λ < λ α 

hypothesis 
accepted 

λ = 0,4 
λ < λ α 

hypothesis 
accepted 

λ = 0,949 
λ < λ α 

hypothesis 
accepted 

Pearson’s 2 
test 

2 = 9,09 
2

α = 7,81 
2 >2

α 
hypothesis 

rejected 

2 = 1,77 
2

α = 5,99 
2 <2

α 
hypothesis 
accepted 

2 = 76 
2

α = 5,99 
2 >2

α 
hypothesis 

rejected 

 
Fig. 4. Empirical distribution determined by simulation for 50 
generated values according to normal (bar chart) and theoretical 
(solid line) distribution 

 
Fig. 5. Empirical distribution determined by simulation for 100 
generated values according to normal (bar chart) and theoretical 
(solid line) distribution 

 
Fig. 6. Empirical distribution determined by simulation for 1000 
generated values according to normal (bar chart) and theoretical 
(solid line) distribution 

Figures 4, 5 and 6 show the graphs for matching the 
theoretical distribution to empirical values, developed in 
Statistica software for 50, 100 and 1000 generated values, 
respectively. 
 
Weibull distribution generator 
 On the basis of data obtained with the use of a Weibull 
distribution generator, tests have been performed to verify 
the hypothesis that a given generator produces numbers 
according to Weibull distribution. Table 3 summarises the 
results obtained from the tests. 
 The distribution with the parameters ν = 4,3, b = 12 has 
been adopted for analysis. Using the simulation software, 
50, 100 and 1000 random number values have been 
generated.  On the basis of empirical data, a 
hypothesis on the Weibull distribution of generated values 
has been established. 
 
Table 3. Results of calculations for the Weibull distribution 
generator 

 

 
Figures 7, 8 and 9 show the graphs for matching the 
theoretical distribution to empirical values, developed in 
Statistica software for 50, 100 and 1000 generated values, 
respectively. 

 

 
Fig. 7. Empirical distribution determined by simulation for 50 
generated values according to Weibull (bar chart) and theoretical 
(solid line) distribution 
 
 
 
 

 50 
generated 

values 

100 
generated 

values 

1000 
generated 

values 
Kolmogorov’s λ 

test 
λ = 1,343 
λ < λ α 

hypothesis 
accepted 

λ = 0,4 
λ < λ α 

hypothesis 
accepted 

λ = 0,71 
λ < λ α 

hypothesis 
accepted 

Pearson’s 2 
test 

2 = 21,37 
2

α = 5,99 
2 >2

α 
hypothesis 

rejected 

2 = 5,45 
2

α = 18,31 
2 <2

α 
hypothesis 
accepted 

2 = 10,29 
2

α = 11,07 
2 <2

α 
hypothesis 
accepted 

 50 
generated 

values 

100 
generated 

values 

1000 
generated 

values 
Kolmogorov’s λ 

test 
λ = 1,343 
λ < λ α 

hypothesis 
accepted 

λ = 0,4 
λ < λ α 

hypothesis 
accepted 

λ = 0,71 
λ < λ α 

hypothesis 
accepted 

Pearson’s 2 
test 

2 = 21,37 
2

α = 5,99 
2 >2

α 
hypothesis 

rejected 

2 = 5,45 
2

α = 18,31 
2 <2

α 
hypothesis 
accepted 

2 = 10,29 
2

α = 11,07 
2 <2

α 
hypothesis 
accepted 
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Fig. 8. Empirical distribution determined by simulation for 100 
generated values according to Weibull (bar chart) and theoretical 
(solid line) distribution 

 
Fig. 9. Empirical distribution determined by simulation for 1000 
generated values according to Weibull (bar chart) and theoretical 
(solid line) distribution 
 
Log-normal distribution generator 
 On the basis of data obtained with the use of the log-
normal distribution generator, tests have been performed to 
verify the hypothesis that a given generator produces 
numbers according to normal distribution. Table 4 
summarises the results obtained from the tests. 
 The distribution with the parameters m = 1,99, δ = 0,05 
has been adopted for analysis. Using the simulation 
software, 50, 100 and 1000 random number values have 
been generated.  
 On the basis of empirical data, a hypothesis on the log-
normal distribution of generated values has been 
established. 
 
Table 4. Results of calculations for the log-normal distribution 
generator 

 50 generated 
values 

100 
generated 

values 

1000 
generated 

values 
Kolmogorov’s λ 

test 
λ = 0,495 
λ < λ α 

hypothesis 
accepted 

λ = 0,30 
λ < λ α 

hypothesis 
accepted 

λ = 0,63 
λ < λ α 

hypothesis 
accepted 

Pearson’s 2 
test 

2  = 13,96 
2

α = 19,68 
2 <2

α 
hypothesis 
accepted 

2  = 6,28 
2

α = 12,59 
2 <2

α 
hypothesis 
accepted 

2  = 8,65 
2

α = 14,07 
2 <2

α 
hypothesis 
accepted 

  
 Figures 10, 11 and 12 show the graphs for matching the 
theoretical distribution to empirical values, developed in 
Statistica software for 50, 100 and 1000 generated values, 
respectively. 

 
 
 

 
Fig. 10. Empirical distribution determined by simulation for 50 
generated values according to log-normal (bar chart) and 
theoretical (solid line) distribution 

 
Fig. 11. Empirical distribution determined by simulation for 100 
generated values according to log-normal (bar chart) and 
theoretical (solid line) distribution 
 

 
Fig. 12. Empirical distribution determined by simulation for 1000 
generated values according to log-normal (bar chart) and 
theoretical (solid line) distribution 
 
Conclusion 
 By way of application of the mathematical relations 
described in the article, it is possible to generate random 
numbers according to a given distribution with specific 
parameters. With any software modelling the operation of 
electric power system devices, it is possible to program 
their operation according to the assumed distribution. This 
provides an opportunity to perform wider and more effective 
reliability analyses. 
 Only the results for the generated 50, 100 and 1000 
values are included in the article, due to its volume. An 
analysis has also been performed for 500 and 10,000 
results. As shown, matching the generated empirical 
distributions to the theoretical value of the probability 
density function is better for a large random sample.  
 For over 100 generated values, according to the given 
distribution, the results are considered satisfactory for each 
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of these. Indeed, during a computer simulation performed 
for electric power systems, we obtain a number of results 
between 100 and 1000 cases and these values can be 
considered as correctly generated. 
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