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A New Hybrid Algorithm combining Ant Lion Optimization and 
Particle Swarm Optimization to Solve an Economic Dispatch 

Problem with non-smooth cost function 
 
 

Abstract. This paper presents a new hybrid algorithm which is a combination of ant lion optimization (ALO) and particle swarm optimization (PSO) to 
solve an economic dispatch (ED) problem with non-smooth cost function characteristic. In the proposed algorithm, HALO-PSO, ALO method is used 
to find the initial value and PSO is used to find the best solutions causing it provides faster and more accurate results compared to conventional 
methods. To show its effectiveness, the HALO-PSO was applied to test two systems consisting of either 6 or 13 power generating units. Results 
confirm that the proposed HALO-PSO algorithm is capable of obtaining rapid convergence and a high quality solution efficiently. 
 
Streszczenie. W artykule przedstawiono nowy algorytm hybrydowy, który jest kombinacją optymalizacji Ant Lion (ALO) i optymalizacji roju cząstek 
(PSO) w celu rozwiązania problemu ekonomicznej dystrybucji (ED) z niegładką charakterystyką funkcji kosztu. W proponowanym algorytmie HALO-
PSO, metoda ALO służy do znalezienia wartości początkowej, a PSO służy do znalezienia najlepszych rozwiązań, dzięki czemu zapewnia szybsze i 
dokładniejsze wyniki w porównaniu do metod konwencjonalnych. Aby wykazać jego skuteczność, HALO-PSO został zastosowany do 
przetestowania dwóch systemów składających się z 6 lub 13 jednostek wytwórczych. Wyniki potwierdzają, że proponowany algorytm HALO-PSO 
jest w stanie skutecznie uzyskać szybką konwergencję i wysokiej jakości rozwiązanie. (Nowy algorytm hybrydowy łączący optymalizację Ant 
Lion i optymalizację roju cząstek w celu rozwiązania ekonomicznego problemu dystrybucji z funkcją kosztów nierównomiernych) 
 
Keywords: Ant Lion Optimization, Particle Swarm Optimization, Hybrid Algorithm, Economic Dispatch. 
Słowa kluczowe: ekonomiczna dystrybucja energii, algorytm rojowy, algoryt,m hybrydowy.  
 
Introduction 

The power system should operate under a high 
economic level to be competitive in terms of production 
costs. A key aim in addressing this critical concern for 
electrical system operation is optimization with unit 
commitment, while economic dispatch (ED) is an important 
subsection of the unit commitment process, it is necessary 
to efficiently obtain a fast, high-quality solution from ED. 
The ED is production level allocation to the various building 
blocks in the system to meet the load demand in the most 
economical manner without any system violation or the 
constraints of each unit, so that the lowest total production 
cost and able to deliver enough electrical power to meet the 
system requirements. Minimizing overall production costs is 
the primary objective of ED. The ED method is that 
generating units with different fuel consumption and 
different power generation capacity that must have the 
lowest combined fuel cost. The ED problem in the electrical 
system is determined by the fuel cost as a quadratic 
function. The practical ED problem is caused by a number 
of fuel valve point effects that are represented as a non-
smooth optimization problem. With equality and inequality 
constraints, it is difficult to find the problem of global optimal 
values.  

Regarding the ED problem, there were several of 
traditional methods that have been applied to handle this 
problem such as: Dynamic Programming [1], Linear 
Programming [2], Lagrangian Relaxation [3], etc. These 
methods often provide answers that are stuck at the local 
optimum, making it difficult to solve ED problems with non-
smooth cost function. However, there were some attempts 
to find the new methodology for dealing with this difficulty. 
Recently meta-heuristics was used to solve economic 
dispatch problems and power system issues such as Tabu 
Search (TS) [4], Ant Colony Optimization (ACO) [5]-[6], 
Genetic Algorithm (GA) [7]-[9], Bee Colony Optimization 
(BCO) [10]-[12], Simulated Annealing (SA) [13]-[14], Ant 
Lion Optimization (ALO) [15]-[18], Shuffled Frog Leaping 
Algorithm (SFLA) [19]-[20] and Particle Swarm Optimization 
(PSO) [21]-[23]. These methods have obtained a lot of 
attention from many researchers due to their ability to find 

the best and an almost global optimal solution. However, 
these methods are random search. The key strategy of 
these methods is random search, which results in selecting 
the results to be searched in the next set, and this is the 
reason for long computation and convergence when the 
initial results are of no quality due to randomness. This 
issue was addressed by estimating initial values and 
defining search boundaries for random methods. Of all the 
above methods, a hybrid model can be built on the powerful 
properties of the ALO and PSO algorithms to achieve better 
results than using each separately. The ALO is an 
optimization technique developed recently [24] by Seyedali 
Mirjalili, the main inspiration of the ALO algorithm comes 
from the foraging behaviour of ant-lion’s larvae, which 
mimics interaction between ant-lions and ants in the trap. It 
is simple in concept, few in parameters and easy in 
implementation. The weakness of the ALO algorithm is its 
simplicity, thus resulting in the algorithm covering local 
areas in the search area. The PSO was developed by 
Kennedy and Eberhart [25] based on simulations of simple 
social systems such as birds and fish schooling. The main 
problem with the original PSO was the speed towards initial 
population selection and premature convergence, although 
PSO as a random algorithm could be applied to ED 
problems with non- smooth cost function. These can occur 
when the best particles are in the worst solution group 
during the search process. As a result, randomly finding a 
new population in the next generation to solve it takes 
longer to compute because the algorithm has a bad 
convergence behavior. Consequently, convergence 
acceleration and local optimal avoidance have become two 
important and interesting goals in PSO research. There are 
many researches that modify the behavior of the PSO 
algorithm to improve its performance [26]-[29]. 

In this paper, a new hybrid algorithm combining ALO 
with PSO (HALO-PSO) is used to solve both static 
economic dispatches with non-smooth cost function. The 
proposed approach aims to enhance the exploitation of the 
ALO algorithm. The initial value is reassigned in place of the 
original randomization derived from the results of the ALO, 
set a new search scope around the initial value and it uses 
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nice features from the PSO algorithm to find the best 
solution. The proposed approach focuses on minimizing the 
total fuel cost of all electric power generating units while 
meeting the conditions, constraints and power balance of 
system. The possibility of the proposed method is 
demonstrated by using two case studies with six generators 
and thirteen generators operating under static economic 
dispatch and non-smooth function conditions. The results of 
the proposed method are compared with previously 
published methods. 

 
Problem Formulation of ED with Non-Smooth Cost 
Function  

The ED problem is one of the nonlinear programming 
sub-problems of unit commitment. It is a short term 
determination of the optimal output of a number of power 
plants. To meet the system load at the lowest cost 
depending on delivery and operational constraints. The ED 
problems are solved by specialized computer software. This 
should be in line with the operational and system 
constraints of the available resources and the associated 
transmission capacity, the details are as follows.   
 
Objective functions 

The ED solutions are aimed at minimizing the total fuel 
cost of power plants subject to the operating constraints of 
a power system. The objective function is formulated as 
follows: 

(1)   
1

: ( )  
N

i i

i

TMinimize F F P


   

 where TF is the total generation cost, N  is the number 

of generators committed to the operating system 
i

P  is the 

power output of the 
thi  generator and 

i
F  is the generation 

cost function of 
thi  generator is usually expressed as a 

quadratic polynomial as follows: 

(2)   
2( )

i i i i i i i
F P a P b P c    

 where 
i

a , 
i

b  and 
i

c  are the cost coefficients of the 
thi  

generator. The smooth cost function is shown in this 
equation. The input-output characteristics or cost functions 
of generators are estimated by using quadratic or piecewise 
quadratic functions individually, under the assumption that 
the unit incremental cost curve is a linear and increases 
piece-by-piece repeatedly. However, real input-output 
characteristics display higher-order nonlinearities and 
discontinuities due to valve-point loading in fossil fuel 
burning plant. The valve-point loading has been modelled in 
a recurring rectified sinusoidal function, such as the one 
show in figure 1. 
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Fig.1. Characteristic of the non-smooth cost function 

 To model the cost function of generators in a more 
empirical manner, valve point effect is considered where the 
input-output, curve is not linear but consists of ripples as a 
result of the sharp increase in losses due to the wire 
drawing effects, which occur as each steam admission 
valve starts to open.  For more accurate modeling, cost 
functions are derived from ripple curve. When a generator is 
with multiple valve points, the cost curve is not smooth. The 
assumption that the smooth cost function becomes null 
results in an erroneous result. The valve points effect can 
be taken into account by adding a sine term as in equation 
(3). 
(3)  2

,min( ) sin( ( ))i i i i i i i i i i iF P a P b P c e f P P        

 where ie  and if  are the cost coefficients of generator 

thi  reflecting valve-point effects. 
 
Constrain 

The objective functions are subject to the following 
constraints. 
Power balance constraint 

The total load capacity is equal to the sum of the total 
electrical demand with total power loss in the transmission 
system as: 

(4)   
1

( )
N

i D loss

i

P P P


   

 where 
D

P  is the load demand and 
loss

P  is the total 

transmission network losses, which is a function of the unit 
power outputs that can be represented using B  coefficients 
as follows: 
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Generation limits constraint 
The output power of each generator unit must be 

between an upper and lower bound. This is represented by 
a pair of inequality constraints as: 

(6)   min max
ii iP P P   

 Where min
iP and max

iP  are the lower and upper bounds 

for power outputs of the 
thi generating unit respectively. 

 
Hybrid Algorithm Combining Ant Lion Optimization and 
Particle Swarm Optimization to Solve an Economic 
Dispatch Problem 

The presented new hybrid algorithm is a combination of 
the ALO and PSO method that is used to solve both static 
economic dispatches with non-smooth cost function. The 
idea of this algorithm is to use the solutions obtained from 
the ALO instead of the original random value. The solution 

or initial value is modified by the factor, rank , producing a 
new search scope that is around it.  Finally, the nice feature 
of PSO algorithm is used to find the best solution. The 
details of all methods are described below. 

 
Ant lion optimization  
 Ant Lion Optimizer (ALO) proposed by Sayedali Mirjalili 
in 2015 [24]. The ALO algorithm is inspired by the life cycle 
of the ant lion, which mimics the hunting mechanisms of ant 
lion in nature. The larva of the ant lion digs a cone-shaped 
hole in the sand, moving it along a circular path and 
discarding the sand by using its large jaws. After digging up 
the trap, the larva hides under the bottom of the cone and 
waits for the insect to get trapped in the cone-shaped hole. 
When the prey is caught, it will be pulled down the bottom 
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of the hole and eaten. Therefrom, the ant lions throw the 
leftovers outside the pit and renovated the pit for the next 
hunt. The ant lion optimizer has very few parameters to 
adjust because the ALO is a population-based algorithm. 
There are five main steps of the algorithm such that random 
walk of ants, building traps, entrapment of ants in traps, 
catching preys, and re-building traps. Each step can be 
simulated in a mathematical equation and described as 
follows. 
 
Random walk of ants 
 The interaction between the lion ant and the ant in the 
trap was modelled on the ALO algorithm. For such 
interaction models, the ants must move through the search 
area and the ant lions are allowed to hunt them and 
become stronger using traps. Wherewith ants move 
stochastically in nature when searching for food, randomly 
following the movements of ants can be simulated as 
follows: 
(7)   

1 2( ) [0, (2 ( ) 1, (2 ( ) 1,..., (2 ( ) 1]nX t cums r t cums r t cums r t     
 where cums  calculates the cumulative sum, n  is the 
maximum number of repetitions. t  is the step of a random 
walk and ( )r t  is a random function defined as Equation (8) 
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
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 Where, rand  is a random number generated with a 
uniform distribution in the range of [0, 1]. Ant positions are 
stored and used during the optimization process in the 
following matrix: 
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 where, antM  is matrix to save the position of each ant , 

ijant  is value of 
thj  variable (dimension) of 

thi  ant, n  is 

number of ants and d  is number of variables. Random 
walk of ants are being normalized to keep them moving 
within the search space using the following equation: 

(10)  ( ) ( )

( )

t t
t i i i i
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
 

 where ia  indicates the minimum of random walk of 
thi  

variable, id  is the maximum of random walk in 
thi  

variable, 
t
ic  is the minimum of 

thi  variable at 
tht  iteration, 

and 
t
id  indicates the maximum 

thi  variable at 
tht  iteration.  

Trapping in ant lion’s pits 
 The equation used to describe the mathematical pattern 
of Trapping in ant lion's pits is as follows:  

(11)  
t t t
i jc Antlion c   

(12)  
t t t
i jd Antlion d   

 where 
tc is the minimum of all variables at 

tht iteration, 

td indicates the vector including the maximum of all 

variables at 
tht iteration, 

t
ic is the minimum of all variables 

for 
thi ant, 

t
id is the maximum of all variables for 

thi ant, 

and 
t
jAntlion shows the position of the selected 

thj antlion at 
tht iteration. 

Building trap and sliding ants toward ant lion 
 The operator of the roulette wheel simulates the hunting 
abilities of the ant lion for selecting ant lions based on their 
fitness during iterations. This mechanism gives the ant lion 
a great opportunity to capture prey. Ants are necessary to 
move randomly and ant lion be able to build traps 
proportional to their fitness. Ant lions will shoot sands 
outwards the center of the pit, once the ant falls into the 
trap. This behavior makes the ant slides down in the trap. 
The radius of ant’s random walk is reduced and it can be 
written as follows: 

(13)    
( )

t
t new c

c
I
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(14)    
( )

t
t new d

d
I
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 Where I  is the ratio expressed as equation (15). 

(15)    10w t
I

T
   

 Where t  is the number of iterations in the current cycle, 

T  is the maximum number of iterations and w  is the 
constant determined by the current iteration ( w  = 2 when 

t > 0.1T , w  = 3 when t > 0.5T , w  = 4 when t > 

0.75T , w  = 5 when t > 0.9T  and w  = 6 when t > 

0.95T ). In general, the value of w  is a constant that can 
be adjusted to achieve the correctness of the answer. 
These equations slow down the response radius and the 
oscillation of the answer, which improving the ant's position 
and mimicking the ant's trapping process within the hole. 
Catching prey and re-building the pit 
 The final stage of the hunt is when the ant is pulled to 
the bottom of the pit and it is captured by the lion's jaw. 
Onwards, the ant lion pulls the ants into the sand and eat 
them. The ant lion then needs to be updated with its trap or 
position to be the latest location of prey to increase its 
chances of catching new prey. Equation (16) describes a 
trap improvement or repositioning. 

(16)  ( ) ( )t t t t
j i i jAntlion Ant if f Ant f Antlion   

 where
t
jAntlion  indicates the position of selected 

thj  

ant lion at 
tht  iteration, 

t
iAnt  shows the position of 

thi  ant 

at 
tht  iteration and t  shows the current iteration. 

Elitism 
 An important feature of this algorithm is Elitism that is an 
evolution that allows the algorithm to maintain the obtained 
best solution at any stage of the optimization process. In 
this algorithm, the best ant lion obtained in each iteration is 
recorded and considered the elite. The elitism operation can 
be performed by using Eq. (17) 

(17)  
2

t t
t A E
i

R R
Ant


  

 where t
AR is the random walk around the ant lion 

selected by the roulette wheel at 
tht  iteration and t

ER  is the 

random walk around the elite at 
tht iteration and 

t
iAnt  
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indicates the position of 
thi  ant at 

tht  iteration. The ALO 
algorithm for solving ED problems can be described in a 
hierarchical manner as follows. 
Step 1: Initialize the first population of ant and ant lions 
randomly. 
Step 2:  Calculate the fitness of ants and ant lions 
(Objective Function, Power Balance Constraint, Power 
Losses and Generator Rating Constraint) using equations 
(1)-(6). 
Step 3:  Find the best ant lions and assume it as the elite 
(best solution). 
Step 4:  Select an ant lion using Roulette wheel. 
Step 5: Update the radius of ant’s random walk using 
equations (13) and (14). 
Step 6: Create a random walk and normalize it using 
equations (7) and (10). 
Step 7: Update the position of ant using equation (17). 
Step 8: Calculate the fitness of all ants. 
Step 9: Replace an ant lion with its corresponding ant 
become fitter using equation (16). 
Step 10: Improves the location of the ant lions if it has a 
better suitable function. 
Step 11: Check the outage conditions. 
Step 12: Stop working when getting the right answer, or go 
back to the first process if the answer doesn't meet the 
conditions. 
Particle swarm optimization 
 Kennedy and Eberhart developed the PSO algorithm 
that is inspired by the social behavior of organisms. The key 
strategy is to study the methods of foraging for the survival 
of fish and birds. The experience and intellectual behavior 
of the herd leaders will enable the herd to survive. The 
same behavior can be incorporated in a group of points in 
the search space of an optimization problem. Populations of 
points in search areas were developed to mimic fish or bird 
flocks, with each point in the population is called particle. 
The algorithm mimics the swarming behavior by recognizing 
and improving the best position of every particle to be the 
best personal position and the best among all particles as 
the global best. Particles are repositioned by moving 
simultaneously in the search area. Three factors, inertia, 
personal best position of the particle and global best 
position of the group affect the direction and speed of the 
movement of all particles. When, the position of all particles 
in motion, the personal best position of individual particles 
and global best position of the swarm are updated. The 
iteration number is varied depending on the inertia. 
Therefore, the velocity of each particle is given by the 
follow: 
(18) 1

1 1 2 2= +  ( - )+  ( - )t t t t
i i i i i iV WV c rand pbast x c rand gbast x   

 The term 
1 ( - )t

i irand pbast x  is called particle memory 

influence and the term 
2 ( - )t

i irand gbast x  is called swarm 

influence.  

 Where 
t

iV is velocity of particle 
thi  at iteration t , 1c and 

2c  are accelerating constants, 
ipbast  is personal best of 

particle 
thi , 

igbast is global best of the group, W is Inertia 

Weight   and  
t
ix is current position of particle thi  at 

iteration t . 
 The position of the particles is updated by the following 
equation: 

(19)   1 1= +t t t
i i ix x V   

 Inertia weight can be done by using the equation (20), 
where the inertia weight is increased linearly with iteration 

count, so that the acceleration towards optimal solution is 
rapid during the final stages.  

(20)  max min
max

max

= -
W W

W W iter
iter


  

 maxW and minW  are inertia weight factor. maxiter  is the 

maximum number of iterations allowed and iter is the 
iteration number. The main parameters of this algorithm are 
the number of particles, particle dimension, particle velocity 

interval (
maxV ,

minV ), 
maxW and 

minW , 1c  and 2c , particle 

position interval (
maxX , 

minX ). In this research paper, the 

parameters for the PSO algorithm are shown in Table 1. 
 
Table 1. The parameters used within PSO 

Parameters  Number 
Population size (N) 300 
Inertia weight factor (

maxW ) 0.9 

Inertia weight factor (
minW ) 0.4 

Acceleration constant (c1, c2) 1.9 
Limit of change in velocity (

maxV ) 0.5
maxP

Limit of change in velocity (
minV ) -0.5

minP  
Rank 0.15 
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Fig. 2. Proposed HALO-PSO. 
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Hybrid algorithm combining ant lion optimization and 
particle swarm optimization 
 The best answer from ALO (

( )i ALOP ) is used to define 

the initial values for HALO-PSO and redefines the search 
scope around 

( )i ALOP . This process results in optimal 

problem solving and shortens the search time for answers. 
Figure 2 shows the working procedure.  
 

The steps of the proposed HALO-PSO are described as 
follows: 
Step 1: Configure the parameters of HALO-PSO as shown 
in Table 1. 
Step 2:  Calculate the inertial weight by equation (20). 
Step 3:  Extract the best answer from the ALO algorithm 
(

( )i ALOP ). 

Step 4:  Define dimension of new initial boundary 

( max ( )i newP , min ( )i newP ) for the particle, population, and 

other individual particle variables, which are generated 
randomly in the permissible range of equations (21)-(22).  
(21)  max

( )( ) (1 )i i ALOnew P rankP    

(22)  min
( )( ) (1 )i i ALOnew P rankP    

 Where max ( )i newP  and min ( )i newP  are the  new 

maximum and minimum power output of the 
thi generator 

unit and rank is a multiplier with interval [0–1]. In this 

article, the rank  is used as in Table 1. Create a population 

(N) of the output power of the 
thi  generator based on the 

system constraints as equation (23). 
(23) min max min( ) (( ( ) ( )) (0,1))i i i inew new new randP P P P     
Step 5: Find personal best of particle ( )pbast and global 

best of the group ( )gbast and update personal best and 

global best. 

Step 6: Adjust each individual iV  speed by using equation 

(18). 

Step 7: Edit ix  position using equation (19). 

Step 8: Appraise the fitness function for the population 
using the objective function for the system. The best fitness 
value is denoted as global best ( )gbast . 

Step 9: Check the downtime conditions and increase the 
number of iterations. Go back to step 5 if the condition is 
not met and if the condition is met, stop the operation. 
 
Case Studies 

To verify the feasibility, the proposed HALO-PSO was 
applied to the economic dispatch problems with two 
different test cases. Two case studies consist of a six-unit 
test system and a thirteen-unit test system. Each 
optimization method was implemented in a MATLAB 
program, which runs on a TOSHIBA Satellite P745, Intel (R) 
Core (TM) i5, 2.30 GHz with 8 GB of RAM. 
 
The first case study 

The test system for this case consisted of six thermal 
units, 26 buses and 46 transmission lines, including system 
limits that have been set, generators rating constraints, 
power balance constraints and it has a power demand of 
1263 MW. Table 2 shows the generator feature of each and 
the B-coefficient matrix was as follows [30]. 
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Table 2. Generator characteristics in case 1 

Unit ia  
ib  

ic  
ie  

if  
max

iP  max
iP  

1 0.0070 7.00 240 300 0.035 100 500 
2 0.0095 10.0 200 200 0.042 50 200 
3 0.0090 8.50 220 400 0.042 80 300 
4 0.0090 11.0 200 159 0.063 50 150 
5 0.0080 10.5 220 150 0.063 50 200 
6 0.0075 12.0 190 150 0.063 50 120 

 
The second case study 

This system contained of 13 thermal generating units 
and the characteristic of all thermal generating units with 
valve point effect are given in Table 3. It is tested with 13-
unit system having non-convex solution spaces and total 
load demands of 1800 MW, it does not include transmission 
loss. 
 
Table 3. Generator characteristics in case 2 
Unit ia  

ib  
ic  

ie  
if  

min
iP  min

iP  

1 0.00028 8.10 550 300 0.035 680 0 
2 0.00056 8.10 309 200 0.042 360 0 
3 0.00056 8.10 307 200 0.042 360 0 
4 0.00324 7.74 240 150 0.063 180 60 
5 0.00324 7.74 240 150 0.063 180 60 
6 0.00324 7.74 240 150 0.063 180 60 
7 0.00324 7.74 240 150 0.063 180 60 
8 0.00324 7.74 240 150 0.063 180 60 
9 0.00324 7.74 240 150 0.063 180 60 

10 0.00284 8.60 120 100 0.084 120 40 
11 0.00284 8.60 120 100 0.084 120 40 
12 0.00284 8.60 120 100 0.084 120 55 
13 0.00284 8.60 120 100 0.084 120 55 

 
Simulation Results 

HALO-PSO was tested to assess performance with two 
case non-smooth cost ED problem with 6 and 13 
generators. The ALO and PSO were used in comparison 
with different solutions obtained from random. To assess 
the effectiveness of each method, all search algorithms are 
executed at the same time interval. So, the fastest 
convergence would be a powerful way. To compare the 
effectiveness of all methods, convergence speed, elapsed 
time, and the results of the answers were used to evaluate 
performance. The configurations in Table 1 was generated 
iterative trials on several times, taking into account the 
speed of finding answers and the quality of the answers. 
Simulation results in case 1 
 Three methods (ALO, PSO and HALO-PSO) were used 
to test their comparative performance in terms of the quality 
of the results and the speed of convergence to the answers. 
Each generator has a power output function as a non 
smooth cost function under 1236 MW of system power 
requirements. The methods that offer the best solution are 
shown in Table 4. Figure 3 shows the convergence 
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characteristics of all methods. The results of the HALO-
PSO method are compared with the IASFLA [31], GWO [32] 
and ICA-PSO [33] methods as shown in Table 5. 
 
Table 4. Results of six units system in case 1 

Unit ALO PSO HALO-PSO 
P1 (MW) 446.72 451.20 474.29 
P2 (MW) 187.86 192.82 155.01 
P3 (MW) 274.69 250.57 254.40 
P4 (MW) 133.49 139.37 148.84 
P5 (MW) 158.02 155.10 157.99 
P6 (MW) 74.31 86.26 83.94 
PT (MW) 1275.09 1275.32 1247.47 
FT ($/h) 15433.80 15440.5 15429.30 
Ploss (MW) 12.09 12.32 11.47 

 

 
 
Fig.3. Convergence curve of the system in case 1 
 
Table 5. Comparison of results with other optimization methods 

evaluated in case 1 
Unit  IASFLA GWO ICA-PSO HALO-PSO 

 P1 (MW) 446.72 447.16 447.06 474.29 
 P2 (MW) 175.78 173.57 173.19 155.01 
 P3 (MW) 264.61 263.46 263.91 254.40 
 P4 (MW) 140.29 138.37 139.02 148.84 
 P5 (MW) 160.93 156.60 165.61 157.99 
 P6 (MW) 87.10 87.30 86.63 83.94 
PT (MW) 1275.43 1275.46 1257.42 1247.47 
FT ($/h) 15442.00 15443.00 15442.65 15429.30 
Ploss(MW) 12.33 12.46 12.42 11.47 

 
Table 4 shows that HALO-PSO is more capable of 

finding optimal points in the search area compared to ALO 
and the PSO method. The answer given by HALO-PSO is 
15429.30, which is the lowest cost value compared to the 
other results in the table. In Figure 3, the solution 
convergence ALO method is an optimal cost of 105 
iterations, PSO of 100 iterations or more, while HALO-PSO 
converges to an answer is an optimal cost of less than 25 
iteration. It can be seen that the HALO-PSO had the fastest 
convergence speed. Likewise, Table 5 clearly shows that 
the cost functions achieved by the HALO-PSO method were 
significantly better than those obtained by the IASFLA, 
GWO, and ICA-PSO methods. 

 
Simulation results in case 2 

In test system 2, there were 13 thermal generating units 
wich non smooth cost function and need to support a load 
demand of 1800 MW.  The HALO-PSO results are 
compared with the obtained results from ALO and PSO in 
terms of minimum build cost and convergence speed. This 
example has a more complex search area compared to the 

previous one. The results are shown in Table 6, which 
satisfy the constraints of the generation units. The 
convergence of values for fitness functions and cost 
functions achieved by the HALO-PSO method when 
comparing ALO and PSO as shown in Figure. 4. Finally, 
Table 7 shows the results of the HALO-PSO method 
compared to the CSA [34], EBS [35] and HBCO [36] 
methods. 
 
Table 6. Results of fifteen units system in case 2 

Unit ALO PSO HALO-PSO 
 P1 (MW) 365.52 641.89 537.76 
 P2 (MW) 177.85 182.09 259.39 
 P3 (MW) 327.28 113.42 174.65 
 P4 (MW) 107.84 80.86 90.17 
 P5 (MW) 87.73 125.95 126.93 
 P6 (MW) 109.55 77.45 81.78 
 P7 (MW) 132.93 128.08 97.93 
 P8 (MW) 119.82 104.72 139.23 
 P9 (MW) 136.78 123.72 84.48 
 P10 (MW) 45.21 43.19 42.42 
 P11 (MW) 40.86 49.03 46.97 
 P12 (MW) 80.03 62.67 60.90 
 P13 (MW) 68.60 66.93 57.39 
PT (MW) 1800 1800 1800 
FT ($/h) 17962.3 17955.9 17933.2 

  

 
Fig.4. Convergence curve of the system in case 2 
 
  
Table 7. Comparison of results with other optimization methods 

evaluated in case 2 
Unit  CSA EBS HBCO HALO-PSO 

 P1 (MW) 369.06 628.32 502.64 537.76 
 P2 (MW) 227.73 149.59 326.12 259.39 
 P3 (MW) 62.18 222.73 251.77 174.65 
 P4 (MW) 108.77 109.88 88.22 90.17 
 P5 (MW) 107.44 60.00 88.26 126.93 
 P6 (MW) 120.00 109.86 88.27 81.78 
 P7 (MW) 163.74 109.87 88.24 97.93 
 P8 (MW) 156.24 109.87 88.16 139.23 
 P9 (MW) 138.67 109.87 88.16 84.48 
 P10 (MW) 108.71 40.00 40 42.42 
 P11 (MW) 115.76 40.00 40 46.97 
 P12 (MW) 62.26 55.00 40 60.90 
 P13 (MW) 59.35 55.00 55 57.39 
PT (MW) 1800 1800 1800 1800 
FT ($/h) 18809 17963.81 17946.55 17933.2 

 
Table 6 shows that the HALO-PSO method has the 

ability to find optimal points in a larger search area than the 
previous case study compared to the proposed ALO and 
PSO methods. The HALO-PSO method gives an optimal 
cost value of 17933.2, which is the best in comparison with 
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other methods. Looking at Fig. 3, the ALO method 
converges to the optimal cost from 80 iterations onwards, 
the PSO method from 140 iterations onwards, while the 
HALO-PSO method totals less than 35 iterations. In the 
same way, from Table 7, when comparing the cost 
functions achieved by the HALO-PSO method, it can be 
seen that the proposed method yields significantly better 
results than the CSA, EBS, and HBCO functions obtained 
by the CSA, EBS, and HBCO methods. 
 
Conclusion 

A new global search method was used for different ED 
problems within two non-smooth cost function case studies. 
It aims to use the good qualities of the PSO method to find 
the best solution and use ALO to optimize the solution. 
Optimization techniques include several complex methods 
such as initial estimation using ALO, a combination of ALO 
and PSO methods, and reduction of search area as HALO-
PSO methods are used in the proposed method. The 
proposed mechanism in HALO-PSO makes the algorithm 
more efficient than the other recently reported algorithms. In 
two case studies used to find solutions to ED problems with 
costly non-smooth functions, it has been proven that the 
proposed algorithm is robust and efficient. In terms of 
finding high-quality solutions with convergence 
characteristics, stable and efficient responses from the case 
of 6 and 13 unit confirm that HALO-PSO is much superior to 
ALO and PSO methods. This method provides faster and 
more accurate results compared to conventional methods. 
In case studies, the proposed methods provide better 
results compared to IASFLA, GWO, ICA-PSO, CSA, EBS 
and HBCO methods. The numerical results show clearly 
that the proposed algorithm produces better results. The 
electrical operator can use this algorithm for optimization. 
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