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Classifying Transformer Winding Fault Type, Location and 
Extent using FRA based on Support Vector Machine 

 
 

Abstract. In this paper, four common winding faults in power transformers (axial displacement (AD), serial capacitance variation (VSC), ground 
capacitance variation (VGC), open circuit (OC)) are simulated on a transformer winding model to classify the fault type, location and extent, by 
applying an intelligent methodology for diagnosing transformer faults, depends on building a comprehensive database by collecting Frequency 
Responses Analysis (FRA) related to health and faulty conditions and analyzing them using statistical and mathematical indicators, this base that 
can inventory all possible faults in terms of location and extent, which is used  to train a support vector machine (SVM) classifier on the faults 
included in it, which is then able to classify any new data . The results of the tests showed that the proposed method is characterized by high 
accuracy in detecting the type of defect, determining its location and the extent of its occurrence, It also contributes to the development of the 
application of machine learning on transformers. 
 
Streszczenie.\\ W tym artykule symulowane są cztery typowe uszkodzenia uzwojeń w transformatorach mocy (przemieszczenie osiowe (AD), 
szeregowa zmiana pojemności (VSC), zmiana pojemności uziemienia (VGC), obwód otwarty (OC)) na modelu uzwojenia transformatora w celu 
sklasyfikowania typu zwarcia , lokalizacji i zasięgu, poprzez zastosowanie inteligentnej metodologii diagnozowania uszkodzeń transformatorów, 
polega na zbudowaniu kompleksowej bazy danych poprzez zbieranie Analizy Odpowiedzi Częstotliwości (FRA) związanej ze stanami zdrowia i 
wadliwymi oraz analizowanie ich za pomocą wskaźników statystycznych i matematycznych, tej bazy, która może inwentaryzować wszystkie 
możliwych błędów pod względem lokalizacji i zasięgu, który jest używany do trenowania klasyfikatora maszyny wektora nośnego (SVM) na 
zawartych w nim błędach, który jest następnie w stanie sklasyfikować dowolne nowe dane. Wyniki badań wykazały, że proponowana metoda 
charakteryzuje się dużą dokładnością w wykrywaniu rodzaju defektu, określaniu jego lokalizacji oraz zasięgu jej występowania, przyczynia się 
również do rozwoju zastosowania uczenia maszynowego na transformatorach. (Klasyfikacja typu, lokalizacji i zakresu uszkodzenia uzwojenia 
transformatora za pomocą FRA w oparciu o maszynę wektora nośnego) 
 
Keywords: Frequency response analysis (FRA),support vector machine (SVM), winding faults,diagnostic. 
Słowa kluczowe:. Odpowiedź częstotliwościowa, uszkodzeni uzwojenia  
 
 
Introduction 
      Power transformers are one of the most important 
components of electrical power networks, and as a result of 
the loss resulting from the sudden breakdown of these 
transformers, it has become necessary to assess their 
condition and verify their performance periodically through 
periodic monitoring strategies. This enables us to shut down 
the transformer before imminent failure, helping us reduce 
maintenance costs and save time. But before that, the type, 
location and extent of the defect must be determined, and 
this represents a great challenge for researchers. 
       Many research works have provided techniques for 
monitoring the state of transformers that depend on 
temperature measurement [1-4], dissolved gas in oil 
analysis (DGA) [5-7], Dielectric Response Analysis [8, 9] 
,and vibration analysis [10-12], Frequency Response 
Analysis (FRA) [13-18] which have been widely used due to 
its accuracy, simplicity, and speed are among the most 
reliable and sensitive method for evaluating transformer 
condition as previous researchs shown, where it can 
determine the defect after comparing the measured 
frequency response signatures with the transformer health 
signature. 
      Therefore, many studies that are concerned with 
discovering transformer faults have relied on FRA 
frequency response analysis to diagnose winding defects 
and determine their location and extent. In the paper [19], 
the extent of two types of mechanical defects (AD and RD) 
were estimated using Euclidean distance (ED). and to 
distinguish between the two defects, Regional ED (RED) 
and the ratio of maximum ED to minimum RED (MMR)  
were used. Was applied to the defect simulation results. 
Either in [20] Three mechanical faults (AD, RD, SDV ) 
detected using the transfer function (TF), Was used  
Frequency and amplitude weight functions were relied upon 
to discover the location and extent of the fault, but regarding 

detecting the types of fault was used the correlation 
coefficient (CC) for three range. 

With the development of artificial intelligence (AI) in 
recent years, many studies have applied it with the 
technique of frequency response analysis (FRA) to 
diagnose faulty transformers, In the paper  [21] by transfer 
function (TF) analysis using Vector fitting (VF), Been trained 
a probabilistic neural network (PNN) to detecting the type of 
faults (AD, RD, DSV, SC), But the location and extent have 
not been determined. Either in the study [22] two features, 
the TFs measured for four faults (Disc-to-disc, short circuit, 
RD, and AD ) Processing by mathematical indices (IFR, 
IAR) and VF, They were used to train SVM classifier to 
detect type and location of Previous faults, The results are 
compared with ANN, However, the authors did not address 
the level of faults. 

working on a single defect  [23] here the authors 
simulated short circuit fault (low and high-impedance) were 
applied to the model winding, the support vector regression 
(SVR) was used to interpret those FRA traces to detect 
exact fault location, However, the defect level is also not 
covered in this paper. in [24], The authors apply 4 common 
faults (DSV, RD, SC, and AD) to the transformer winding, to 
detect the type, location, and extent of faults by comparing 
the transfer function  (TF) by W-index and used  FDA  for 
dimension reduction, The results are satisfactory, but the 
method is not comprehensive. 

Either in [25] the  SVM was used with FRA data 
extracted  from a series of experiments were carried out on 
an actual transformer, and then PSO algorithm is used to 
optimize SVM model parameters, to be discriminating fault 
types and degrees of transformer deformation faults . 

In general, we noticed that the majority of these studies, 
especially those that relied on classification algorithms, 
used non-comprehensive databases, meaning that the 
observations included in these rules are not sufficient to 
enumerate all possible cases of fault, and this is because 
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the fault was tested in some sites and at a certain level 
only, and therefore if the defect occurred in a new site, the 
classifier fails to classify it because it was not trained on it, 
moreover, most of these studies did not address the 
determination of the level of defects, despite its great 
importance, therefore, in this paper, We attempted to 
processing these problems by proposing a methodology 
based on building a comprehensive database for each fault 
containing the majority of possible cases in terms of 
location and extent, with the choosing of an SVM classifier 
to detect the type, location, and extent of the fault. 
 
2 .    Summary of methods employed :  
       In this paper, we use SVM to predict the type, location 
and extent of faults, but the most important thing to do that, 
it's the right choice for the features that are used for training 
and testing SVM, Therefore we used a mixture of 
mathematical and statistical indicators (IFR and IAR, ASLE, 
DABS, IMSE, CC), that will be described here: 
 

2.1   Mathematical indices : 
       According to previous studies [26],[27], when winding 
faults occur, the most important transformations observed in 
FRA frequency responses are peak points and trough ( This 
is shown in Fig .4.a) . 
Proceeding from this, we can use the difference in 
frequency and amplitude as effective indicators for SVM 
training, the variation of  frequency in i-th  peak and trough 
points It is indicated by  index of frequency ratio (IFR) as 
follows: 
 

(1)                 𝐼𝐹𝑅௧௜ ൌ
௙ೖ,೟೔

௙೚,೟೔
     ,   𝐼𝐹𝑅௣௜ ൌ

௙ೖ,೛೔

௙೚,೛೔
            

 

where ( fk,ti and fo,ti) and (fk,pi  and fo,pi) represent the i-th 
frequency in trough and peak  points , respectively  
and (k : represents the failure condition , O : is indication of 
the healthy state) . 
with same way we express the variation of amplitude at the 
i-th peak and trough points by index of amplitude ratio (IAR) 
as follows: 

(2)                 𝐼𝐴𝑅௧௜ ൌ
஺ೖ,೟೔

஺೚,೟೔
     ,   𝐼𝐴𝑅௣௜ ൌ

஺ೖ,೛೔

஺೚,೛೔
              

 

where ( Ak,ti and Ao,ti ) and (Ak,pi  and Ao,pi ) represent the 
amplitude of impedance  at  the i-th  trough and peak  
points, respectively .  
 
Table .1   Statistical indicators expressions 

Indicators Descriptions 
Absolute sum 
of logarithmic 
error (ASLE) 

𝐴𝑆𝐿𝐸 ൌ
∑ |20𝑙𝑜𝑔ଵ଴|𝑋௜หെ20𝑙𝑜𝑔ଵ଴|𝑌௜|ห

ே
௜ୀଵ

𝑁
 

Absolute 
difference 
(DABS) 

𝐷𝐴𝐵𝑆 ൌ
∑ |𝑋௜ െ 𝑌௜|ே

௜ୀଵ

𝑁
 

mean square 
error (IMSE) 𝐼𝑀𝑆𝐸 ൌ

∑ ሺ𝑋௜ െ 𝑌௜ሻଶே
௜ୀଵ

𝑁
 

correlation 
coefficient 
(CC) 

𝐶𝐶ሺ𝑋, 𝑌ሻ ൌ
∑  ሺ𝑋௜ െ 𝑋തሻሺ𝑌௜ െ 𝑌തሻே

௜ୀଵ

ඥ∑  ሺ𝑋௜ െ 𝑋തሻଶே
௜ୀଵ  ∑  ሺ𝑌௜ െ 𝑌തሻଶே

௜ୀଵ

 

 

‘𝑁’ : appear the total size of the data set .  ‘𝑋𝑖’ and ‘𝑌𝑖’ : 
represents the total of all variables in the data set .‘𝑋ത ’ and 
‘𝑌ത ’  : represents the mean values of observations. 
 
2.2    Statistical indicators : 
         With the aim of improving the explanatory ability of  
FRA We used some statistical parameters that have proven 
effective  such as absolute sum of logarithmic error (ASLE) 

[28, 29, 31, 32, 34],  the absolute difference (DABS) [28, 30, 
32, 34], correlation coefficient (CC) [28, 30, 31, 33, 34], 
mean square error (MSE) [28, 29, 34]. Due to changing of 
morphological characteristics of FRA signatures  in the 
different frequency bands, We divided the signature into  
low, medium and high frequency band to improve the 
reliability of indicators, these indicators apply to all FRA 
signatures from the set of experiments in Section (3) in the 
mentioned frequency bands. 

Table.1 provides the mathematical expression for the 
indicators used in this study  : 
 

2.3    Support Vector Machine (SVM) : 
          Support vector machines (SVMs) are powerful yet 
flexible supervised machine learning algorithms which are 
used both for classification and regression. But generally, 
they are used in classification problems, SVM is built upon 
a solid foundation of statistical learning theory, were 
proposed by  Vapnik [35], nitially it was created to classify 
into two classes. Then SVM was recently developed as an 
machine learning algorithm, that's method  based on theory 
of statistical learning theory and the principle of minimum 
structural risk. It has special advantages to solve The 
problem of classification of samples is small, and non-
linear, And high-dimension,Therefore it is known for its 
efficiency, specially for classification problems. Which 
makes it very useful in classification faults in our  work [36]. 
        The idea of SVM is simple, It depends on creating a 
hyperplane or line that separates the data into classes to 
find the maximum marginal hyperlevel (MMH). The 
hyperplane is created in an iterative manner to reduce the 
error [37]. 
         The kernel functions is a mathematical tricks  used by 
SVM algorithms, it's allows is to drop the input data from 
Low-dimensional to higher dimension space, as for 
choosing the right function is very important to SVM's 
performance, among the common kernel functions are 
mentioned in [38]: 

 The linear function : 
(3)             𝐾ሺ𝑥, 𝑥’ሻ ൌ 𝑥. 𝑥’ 

 The polynominal kernel function : 
(4)      𝐾ሺ𝑥, 𝑥’ሻ ൌ ሺ𝑥. 𝑥’ሻௗ 𝑜𝑟 ሺ1 ൅ 𝑥. 𝑥’ሻௗ 

where d is the degree of the polynomial. 
 Gaussain radial basis functin : 

(5)    𝐾ሺ𝑥, 𝑥’ሻ ൌ 𝑒𝑥𝑝 ቀെ
ሺ௫ି௫ᇱሻమ

ଶఙమ ቁ 

where  𝑥 and 𝑥′ denote support vectors and 𝜎 is a RBF 
kernel parameter to be determined. 

 Sigmoid kernel function : 
(6)       𝐾ሺ𝑥, 𝑥’ሻ ൌ 𝑡𝑎𝑛ℎሺ𝑎଴ሺ𝑥. 𝑥’ሻ ൅ 𝛽଴ሻ 
 

3.   Equivalent model of a transformer winding : 
        In order to apply the proposed methodology, we 
applied it to a winding of a transformer which was inspected 
by Ragavan and Satish [39], The equivalent circuit 
modulation of the transformer winding depends on the FRA 
frequency response measurement data as follows: a 
number of sections (N = 6), equivalent inductance  
(Leq = 6.98mH), effective capacitance (Cg, eff = 5.6 ηF,  
Cg = 0.933 ηF), resistance Constant current (Rdc = 8Ω, 
 r = 1.333Ω) and distribution constant (α = 7.4833) , by  
using the number of sections  , the distribution constant and 
effective capacitance,  was calculated value of series 
capacitance [39], which was found  Cs = 0.6 ηF, in addition 
to determine the capacitance Serial from indirect 
measurement was discussed in [40] by adopting the DPI 
(zero-gain electrode shape) function described in [41]. 



 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 1/2022                                                                                         25 

Accordingly, the polynomial P(Cs) was determined from 
estimated  the numerical gain factor  " K≈1.1275 " (the value 
of  K was found to be 1 / Ceq with Ceq: equivalent input 
amplitude of the lump pattern [40]), number resonance 
points (N = 6) The transformative capacitance (Cg = 0.933 

ηF) such that :   
 

𝑃 ሺ𝐶𝑠ሻ ൌ  െ 2.2551𝐶𝑠6 െ  25.8717𝐶𝑠5 െ  37.7484𝐶𝑠4 െ
                  5.0699𝐶𝑠3 ൅  12.3388𝐶𝑠 ൅  5.5892𝐶𝑠 ൅ 0.662  
 
The roots of P (Cs) are: -0.25169 , -0.51095 , -1.20694,  

-0.32066, -9.79208 and 0.60979   .  
Then,  the serial capacitance value was determined which 
is Cs = 0.60979 ηF.  The Table 2 enables us to construct an 
induction matrix. 
 
Table  2 . Values of Self and Mutual Inductances (Ls, Mi-j, in mH) 
[39] 

Ls M1-2 M1-3 M1-4 M1-5 M1-6 

0.4310 0.2392 0.1435 0.0947 0.0612 0.0496 

 

 
Fig. 1.  Six-section synthesized reference circuit [39] 
 

 
Fig. 2. Detaled model of winding (constructed using MATLAB 
simulink) 
 
a)  

 
 

b) 

 
Fig.  3.    The frequency response to the healthy  status of the 
model winding  .    a) Magnitude    b) Phase 
 

3.1. Simulation of faults on the winding model : 
         After validating the model, we use it to study failures  
cases of winding using the FRA technique. The simulation 
of faults depends on changing the parameters of the 
healthy winding model according to the fault to be studied .  
the defects that have been simulated are as follow: 
 

 3.1.1.  Fault in the ground capacitance Cg (VGC) : 

         We can simulate different levels of fault by changing 
the Cg value (increasing from 10% to 90%) , then we repeat 
the process   on each disk, (Fig. 4.b) shows FRA data in 
normal and some faulty cases from each disc , and 
According to (Fig. 4.a) we can see that with increasing fault  
ratio the resonant frequencies are move  to the left  
regularly . 
 
a) 

 
b) 

 
Fig. 4. Frequency response curves of VGC. 
 

3.1.2.  Fault in the series capacitance Cs (VSC) : 
      To simulate different levels of this fault , the serial 
capacity Cs is changed (increasing 10% to 90%) between  
all  disks. Some of the FRA signatures measured between 
the different disks are shown in (Fig.5.a) , and as presented 
in (Fig. 5.b)  with  the fault level increases, the resonant 
frequencies are moved  to the left regularly. 
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a) 

 
b) 

 
Fig. 5. Frequency response curves of  VSC . 

 

3.1.3.  Axial displacement fault (AD) : 
           This defect is the result of unbalanced magnetic 
forces generated in the upper and lower parts of a certain 
disk as a result of a short circuit fault [42], we  can be 
simulated  this fault by changing the values of the mutual 
and self inductances of particular discs  with the possibility 
of neglected The capacitance effect  [43].  
Accordingly, we simulated this type of  fault by changing the 
inductance matrix, for easy visualization, consider the 
nominal inductance matrix  lL, corresponding to equation  
(7), as follows: 
 

(a 

                                   

After AD occurs between disks 4 and 5, we notice a change 
in the inductance matrix, The  lL matrix is shown in 
equation (8) and the subject of change (which will be 
estimated) are highlighted. The rest is unchanged. 
(b)   

                                         

 
Fig. 6.  Schematic of a six disk winding : (a) before and (b) after 
axial displacement (D4-D5)  

We simulated fault  in different proportions between 
each two consecutive disks (D1-D2), (D2-D3), (D3-D4), 
(D4-D5), (D5-D6)  to get different levels of fault , from the 
(Fig.7.a) we can see  the change in the FRA signals starting 
at 100 kHz , and the change in resonant frequency is 
related with   ratio of displacement, In (Fig.7.b) show  the 
FRA curves resulting from AD simulation among the disks 
of  winding . 
 
a) 

 
 
b)b

 
 
Fig. 7. Frequency response curves of AD 

 

3.1.4.   Open circuit fault (OC) : 
         We simulate this fault  by creating an open circuit at 
all winding disks , the result of simulation fault  shown in 
Fig. 8 is consistent with the results published in [44] , this 
type of fault  can be distinguished from the rest  faults  
easily because it has a significant and clear impact on the 
FRA signature especially in the low- frequency band. 
 

 
Fig. 8. Frequency response curves of OC  
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Fig. 9. diagram of proposed methodology 
 
4.   Detection methodology applied : 

The proposed methodology is based on two key stages: 
database construction and defect diagnosis. in the first 
stage, The FRA signatures are collected from simulations of 
the previous faults. after that, The features are extracted 
from these signatures using the most appropriate indicators, 
then a comprehensive database and four sub-bases of the 
tested faults are constructed by aggregating the obtained 
features. In the second stage, these bases are used to train 
and evaluate SVM in order to determine the type, location, 
and level of faults in the second stage. 

The methodology steps can be summarized in the 
following graph : 

After we simulate the four faults 210 times and obtaining 
the frequency responses, we collect and process these 
signals using the previously mentioned indicators and 
extract the features that were used in forming the 
databases, we will try to explain these steps as follows: 
 
4.1.  Feature extraction from FRA signature : 

       The most important stage is to extract the features, 
if the specific features summarize the problem accurately 

then we will get good results, Therefore, it is better to 
choose indicators with high precise and reliability  .  

in this study ,The features represent the variance 
between the reference FRA signal which is the normal 
condition and the FRAs signals for  defective condition. This 
variance is estimated using mathematical indices such as: 
IAR and IFR, which can be calculated via Equations (1) - (2) 
and statistical indicators (ASLE, DABS, IMSE, CC) 
mentioned in Table 1, these features are used as input for 
SVM . 
 

4.2. Databases : 
From the computed features, five databases are created, 
They are detailed in the following tables : 
4.2.1. Detection fault : In this process we have one 
database that includes the four faults data we use to detect 
the type of fault . 
 
Table  3.  database (Fault Detection) 

N. Class Number of observations  

1  
2 
3 
4 

AD fault 
VSC  fault 
VGC fault 
OC fault 

45  
54 (9 for eash) 
54 
54 
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4.2.2  location  fault : To discover the location of the 
defect. Each type needs a special database, so we have 
formed four databases, the details of which are in the 
following tables: 
 
Table  4. database for VGC fault (Fault location )    

Fault type  Class  Number of observations  
 
Variation  
Cg  fault 
(VGC) 

1 
2 
3 
4 
5 
6 

VCg1 
VCg2 
VCg3 
VCg4 
VCg5 
VCg6 

 
 
54 (9 for eash) 
 

 

 
Table  5. database for AD fault (Fault location )                                    

Fault 
type  class  Number ofobservations  

 
AD  
fault 

1 
2 
3 
4 
5 

between 1 - 2 disk 
between 2- 3 disk 
between 3 - 4 disk 
between 4 - 5 disk 
between 5 - 6 disk 

 
 
45 (9 for eash) 
 

 

Table  6. database for VSC fault (Fault location ) 

Fault type  class  Number of observations  
 
Variation  
Cs  fault 
(VSC) 
 

1 
2 
3 
4 
5 
6 

VCs1 
VCs2 
VCs3 
VCs4 
VCs5 

VCs6 

 
 
54 (9 for eash) 
 

 
Table  7. database for OC fault (Fault location )                                                                 

 
4.2.3. Extent fault : to determine the extent of the fault, we 
use three databases, each database contains one type of 
faults  divided into three classes , Also the previous 
databases used in the determine location step  can be used 
with only change  the output of the SVM  : 
 
Table  8. database for VGC or VSC fault (Fault extent )              

T
yp

. 

VCg or  VCs  fault(VGC and VSC) 

Lo
c.

 

D1 D2 D3 D4 D5 D6 

E
xt

. 

Lo
w

 

A
ve

. 

S
ev

. 

Lo
w

 

A
ve

. 

S
ev

. 

Lo
w

 

A
ve

. 

S
ev

. 

Lo
w

 

A
ve

. 

S
ev

. 

Lo
w

 

A
ve

. 

S
ev

. 

Lo
w

 

A
ve

. 

S
ev

. 

 
 
Table  9. database for AD fault (Fault extent )  

T
yp

. 

AD 

L
oc

. 

D1-D2 D2-D3 D3-D4 D4-D5 D5-D6 

E
xt

. 

L
ow

 

A
ve

. 

S
ev

. 

L
ow

 

A
ve

. 

S
ev

. 

L
ow

 

A
ve

. 

S
ev

. 

L
ow

 

A
ve

. 

S
ev

. 

L
ow

 

A
ve

. 

S
ev

. 

 

 

4.3 Training procedures :  
       First before training SVM, We need to define the input 
and output data, For this purpose, we use the set of 
indicators mentioned in Part Three to train classifier, as 
Equation (9) represents the input matrix for the complex 
indicator defined in Equations (1) and (2), which are as 
follows: 
 

(9)     

InputFeature1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝐹𝑅௧ଵ,஺஽ೕ

𝐼𝐹𝑅௧ଵ,௏ௌ஼ೞ
𝐼𝐹𝑅௧ଵ,௏ீ஼ ೥ 𝐼𝐹𝑅௧ଵ,ை஼೗

⋮ ⋮ ⋮ ⋮
𝐼𝐹𝑅௧௞,஺஽ೕ

𝐼𝐹𝑅௧௞,௏ௌ஼ೞ
𝐼𝐹𝑅௧௞,௏ீ஼ ೥ 𝐼𝐹𝑅௧௞,ை஼೗

𝐼𝐹𝑅௣ଵ,஺஽ೕ
𝐼𝐹𝑅௣ଵ,௏ௌ஼ೞ

𝐼𝐹𝑅௣ଵ,௏ீ஼೥
𝐼𝐹𝑅௣ଵ,ை஼೗

⋮ ⋮ ⋮ ⋮
𝐼𝐹𝑅௣௜,஺஽ೕ

𝐼𝐹𝑅௣௜,௏ௌ஼ೞ
𝐼𝐹𝑅௣௜,௏ீ஼೥

𝐼𝐹𝑅௣௜,ை஼೗

𝐼𝐴𝑅௧ଵ,஺஽ೕ
𝐼𝐴𝑅௧ଵ,௏ௌ஼ ೞ 𝐼𝐴𝑅௧ଵ,௏ீ஼ ೥ 𝐼𝐴𝑅௧ଵ,ை஼೗

⋮ ⋮ ⋮ ⋮
𝐼𝐴𝑅௧௞,஺஽ೕ

𝐼𝐴𝑅௧௞,௏ௌ஼ ೞ
𝐼𝐴𝑅௧௞,௏ீ஼ ೥ 𝐼𝐴𝑅௧௞,ை஼ ೗

𝐼𝐴𝑅௣ଵ,஺஽ೕ
𝐼𝐴𝑅௣ଵ,௏ௌ஼ ೞ

𝐼𝐴𝑅௣ଵ,௏ீ஼ ೥ 𝐼𝐴𝑅௣ଵ,ை஼ ೗

⋮ ⋮ ⋮ ⋮
𝐼𝐴𝑅௣௜,஺஽ೕ

𝐼𝐴𝑅௣௜,௏ௌ஼ ೞ
𝐼𝐴𝑅௣௜,௏ீ஼ ೥ 𝐼𝐴𝑅௣௜,ை஼ ೗ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
where: i , k : show the number of peaks and troughs , 
respectively in FRA signal . 
 j , s , z : represent  the level of faults AD,VSC and 
VGC,respectively. 
l : indicate the location of OC fault . 
 

As for equations (10) to (13) express the input matrix for the 
indicators mentioned in Table 1 :  
 

(10)           InputFeature2 

=቎

𝐴𝑆𝐿𝐸௅ி,஺஽ೕ
𝐴𝑆𝐿𝐸௅ி,௏ௌ஼ೄ

𝐴𝑆𝐿𝐸௅ி,௏ீ஼ೋ
𝐴𝑆𝐿𝐸௅ி,ை஼೗

𝐴𝑆𝐿𝐸ெி,஺஽ೕ
𝐴𝑆𝐿𝐸ெி,௏ௌ஼ೄ

𝐴𝑆𝐿𝐸ெி,௏ீ஼ೋ
𝐴𝑆𝐿𝐸ெி,ை஼೗

𝐴𝑆𝐿𝐸ுி,஺஽ೕ
𝐴𝑆𝐿𝐸ுி,௏ௌ஼ೄ

𝐴𝑆𝐿𝐸ுி,௏ீ஼ೋ
𝐴𝑆𝐿𝐸ுி,ை஼೗

቏       

 

(11)            InputFeature3 

=቎

𝐷𝐴𝐵𝑆௅ி,஺஽ೕ
𝐷𝐴𝐵𝑆௅ி,௏ௌ஼ೄ

𝐷𝐴𝐵𝑆௅ி,௏ீ஼ೋ
𝐷𝐴𝐵𝑆௅ி,ை஼೗

𝐷𝐴𝐵𝑆ெி,஺஽ೕ
𝐷𝐴𝐵𝑆ெி,௏ௌ஼ೄ

𝐷𝐴𝐵𝑆ெி,௏ீ஼ೋ
𝐷𝐴𝐵𝑆ெி,ை஼೗

𝐷𝐴𝐵𝑆ுி,஺஽ೕ
𝐷𝐴𝐵𝑆ுி,௏ௌ஼ೄ

𝐷𝐴𝐵𝑆ுி,௏ீ஼ೋ
𝐷𝐴𝐵𝑆ுி,ை஼೗

቏     

 

(12)            InputFeature4 

=቎

𝐼𝑀𝑆𝐸௅ி,஺஽ೕ
𝐼𝑀𝑆𝐸௅ி,௏ௌ஼ೄ

𝐼𝑀𝑆𝐸௅ி,௏ீ஼ೋ
𝐼𝑀𝑆𝐸௅ி,ை஼೗

𝐼𝑀𝑆𝐸ெி,஺஽ೕ
𝐼𝑀𝑆𝐸ெி,௏ௌ஼ೄ

𝐼𝑀𝑆𝐸ெி,௏ீ஼ೋ
𝐼𝑀𝑆𝐸ெி,ை஼೗

𝐼𝑀𝑆𝐸ுி,஺஽ೕ
𝐼𝑀𝑆𝐸ுி,௏ௌ஼ೄ

𝐼𝑀𝑆𝐸ுி,௏ீ஼ೋ
𝐼𝑀𝑆𝐸ுி,ை஼೗

቏       

 

(13) 

InputFeature 5=቎

𝐶𝐶௅ி,஺஽ೕ
𝐶𝐶௅ி,௏ௌ஼ೄ

𝐶𝐶௅ி,௏ீ஼ೋ
𝐶𝐶௅ி,ை஼೗

𝐶𝐶ெி,஺஽ೕ
𝐶𝐶ெி,௏ௌ஼ೄ

𝐶𝐶ெி,௏ீ஼ೋ
𝐶𝐶ெி,ை஼೗

𝐶𝐶ுி,஺஽ೕ
𝐶𝐶ுி,௏ௌ஼ೄ

𝐶𝐶ுி,௏ீ஼ೋ
𝐶𝐶ுி,ை஼೗

቏       

where :  
 LF :  low-frequency band, MF :  Medium frequency band 
and HF : High frequency band. 
 
    SVM output is a one-dimensional vector that indicates 
the type or location or extent of the fault. After extracting 
features from FRA signatures extracted from faults and 
placed in databases, they are used as input for training  
svm. 
In the first step when diagnosing faults  types in SVM_1, for 
the four classes, the input matrix sizes for Features 1 are 22 
x 210 and 3 x 210 for Features 2, 3, 4, 5. Next comes the 
fault locating step, where in SVM_2 for five classes the 
Input Matrix Sizes for Features 1 are 22 x 45 and 3 x 45 for 
Features 2, 3, 4, 5 and for SVM_3, SVM_4 and SVM_5 for 
6 classes Input matrix sizes for Features 1 It’s 22 x 54 and 
3 x 54 for features 2, 3, 4, 5. 

Fault type  class  Number of observations  
 
 
OC  fault 

1 
2 
3 
4 
5 
6 

Disk 1 
Disk 2 
Disk 3 
Disk 4 
Disk 5 
Disk 6 

 
 
54 (9 for eash) 
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In the third step, we determined the fault extent  for only 
three fault, as the input matrix sizes for Features 1 were 22 
x 54 and 3 x 54 for Features 2, 3, 4, and 5 in SVM_6 for 
three classes, and for SVM_7 and SVM_8 it was 22 x 54 for 
Features 1 And 3 x 54 for features 2, 3, 4, 5. 
before training any model SVM, the databases were 
standardized,  as an environment for training SVMs, we 
selected Libsvm a software package [45] with the necessary 
modifications, we adopted the radial basis function (RBF) 
kernel to train all SVM classifiers, and the optimal values of 
parameters (C, g) were determined using grid-parameter-
search method on the proposed ranges  
log2 C = {1, 2,….., 15} and  log2 g = {−15, −14 ,….., 1}.  the 
accuracy of the trained model is evaluated for each pair of 
parameters (log2 C, log2 g) using the results of five-fold 
cross-validation on the training data set. 
After finding the optimal values for (log2 C, log2 g) we train 
and test the SVM classifier on these values, the whole 
training and testing procedures are repeated five times with 
the various training and test partitions of five-fold cross-

validation loop was carried out.  A procedure using the 
outer–inner–cv method, and  finally, the rate of test results 
was computed and reported in the next section.  
5 .   Classification Results : 

5.1  Detection the type of fault :    After training,  20% of 
the data (42 samples) were applied to SVM_1 as a 
prediction test for fault analysis. In this step, the best test 
result obtained is displayed on the second line  From Table 
10, where the table shows that the SVM classifier has 
succeeded in correctly identifying the type of defects in 
most cases, it can be seen that all indicators scored 100% 
for VSC and OC defects, unlike only two indicators (ASLE 
and IFR. IAR) scored 100% for AD. 
The best accuracy rate achieved by the first indicator (IFR. 
IAR) was 97.61%, as for the other indicators, they also 
achieved high accuracy that exceeded 90%. 
In addition, the diagnostic accuracy rate for 5 training and 
testing processes appears in the third line of the Table 10 , 
which summarizes that the classifier exceeded the 
threshold of 84% with all indicators, while the first indicator 
achieved the highest accuracy rate of 92.37%. 

 
Table 10. Classification Result for Type Detection Obtained  by SVM  method (averaged 5 trials) 

 

: 

5.2  Determine the location of fault 
In the second step after detecting the type of fault, We 
determine the location through one of the four classifiers: 
SVM_2, SVM_3, SVM_ 4, SVM_ 5. Whereas, for example, 
if the result of the SVM_1 classifier is Class 1, that is, the 
AD corruption type, we run  SVM_2 for location and  
SVM_6  for extent. 
The same steps that we took previously, we apply it to the 
four classifiers, so that after training we tested them with 
30% of the total samples for each fault. 
The best test result for each classifier has been published in 
the Table 11. These results It appears SVM ability to 
correctly locate faults in most cases, It can be seen that the 
ASLE and (IFR, IAR) indicators achieved 92.85% accuracy 
with 100% in four class in SVM _ 2 (AD positioning), as for 

determining the location of  (VSC) , the SVM_3 ranked  
94.11% accuracy with four indicators (ASLE,  DABS, CC, 
(IFR, IAR)). 
Detecting the location of the third fault OC with SVM_4 was 
more accurate, reaching 100% in three indicators (ASLE, 
DABS, (IFR, IAR)), and SVM_5 was also used to locate the 
fourth fault location (VGC), as only the second index 
(ASLE) achieved 100% accuracy. 
In addition, the table displays the accuracy rate for 5 
training and test sets for each of the four databases, where 
the highest resolution scores shown in bold are indicated 
using the second ASLE indicator. 
 

 
Table 11. Classification Results  Obtained  by SVM  method for determine location (averaged 5 trials) 

Algorithm  Classification  results Nb. 

Samples  
test 

Feature 
1 

(IFR,IAR) 

Feature
2 

(ASLE) 

Feature
3 

(DABS) 

Feature
4 

(IMSE) 

Feature
5 

(CC) 

 

 

 

SVM 2 

Best 
classification 
accuracy for a  
testing set  

(AD fault) 

 

accuracy 
of each 
class on 
testing 
set (%) 

Class.1(D1_D2 ) 03 100  100 100 66.66 100 

Class.2(D2_D3 ) 03 100 100 100 100 100 

Class.3(D3_D4 ) 02 100 100 100 100 100 

Class.4(D4_D5 ) 04 75 75 75 50 50 

Class.5(D5_D6 ) 02 100 50 50 50 100 

Accuracy Rate (%) 92.85 94.85 85.71 71.42 85.71 

Average classification accuracy  for  testing sets (%) 88,566 92,283 76,424 76,423 80,71 

 

Algorithm classification  results Nb. 

Samples   
test 

Feature 

1 

(IFR,IAR) 

Feature 

2 

(ASLE) 

Feature 

3 

(DABS) 

Feature 

4 

(IMSE) 

Feature 

5 

(CC) 

 

 

Svm 1 

Best classification 
accuracy for a  
testing set   

 

accuracy 
of each 
class on 
testing 
set (%) 

Class.1(AD) 12 100 100  83.33  91.66  91.66  

Class.2(VSC) 14 100  100  100  100  100  

Class.3(VGC) 10 90  90  90  90  70  

Class.4(OC) 06 100 80  100  100   100 

Accuracy Rate (%) 97.61  95.23  92.85   95.23  90.47  

Average classification accuracy  for  testing sets (%) 92.37  87.53  85.94  85.70  84.99  
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SVM3 

Best 
classification 
accuracy for a  
testing set  

(VSC  fault) 

 

accuracy 
of each 
class on 
testing 
set (%) 

Class.1(Disk_1 ) 03 100 100 100 100 100 

Class.2(Disk_2 ) 04 75 75 75 50 100 

Class.3(Disk_3 ) 03 100 100 100 100 100 

Class.4(Disk_4 ) 02 100 100 100 100 66.66 

Class.5(Disk_5 ) 03 100 100 100 100 100 

Class.6(Disk_6 ) 02 100 100 100 50 100 

Accuracy Rate (%) 94.11 94.11 94.11 82.35 94.11 

Average classification accuracy  for  testing sets (%) 86,467 91,759 87,643 74,501 88,231 

 

 

 

 

 

SVM 4 

Best 
classification 
accuracy for a  
testing set   

(OC fault ) 

 

accuracy 
of each 
class on 
testing 
set (%) 

Class.1(Disk_1 ) 04 100  100  100  100  75  

Class.2(Disk_2 ) 03 100  100  100  66.66  100 

Class.3(Disk_3 ) 02 100   100  100  100  100  

Class.4(Disk_4 ) 04 100  100   100  100  100  

Class.5(Disk_5 ) 02 100  100  100  100  100  

Class.6(Disk_6 ) 02 100  100  100  100  100      

Accuracy Rate (%) 100 100 100 94.11 94.11 

Average classification accuracy  for  testing sets (%) 100 100 100 95,288 94,701 

 

 

 

SVM 5 

Best 
classification 
accuracy for a  
testing set  

(VGC fault) 

 

accuracy 
of each 
class on 
testing 
set (%) 

Class.1(Disk_1 ) 03 100  100  100  100  100  

Class.2(Disk_2 ) 05 80  100  100  100  100  

Class.3(Disk_3 ) 02 100 100  50  50  50  

Class.4(Disk_4 ) 02 100  100  100 0  100  

Class.5(Disk_5 ) 03 100  100  100  100  100  

Class.6(Disk_6 ) 02 100  100  100  100  100  

Accuracy Rate (%) 94.11 100 94.11 76.47 94.11 

Average classification accuracy  for  testing sets (%) 92,329 92,347 88,818 85,289 91,758 
 

5.3  Determine the extent of fault :  
   As we explained earlier, after detecting the type of fault, 
we run the SVMs for location and extent together because 
they use separate databases, at this step we use three 
classifiers SVM_6-7-8 to determine the extent, The 
classifiers used 30% of the total samples for testing . 
Table 12 shows  the best test results and the average 
accuracy of 5 training and test runs for each data set. 
Through these results, we can see that although the 
performance of SVM decreased slightly compared to the 

two stages of detection the  type and location, it was able to 
distinguish between the three levels with high accuracy. 
Moreover, the best classifier results indicated in bold were 
achieved with feature (2) (ASLE) indicating that the average 
overall accuracy rate was higher than 81% in the three 
cases. 
Finally, we store the best training for use in diagnosing new 
samples. 
 

Table.12. Classification Results  Obtained  by SVM  method for determine the extent  (averaged 5 trials) 

Algorithm Classification  results 
Nb. 

Samples   
test 

Feature1 

(IFR ,IAR)

Feature2 

(ASLE) 

Feature3 

(DABS) 

Feature4 

(IMSE) 

Feature5 

(CC) 

 

 

SVM 6 

Best classification 
accuracy for a  
testing set  
(AD fault) 

 

accuracy of 
each class 
on testing 
set (%) 

Class.1(LOW) 03 66.66 100  100  100  66.66  

Class.2(AVE.) 06 100  83.33 66.66  50  66.66  

Class.3(SEV.) 05 83.33  100  100  100   100  

Accuracy Rate  (%) 85.71 92.85 85.71 78.57 78.57 

Average classification accuracy  for  testing sets (%) 77,589 82,138 72,852 69,279 68,565 

 

 

 

SVM7 

Best classification 
accuracy for a  
testing set  
(VSC fault) 

 

accuracy of 
each class 
on testing 
set (%) 

Class.1(LOW) 09 100 100 88.88 100 100 

Class.2(AVE.) 04 75 100 100 100 100 

Class.3(SEV.) 04 100 100 80 50 25 

Accuracy Rate  (%) 94.11 100 88.23 88.23 82.35 

Average classification accuracy  for  testing sets (%) 78,819 89,406 72,347 72,349 81,172 

 

 

 

SVM 8 

Best classification 
accuracy for a  
testing set  
(VGC fault) 

 

accuracy of 
each class 
on testing 
set (%) 

Class.1(LOW) 06 83.33  100 100 66.66 100 

Class.2(AVE.) 05 100 100 80 100 60 

Class.3(SEV.) 06 50 83.33 100 83.33 100 

Accuracy Rate  (%) 76.47 94.11 94.11 78.57 88.23 

Average classification accuracy  for  testing sets (%) 65,865 81,174 79,996 73,526 78,219 
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6 . Compaire between Indicators : 
       In this study, we used several Indicators to explain FRA 
behavior and the objective is to compare these indicators in 
the ability to diagnose faults and compatibility with SVM 
classifie . 
for detection type of  fault and determining its location, 
through the previous results, we note that all the features  
have reached satisfactory results, especially the two 
features 1 and 2 ((IFA,IAR), ASLE ) Which achieve ideal 
results In this step, in contrast, the results of other features 
were less accurate than them . 
As for determining the extent of the fault, although feature 1 
has more training data than others, but  some data in 
feature 1 does not differ with the change of the fault level 
and thus have similarities between them, For instance, as 
appeared in Table 13, IFR _t1 in  AD low 1 equal to ADAve 1 
and ADsev 1  (Likewise ADAve 2 equals ADsev2), In these 
cases it's hard  for the SVM to determine  the support 
vectors, this could lead to an error in estimate the extent of  
fault . 
 

In feature 2, the difference in data for different levels of fault 
can be observed (See Table 14). And therefore, It is 
possible for SVM  here to determine the extent of fault  with 
high accuracy. From this, we conclude that the number of 
training data did not have a significant effect on the 
accuracy of the classifier. 
based on the previous results which show that the classifier 
with feature 2 produces the best results compared to others 
feature, thus we can use the ASLE as a reliable indicator to 
detect the type, and determine location, extent of the 
transformer winding faults. However, it would be very 
helpful if some combination  Indicators, and therefore can 
cover the strength of the indicator of weakness of another 
indicator, for example , feature 1 also achieved good results 
in detecting and locating the fault with high accuracy but 
weak in determining the extent. 
Therefore, these indicators should be developed with the 
SVM method for accurate diagnostic of types, location and 
extent of faults. 

Table 13.  A set of results for feature 2 (standardized)  

Index Fault level 

ADlow 1 ADlow 2 ADAve. 1 ADAve. 2 ADAve. 3 ADSve. 1 ADSve. 2 ADSve. 3 

ASLELF -0.676012 -0.677798 -0.669369 -0.647780 -0.613772 1.560070 1.854798 2.104687 

ASLEMF -1.445447 -1.311423 -0.948637 -0.571770 -0.165783 -0.084634 -0.016528 0.113895 

ASLEHF -0.499308 -0.221592 -0.070255 0.006564 0.025454 0.792141 0.881608 0.930070 

 
Table 14. A set of results for feature 1 (standardized) . 

 
Table 15. Classification results obtained for each SVMs compared 
with other classifiers results (averaged 5 trials) 

 
Detection of : 
 

 
Classifier 

Accuracy rate (%) 

Featur e 2  (ASLE) 

 

Type 
KNN 1 78.15 

RF    1 86.37 

DT    1 81.77 

SVM 1 88.23 

 

  

 

 

 

 

Location 

KNN 2 76.22 

RF    2 80.90 

DT    2 79.17 

SVM 2 94.28 

 

KNN 3  81.60 

RF    3 85.42 

DT    3 82.12 

SVM 3 91.75 

 

KNN 4 100 

RF   4 100 

DT   4 99.38 

SVM 4 100 

 

KNN 5 78.99 

RF    5 81.94 

DT    5 77.26 

SVM 5 92.34 

 

 

 

Extent 

KNN 6 63.33 

RF    6 80.02 

DT    6 90.0 

SVM 6 85.33 

 

KNN 7 75.72 

RF    7 80.97 

DT    7 75.62 

SVM 7 89.40 

 

KNN 8 74.83 

RF    8 81.59 

DT    8 80.83 

SVM 8 81.69 

 
 
 

Index Fault level 

ADlow 1 ADlow 2 ADAve. 1 ADAve. 2 ADAve. 3 ADSve. 1 ADSve. 2 ADSve. 3 

IFRt1 -0.910969 -0.910969 -0.910969 -0.588347 -0.588347 -0.910969 -0.910969 -0.588347 

IFRt2 0.060208 0.125784 0.158572 0.224148 0.256936 -0.956219 -1.021795 -1.054583 

IFRp1 -0.741473 -0.950073 -1.119561 -1.276011 -1.406386 -0.337311 -0.337311 -0.337311 

IARt1 -0.360078 0.724854 -0.887625 -0.000582 0.011679 -1.138633 -0.416323 -0.218432 

IARt2 -0.598671 -0.807227 -0.773483 -0.759618 -0.902927 0.026536 0.161322 0.138361 

IARp1 0.640831 0.806196 0.887548 0.919229 -1.701015 1.734438 1.845876 1.947868 
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7 . Comparison of Results: 
     To confirm the ability of the SVM algorithm adopted in 
the diagnostic methodology proposed in this paper, we 
applied the methodology with three common classifiers 
namely Random Forest (RF), k-Nearest Neighbor (kNN), 
DecisionTree (DT). 
These classifiers were applied with databases of the 
second feature (ASLE) only, which gave the best results in 
all stages of diagnosis in the previous section. we applied 
the same cross-validation  procedures adopted with SVM, 
using outer–inner–cv method, with 5 iterations for each 
verification process, then calculation Average accuracy 
rate. 
Table 15 displays the classification results for the three 
methods( KNN, RF, DT) and compares them with previous 
SVM results,with selected the best classification result  for 
each dataset in bold. 

According to the results shown in the table,  we notice 
that the three classifiers gave acceptable results, especially 
Random Forest (RF), Which had  80.02% minimum 
average accuracy in all stages of detection. as is common, 
this classifier provides robust  performance whenever the 
number of training samples is large, As it was with the 
database for determining the type of defect , but despite its 
competitive results, However, SVM classifier provided 
impressive results and proved it’s superiority over other 
methods in all stages of detection: type, location, and the 
extent, This explains why we have relied on it in the 
proposed disclosure methodology  .  
 
8.   Conclusion 
          In this research, a new methodology was proposed 
ed to detect  type of transformer faults and determine their 
locations and extent,  This methodology based  a multi-
layer Support Vector Machine (SVM) with the advanced 
diagnostic technique FRA to determine  all locations and 
extents of faults  trained on. 
The methodology was verified by building a comprehensive 
database that contains four common faults of the 
transformer winding model at different locations and levels , 
then, using the SVM on three steps, we were able to 
diagnose the types of faults and determine their location 
and extent with high accuracy. 
The data relates to five features and the aim is to determine 
the best feature that can deal with the classification 
algorithm while using the standardization technique to 
increase accuracy, the results showed through the 
verification process that the SVM based method using 
feature 2 ( ASLE indicator ) can distinguish accurately 
between types of faults : AD, VGC, VSC , OC and to detect 
their location and extent, maintaining the best training 
essential to classify any new data not included in the 
primary database. 
According to the previous results, the method has proven its 
ability and is able to make a good addition to the 
development of machine learning in transformers, but with 
that, if a new type of fault appears, i.e. not included in the 
database, the classification algorithm fails to diagnose it, 
Therefore, further work is planned regarding the detection 
of unknown faults. 
 
Authors:  
Mr. Ezziane Hassane, Ph.D. student, Laboratory of Electrical 
Engineering and Automatics LREA, Department of Electrical 
Engineering, University of Yahia Fares, Medea, Algeria,  
E-mail: ezziane.hassan2051@gmail.com 
Dr. Hamza Houassine, Laboratory of Electrical Engineering and 
Automatics LREA,  Department of Electrical Engineering, University 
of Bouira, Algeria, E-mail:hamza_houassine@yahoo.fr 

prof. Samir Moulahoum, Laboratory of Electrical Engineering and 
Automatics LREA,  Department of Electrical Engineering, University 
of Yahia Fares, Medea, Algeria,  
E-mail:samir.moulahoum@gmail.com 
Dr. Moustafa Sahnoune Chaouche, Laboratory of Electrical 
Engineering and Automatics LREA,  Department of Electrical 
Engineering, University of Yahia Fares, Medea, Algeria,  
E-mail: moustafa-chaouche@hotmail.fr 
 

 
REFERENCES 

[1]  Samimi, M.H., Tenbohlen, S.: ‘Using the temperature 
dependency of the FRA to evaluate the pressure of the 
transformer press ring’, IEEE Trans. Power Deliv., 2018, 33, 
(4), pp. 2050–2052 

[2]  Abbasi, A., Seifi, A.: ‘Fast and perfect damping circuit for 
ferroresonance phenomena in coupling capacitor voltage 
transformers’, Electr. Power Compon. Syst., 2009, 37, (4), pp. 
393–402 

[3] Bagheri, M., Phung, B., Blackburn, T.: ‘Influence of temperature 
and moisture content on frequency response analysis of 
transformer winding’, IEEE Trans. Dielectr. Electr. Insul., 2014, 
21, (3), pp. 1393–1404 

[4]  Mariprasath, T., Kirubakaran, V.: ‘A real time study on 
condition monitoring of distribution transformer using thermal 
imager’, Infrared Phys. Technol., 2018, 90, pp. 78–86  

[5] Roncero-Clemente, C., Roanes-Lozano, E. ‘A multi-criteria 
computer package for power transformer fault detection and 
diagnosis’, Appl. Math. Comput., 2017, 319, pp. 153–1642 

[6]  Abu -Siada, A., Islam, S.: ‘A new approach to identify power 
transformer criticality and asset management decision based 
on dissolved gas-in-oil analysis’, IEEE Trans Dielectr. Electr. 
Insul., 2012, 19, (3), pp. 1007–1012  

[7] Huang, Y.C., Sun, H.C.: ‘Dissolved gas analysis of mineral oil 
for power transformer fault diagnosis using fuzzy logic’, IEEE 
Trans. Dielectrics Electr. Insul., 2013, 20, (3), pp. 974–981 

[8] Blennow, J., Ekanayake, C., Walczak, K., et al.: ‘Field 
experiences with measurements of dielectric response in 
frequency domain for power transformer diagnostics’, IEEE 
Trans. Power Deliv., 2006, 21, (2), pp. 681– 688  

[9] Gubansky, S.M., Boss, P., Csépes, G., et al.: ‘Dielectric 
response methods for diagnostics of power transformers’, IEEE 
Electr. Insul. Mag., 2003, 19, (2), pp. 12–18 

[10]  Zheng, J., Pan, J., Huang, H.: ‘An experimental study of 
winding vibration of a single-phase power transformer using a 
laser Doppler vibrometer’, Appl. Acoust., 2015, 87, pp. 30–37  

[11] Zhou, H., Hong, K., Huang, H., et al.: ‘Transformer winding fault 
detection by vibration analysis methods’, Appl. Acoust., 2016, 
114, pp. 136–146  

[12] Wang, Y., Pan, J.: ‘Comparison of mechanically and electrically 
excited vibration frequency responses of a small distribution 
transformer’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 
1173–1180 

[13] Hashemnia, N., Abu-Siada, A., & Islam, S. (2013). Impact of 
axial displacement on power transformer FRA signature. IEEE 
Power   & Energy Society General Meeting. 
doi:10.1109/pesmg.2013.6672949 . 

[14] Pleite, J., Gonzalez, C., Vazquez, J., & Lazaro, A. (n.d.).(2006). 
Power Transfomer Core Fault Diagnosis Using Frequency 
Response Analysis. MELECON 2006 - 2006 IEEE 
Mediterranean Electrotechnical Conference. 
doi:10.1109/melcon.2006.1653298  

[15] Rahimpour, E., Christian, J., Feser, K., & Mohseni, H. (2003). 
Transfer function method to diagnose axial displacement and 
radial deformation of transformer windings. IEEE Transactions 
on Power Delivery, 18(2), 493–505. 
doi:10.1109/tpwrd.2003.809692  

[16] Ryder, S. A. (n.d.).(2002). Transformer diagnosis using 
frequency response analysis: results from fault simulations. 
IEEE Power Engineering Society Summer Meeting,. 
doi:10.1109/pess.2002.1043265  .  

[17] Bagheri, M., Naderi, M.S., Blackburn, T.R.(2012). A case study 
on FRA capability in detection of mechanical defects within a 
400 MVA transformer. CIGRE, Paris, France, pp. 1–9 . 

[18] Behjat, V., Vahedi, A., Setayeshmehr, A., Borsi, H., & 
Gockenbach, E. (2011). Diagnosing Shorted Turns on the 
Windings of Power Transformers Based Upon Online FRA 
Using Capacitive and Inductive Couplings. IEEE Transactions 



 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 1/2022                                                                                         33 

on Power Delivery, 26(4), 2123–2133. 
doi:10.1109/tpwrd.2011.2151285  . 

[19] Pourhossein, K., Gharehpetian, G. B., Rahimpour, E., & Araabi, 
B. N. (2012). A probabilistic feature to determine type and 
extent of winding mechanical defects in power transformers. 
Electric Power Systems Research, 82(1), 1–10. 
doi:10.1016/j.epsr.2011.08.010 . 

[20] Rahimpour, E., Jabbari, M., & Tenbohlen, S. (2010). 
Mathematical Comparison Methods to Assess Transfer 
Functions of Transformers to Detect Different Types of 
Mechanical Faults. IEEE Transactions on Power Delivery, 
25(4), 2544–2555. doi:10.1109/tpwrd.2010.2054840 . 

[21] Bigdeli, M., Vakilian, M., & Rahimpour, E. (2011). A 
probabilistic neural network classifier-based method for 
transformer winding fault identification through its transfer 
function measurement. International Transactions on Electrical 
Energy Systems, 23(3), 392–404. doi:10.1002/etep.668 . 

[22] Bigdeli, M., Vakilian, M., & Rahimpour, E. (2012). Transformer 
winding faults classification based on transfer function analysis 
by support vector machine. IET Electric Power Applications, 
6(5), 268. doi:10.1049/iet-epa.2011.0232 . 

[23] Moradzadeh, A., & Pourhossein, K. (2019). Application of 
Support Vector Machines to Locate Minor Short Circuits in 
Transformer Windings. 2019 54th International Universities 
Power Engineering Conference (UPEC). 
doi:10.1109/upec.2019.8893542  . 

[24] Tarimoradi, H., & Gharehpetian, G. B. (2017). Novel 
Calculation Method of Indices to Improve Classification of 
Transformer Winding  Fault Type, Location, and Extent. IEEE 
Transactions on Industrial Informatics, 13(4), 1531–1540. 
doi:10.1109/tii.2017.2651954 . 

[25] J. Liu, Z. Zhao, C. Tang, C. Yao, C. Li and S. Islam, 
"Classifying Transformer Winding  Deformation Fault Types 
and Degrees Using FRA Based on Support Vector Machine," in 
IEEE Access, vol. 7, pp. 112494-112504, 2019, doi: 
10.1109/ACCESS.2019.2932497. 

[26] [Rahimpour, E., Christian, J., Feser, K., & Mohseni, H. 
(2003). Transfer function method to diagnose axial 
displacement and radial deformation of transformer windings. 
IEEE Transactions on Power Delivery, 18(2), 493–
505. doi:10.1109/tpwrd.2003.809692. 

[27] Ragavan, K., & Satish, L. (2008). Construction of Physically 
Realizable Driving-Point Function From Measured Frequency 
Response Data on a Model Winding. IEEE Transactions on 
Power Delivery, 23(2), 760–
767. doi:10.1109/tpwrd.2008.915815 . 

[28] Behjat, V., & Mahvi, M. (2015). Statistical approach for 
interpretation of power transformers frequency response 
analysis results. IET Science, Measurement & Technology, 
9(3), 367–375. doi:10.1049/iet-smt.2014.0097 . 

[29] [Kim, J.-W., Park, B., Jeong, S. C., Kim, S. W., & Park, P. 
(2005). Fault Diagnosis of a Power Transformer Using an 
Improved Frequency-Response Analysis. IEEE Transactions 
on Power Delivery, 20(1), 169–178. 
doi:10.1109/tpwrd.2004.835428 . 

[30]  Secue, J., & Mombello, E. (2008). New methodology for 
diagnosing faults in power transformer windings through the 
Sweep Frequency Response Analysis (SFRA). 2008 IEEE/PES 
Transmission and Distribution Conference and Exposition: 
Latin America. doi:10.1109/tdc-la.2008.4641689 . 

[31] Nirgude, P.M., Ashokraju, D., Rajkumar, A.D., and  al.(2008). 
Application of numerical evaluation techniques for interpreting 
frequency response measurements in power transformers, IET 

Sci. Meas. Technol., 2008, 2, (5), pp. 275–285 .doi: 
10.1049/iet-smt:20070072 . 

[32] Secue, J. R., & Mombello, E. (2008). Sweep frequency 
response analysis (SFRA) for the assessment of winding 
displacements and deformation in power transformers. Electric 
Power Systems Research, 78(6), 1119–1128. 
doi:10.1016/j.epsr.2007.08.005 . 

[33] Xu, D.K., Fu, C.Z., Li, Y.M. (1999) .Application of artificial 
neural network to the detection of the transformer winding 
deformation. Presented at 11th Int. Symp. on High Voltage 
Engineering (Conf. Publ. No. 467), London, UK,vol. 5, pp. 220–
223. doi:  10.1049/cp:19990925 

[34] Badgujar, K.P., Maoyafikuddin, M., Kulkarni, 
S.V.(2012).Alternative statistical techniques for aiding SFRA 
diagnostics in transformers, IET Gener. Transm. Distrib., 2012, 
6, (3), pp. 189–198 .doi:  10.1049/iet-gtd.2011.0268 . 

[35] Vapnik, V.(1995).The nature of statistical learning theory 
(Springer Verlag, New York). 

[36]  Zhao, Z., Tang, C., Zhou, Q., Xu, L., Gui, Y., & Yao, C. 
(2017). Identification of Power Transformer Winding 
Mechanical Fault Types Based on Online IFRA by Support 
Vector Machine. Energies, 10(12), 
2022. doi:10.3390/en10122022 . 

[37] Avinash , Navlani . SUPPORT VECTOR MACHINES WITH 
SCIKIT-LEARN  . datacamp, 27.Dec.2019, 
https://www.datacamp.com/community/tutorials/svm-
classification-scikit-learn-python . accessed on Jul. 25, 2020.   

[38] Bacha, K., Souahlia, S., & Gossa, M. (2012). Power 
transformer fault diagnosis based on dissolved gas analysis by 
support vector machine. Electric Power Systems Research, 
83(1), 73–79. doi:10.1016/j.epsr.2011.09.012 . 

[39] Ragavan, K., & Satish, L. (2007). Localization of Changes in a 
Model Winding Based on Terminal Measurements: 
Experimental Study. IEEE Transactions on Power Delivery, 
22(3), 1557–1565. doi:10.1109/tpwrd.2006.886789 . 

[40] Pramanik, S., & Satish, L. (2011). Estimation of Series 
Capacitance of a Transformer Winding Based on Frequency-
Response Data: An Indirect Measurement Approach. IEEE 
Transactions on Power Delivery, 26(4), 2870–
2878. doi:10.1109/tpwrd.2011.2167247 

[41] Ragavan, K., & Satish, L. (2008). Construction of Physically 
Realizable Driving-Point Function From Measured Frequency 
Response Data on a Model Winding. IEEE Transactions on 
Power Delivery, 23(2), 760–
767. doi:10.1109/tpwrd.2008.915815 

[42] Hashemnia, N., Abu-Siada, A., Masoum, M. A. S., & Islam, S. 
M. (2012). Characterization of transformer FRA signature under 
various winding faults. 2012 IEEE International Conference on 
Condition Monitoring and Diagnosis. 
doi:10.1109/cmd.2012.6416174  

[43] Abu-Siada, A., & Islam, S. (2012). A Novel Online Technique to 
Detect Power Transformer Winding Faults. IEEE Transactions 
on Power Delivery, 27(2), 849–857. 
doi:10.1109/tpwrd.2011.2180932 

[44] Pandya, A. A., & Parekh, B. R. (2014). Interpretation of Sweep 
Frequency Response Analysis (SFRA) traces for the open 
circuit and short circuit winding fault damages of the power 
transformer. International Journal of Electrical Power & Energy 
Systems, 62, 890–896. doi:10.1016/j.ijepes.2014.05.011 . 

[45] https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 


