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An Optimal Design of Non-Causal Recursive Digital Filters with 
Zero Phase Shift using Chebyshev approximation and Linear 

Programming 
 
 

Abstract. This paper presents an optimal design for the special class of Non-Causal Recursive (NR) digital filters with zero phase shift. The design 
is based on the Chebyshev approximation problem. It can be transformed to an equivalent linear program under linear constraints of the zero phase. 
The given design yields more interesting pole-zero patterns that are not necessarily restricted to the classical design of Kormylo and Jain. The 
proposed optimal design allows an accurate zero phase shift and better magnitude characteristics in passband and stopband. 
 
Streszczenie. W artykule przedstawiono optymalną procedurę projektowania dla specjalnej klasy nieprzyczynowych filtrów rekurencyjnych (NR) z 
zerowym przesunięciem fazowym. Projekt opiera się na problemie aproksymacji Czebyszewa. Można go przekształcić do równoważnego programu 
liniowego przy ograniczeniach liniowych fazy zerowej. Projekt daje bardziej interesujące wzory bieguna zerowego, które niekoniecznie ograniczają 
się do klasycznego projektu Kormylo i Jaina. Zaproponowana optymalna procedura umożliwia dokładne zerowe przesunięcie fazowe i lepszą 
charakterystykę amplitudy w paśmie przepuszczania i zatrzymywania. (Optymalna procedura projektowania nieprzyczynowych rekurencyjnych 
filtrów cyfrowych z zerowym przesunięciem fazowym przy użyciu przybliżenia Czebyszewa i programowania liniowego) 
 
Keywords: non-causal recursive digital filters - linear programming - Chebyshev approximation – optimization – zero phase shift 
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Introduction 
Filters having high performances in both magnitude and 

phase are strongly recommended in special applications 
involving noise suppression, such as extracting the desired 
pure electrocardiogram (ECG) content from the measured 
ECG signal [1]. For the limited class of problems, where 
filtering is permissible off-line, a Non-causal Recursive (NR) 
digital filter can be realized by a tandem connection of an 
arbitrary transfer function H1(z)=H(z) and time reversed 
version of the same function H2(z

-1)=H(z-1) [2-8] (Fig.1). This 
special class of NR digital filters can offer highly magnitude 
characteristics with theoretically zero phase shift and 
optimal computational burdens per output sample [4-6]. 
Throughout the last four decades, Kormylo and Jain’s 
design [2] was the most widespread used in designing NR 
filters [4-13]. This classical design requires specifications in 
the frequency domain. It is based on identical transfer 
functions H1(z)=H2(z)=H(z), it also uses the bilinear 
transform and well-known optimal designs of analog elliptic 
filters [14,15], such that the magnitude characteristic of the 
causal transfer function H(z) has to match the square root 
of the desired frequency response of an NR filter. The 
design procedure is fast and simple, however, despite of 
using an optimal elliptic transfer function H(z), the squared 
magnitude response |H(ej)|2  is not necessarily the optimal 
frequency response of the NR digital filter in both magnitude 
and phase (here,   is the normalized frequency). 
Additionally, we encounter sometimes certain inefficiency in 
the use of identical transfer functions, because the Stop-
Band zeros of the NR filter’s transfer function HNR(z)= 
H(z)H(z-1) appear as double zeros along with elliptic poles 
on mirror images patterns inside and outside the unit circle. 
Willson and Orchard [11] have proposed an improvement of 
the reported design [2] by distributing all double zeros 
throughout the filter’s Stop-Band (SB). The tandem 
connection H1(z)H2(z

-1) has zero phase shift and a flat 
magnitude characteristic in the Pass-Band (PB) along with 
an additional loss of 6 dB in the SB. However, the separate 
non-identical transfer functions H1(z) and H2(z) can not 
exhibit flat magnitude characteristics in the PB as the 
previous Kormylo and Jain’s design [2]. Other downside to 

these designs [2, 11] is the fact that they are not based on 
an optimization methodology. 

In this paper, an optimal design of an NR digital filter is 
proposed on the basis of the Chebyshev approximation 
problem. It can be transformed to an equivalent linear 
program under particular linear constraints that allow zero 
phase shift. The given approach enables more possible and 
interesting pole-zero placements, which are not necessarily 
restricted to the previous cases of elliptic poles in mirror-
images pairs and double zeros laying on the unit circle. The 
design leads to an optimal solution in terms of magnitude 
and phase. The magnitude response can be better in both 
the PB and the SB over previous design of Kormylo and 
Jain [2]. Generally, we get flat magnitude characteristics in 
the tandem connection H1(z)H2(z

-1) as well as in the 
separate causal transfer functions H1(z) and H2(z). 
Additionally, according to several experiments, the zero 
phase response accuracy has generally improved with the 
proposed design. 
 
 
 
  
 
 
Fig.1. A Noncausal Recursive (NR) digital filter realization 
 

First, formulations of the zero phase shift constraints 
and the Chebyshev approximation problem are presented. 
The constraints as functions of the normalized frequency 
are given in terms of PB and SB. A linear programming 
formulation is also explained. Afterwards, we describe the 
optimization procedure that solves iteratively the proposed 
linear programming. Next, two filter design examples are 
illustrated. Finally, conclusions are given at the end of this 
paper. 
 
Formulation of the zero phase shift constraints 
 Consider the generalized NR filters realization [3] in 
Fig.1, where H1(z) and H2(z) be the transfer functions of the 
Nth order of causal IIR filters such that: 
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ka , kb , k and k are real coefficients. 

Thus, the equivalent transfer function HNR(z)= H1(z)H2(z
-1) 

of 2Nth order of the NR filter can be expressed as: 
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Where: 
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For z=ej, the frequency response of the NR filter is: 
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Such that:  
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The equivalent frequency response HNR(ej) of the NR filter 
can be expressed as: 
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If we consider the special case where all poles of the 
equivalent transfer function HNR(z) are in quadrantal 
symmetry. This situation can be found, where poles of H1(z) 
are those of H2(z). So, the set of coefficients  dk N k N  

can 

be considered as an autocorrelation function, where it will 
have the maximum at 0d and the others coefficients are 

symmetric, such as: dk=d-k for k=1,…,N. 

In this case, the denominator  D̂   is a real function as 

follows: 
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Thus, HNR(ej) can be expressed with real and imaginary 
parts as: 

(8)      
   

 

   

 

cos sin0
1 1

2 cos 2 cos0 0
1 1

N N
c c c k c c kk k k k

j k kH e jNR N N
d d k d d kk k

k k

 


 

   
               

            

 

HNR(ej) can have zero phase shift if it is a real function, so 
its imaginary part equals to zero. 
So, we have: 
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Finally, (9) can be expressed as a linear constraint over the 

set of the coefficients  ck N k N  
: 
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Formulation of the Chebyshev approximation problem 
 Let F() be the desired frequency response of the NR 
digital filter, which is a specified function of frequency. δ() 
is the positive tolerance function of frequency such that: 
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ˆ
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If we consider under the procedure of optimization that the 
maximum errors are respectively in the PB 

 ˆ max PB       , and in the SB 
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Without lose of generality, the approximation problem 
consists of finding the coefficients ck and dk  N k N   ; such 

that we get the minimum of ̂ / ( PB  ) and  / ( SB  ) 
under the constraints: 
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In order to keep the same sign  of inequalities after 

multiplication by  D̂  , we suppose that  ˆ 0D   . In this 

situation, the constraints (12) and (13), which we call 
principle constraints, can be expressed as a set of linear 

inequalities in relation with the set of the coefficients  ck  

and  dk  N k N    by writing them in the form: 
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Additional inequalities, which we call supplemental 
constraints, can be used where we take in consideration the 
maximum of tolerances imposed by the specifications: δp 
and δs respectively in the PB and the SB, such that: 
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Also, we take in consideration that  ˆ 0D   and 
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 is 

a real function (in order to have zero phase shift), we 

impose also that:  ˆ 0N   , in order to get positive 

magnitude frequency responses. 
To simplify the problem of optimization, we consider that: 
ˆ

K


 . If we are interesting to optimize the maximum of 

error δ in the SB, we get the new formulation of the 
approximation problem as shown: 
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under the constraints: 
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Linear programming formulation 
 In order to transform the above approximation problem 
(18), (19) and (20) into a linear programming, the maximum 
error δ in the SB is considered as a constant during the 
optimization procedure; also, an auxiliary variable  is 
subtracted from the left side of each inequality constraint, 
forming the new linear programming formulation: 
(21)  The cost function to be minimized is: y   
under the constraints: 
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It is clearly that the approximation problem in (21), (22) and 
(23) can have a solution if and only if the minimum value of 

 is 0; otherwise, no solution to the approximation problem 
is found, and either F(), or δ or both must be modified in 
order to obtain a solution. 
 
Procedure of optimization 
 To determine the smallest value of δ such that the linear 
programming (21), (22) and (23) has a solution, an iterative 
procedure should be used since δ enters into the design 
constraints. Before, let assume that the sum of the 

maximum of the passband ripple ˆ K  and stopband 
ripple δ should be less than or equal to 1 [16]. If we let δ* 
denote the minimum value of δ for which the approximation 
problem has a solution. We have: 

(24)                           
1*0

1K
 


 

The initial lower δi
- =0 and upper δi

+ =1/(K+1) bounds can 
be used to locate δ* by a binary search procedure, when at 
each step i, δ is calculated by a geometric mean 

( i i     ). Note that, the geometric mean can reduce 

dynamic between these two lower δi
- and upper δi

+ bounds 
in comparison with the arithmetic mean. So, we get a fast 
binary search [16]. The procedure of optimization can be 
described as follows: 
 
Step 1: initialization  
Let: δi

- =10-15 (since δi
- < 10-15 is unrealistic), δi

+ =1/(K+1) 

and i i      

Step 2: Solve the above linear programming (21), (22) and 
(23) with the value of δ. If the cost function y=0, a solution 
to the approximation problem exists and δ *< δ. In this case, 
we can reduce the upper bound and we set δi

+ =δ. 
Otherwise, no solution to the approximation problem exist 
for this value of δ and δ *> δ. In this case, the lower bound 
is increased and we set δi

- =δ. 

Step 3: set i i     , and repeat step 2 until:  

 = |δi
+ - δ

i
- | reaches a predetermined accuracy. Generally, 

we stop processing where  reaches a spacing floating 
point number [16]. 

Finally, polynomials  N̂ z and  D̂ z in (3) can be 

factorized according to the final coefficients  ck N k N  
 and 

 dk N k N  
that are associated with the optimal value δ*. 

Poles and zeros inside the unit circle are those of the 
causal minimum phase transfer function H1(z); where, 
whose outside the unit circle are assigned to the noncausal 
maximum phase time reversed transfer function H2(z

-1). If 
zeros lie on the unit circle, the assignment to H1(z) or H2(z

-1) 
can be done such that the pairs of zeros in complex 
conjugate lead as possible to flat magnitude characteristics 
for the separate causal transfer functions H1(z) and H2(z). 
Note that the NR filter order (2N) can be fixed to a 
prescribed value, or initially estimated to its minimum value 
according to the specifications as in Kormylo and Jain 
design [2]. 
Additionally, if the desired performances are not satisfied 
because the NR filter order 2N is under-estimated, then it 
can be increased in order to repeat again the described 
algorithm interactively until the required performances can 
be found. 
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Examples of design  
 In this section, two design examples are shown. The 
linear programming in (21), (22) and (23) can be solved by 
using the linprog() command from the optimization Toolbox 
of Matlab [17], with a double precision arithmetic on 64 bits 
machine. The commonly Simplex method is not suitable to 
solve a large scale problem as the filter design; so, we use 
this command with the option of interior point methods [17]. 
It seems more adequate in getting acceptable solution. 
Results are compared with those of Kormylo and Jain’s 
design [2]. The Willson and Orchard’s design [11] is not 
considered here since the separate transfer functions H1(z) 
and H2(z) do not exhibit flat magnitude characteristics. 
The desired frequency response F() can be defined in both 
of the PB and the SB edges as follows: 

(25)      
1

0

if PB
F

if SB







  
 

The required design specifications for the NR filters of 
examples 1 and 2 are given respectively in Tables 1 and 3. 
The obtained results are summarized respectively in Tables 
2 and 4.  Note that the total filter order can be estimated 
depending on the specifications. 
 
Table 1. Lowpass digital filter specifications for example 1 

Parameters Values 
Total filter order is estimated for each design NA 

Maximum PB attenuation Ap  in dB 0.5 
Minimum SB attenuation As in dB 32 

PB edge p in normalised frequency 0.5 
SB edge s in normalised frequency 0.6 

 
Table 2. Design results for example 1 (LowPass filter) 

Method Proposed Design in [2] 
Total filter order 08 08 
Optimal Ap (dB) 0.47 0.5 
Optimal As (dB) 32.6 32 
Iterations num. 56 NA 

Max phase error (Rad) 0.3×10-14 1.8×10-14 
 
Table 3. Bandpass filter specifications for example 2 

Parameters Values 
Total filter order is estimated for each design NA 

Maximum PB attenuation Ap  in dB 0.5 
Minimum SB attenuation As in dB 50 

PB edge p in normalised frequency 0.2 
PB edge p in normalised frequency 0.3 
SB edge s in normalised frequency 0.5 
SB edge s in normalised frequency 0.7 

 
Table 4. Design results for example 2 (Bandpass filter) 

Method Proposed Design in [2] 
Total filter order 12 12 
Optimal Ap (dB) 0.49 0.5 

Min. As (dB) in lower SB 94.4 50 
Min. As (dB) in higher SB 50 50 

Iterations num. 53 NA 
Max phase error (Rad) 0.228×10-11 0.121×10-11 

 
Also, note that the proposed design imposes fixed 

maximum tolerances δp and δs respectively in the PB and 
the SB with a fixed ratio k= δp / δs and fixed PB and SB 
edges. 

In order to get equitable comparison with Kormylo and 
Jain’s design, the elliptic filter devoted to implement the NR 
filter can be designed according to fixed maximum 
tolerances δp and δs with a fixed PB edge and a fixed ratio 
k, however, the SB edge can be a floating parameter. 
Designing an elliptic filter with a relaxed transition band by 
fixing the SB edge in the elliptic design is not suitable here, 
despite of reaching better attenuation in the SB. Because 

by the fixed k in the specifications, we get, a worse 
tolerance out of δp in the PB. 
For example 1, the proposed design leads to identical 
transfer functions H1(z) and H2(z). We get an extra loss of 
0.6 dB in the SB and better attenuation in the PB (Table 2) 
for the magnitude response of the tandem connection 
H1(z)H2(z

-1). The proposed design yields 6 times smaller 
maximum phase error. The overall magnitude response of 
the NR Lowpass filter, the pole-zero patterns and the phase 
response are illustrated respectively in Figs. 2, 3 and 4. 
 

 

 
Fig.2. Magnitude responses of the tandem connection H1(z)H2(z

-1) 
yielded from both proposed design (thick solid line), and that of 
Kormylo and Jain (dashed line) for example 1. (a) Overall 
magnitude response, (b) Passband details 
 

 

 
Fig. 3.  Pole/zero patterns of the tandem connection H1(z)H2(z

-1) for 
example 1 (a) Proposed NR filter, (b) NR filter of Kormylo and Jain. 
 

For example 2, the overall magnitude response of the 
NR Bandpass filter and the phase response are illustrated 
respectively in Figs. 5 and 6. The separate magnitude 
responses of H1(z) and H2(z) with flat characteristics in the 
PB are shown in Figs. 7 and 8. Here, we get different 
separate causal transfer functions H1(z) or H2(z).  
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Fig. 4. Phase responses of the tandem connection H1(z)H2(z

-1) for 
example 1 (a) Overall phase response, (b) Passband details from 
Kormylo and Jain’s design (dashed line) (c) Passband details from 
the proposed design (thick solid line) 

 

 
Fig.5. Magnitude responses of the tandem connection H1(z)H2(z

-1) 
yielded from the proposed design (thick solid line) and Kormylo and 
Jain design (dashed line) for example 2, (a) Overall magnitude 
response, (b) Passband details. 

 

 

 

 
Fig.6.  Phase responses of the tandem connection H1(z)H2(z

-1) 
yielded from the proposed design (thick solid line) and Kormylo and 
Jain design (dashed line) for example 2, (a) Overall phase 
response, (b) Passband details from the proposed design (c) 
Passband details from Kormylo and Jain’s design. 

 
Fig.7. Magnitude responses of the separate causal transfer function 
H1(z) for example 2 

 

Fig.8. Magnitude responses of the separate causal transfer function 
H2(z) for example 2 
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Fig.9. Pole/zero patterns of the separate causal transfer function 
H1(z) for example 2, including those of the proposed NR filter and 
Kormylo and Jain’ design. 

 
Fig.10. Pole/zero patterns of the separate causal transfer function 
H2(z) for example 2, including those of the proposed NR filter and 
Kormylo and Jain’ design. 
 

Their pole-zero patterns are presented respectively in 
Figs. 9 and 10. We get respectively an extra loss of 44.4 dB 
in the lower SB and 0.1 dB in the higher SB for the 
magnitude response of the tandem connection H1(z)H2(z

-1). 
The maximum phase response is practically zero. 
 
Conclusions 
 An optimal technique for designing NR digital filters was 
presented. The design was based on the Chebyshev 
approximation problem. It was formulated as a linear 
programming under linear constraints of the zero phase 
shift. It was solved iteratively using a well-known binary 
search technique. Two examples of filter design were 
illustrated with identical and non-identical separate causal 
transfer functions. We demonstrate trough the proposed 
design that the optimal magnitude response of the NR filter 
can be different and better over previous classical Kormylo 
and Jain design. An additional loss in the Stop-Band was 
reached for the magnitude response of the tandem 
connection H1(z)H2(z

-1) with  a better attenuation in the 
Pass-Band. Also, we get flat magnitude characteristics of 
the separate causal transfer functions H1(z) and H2(z). 
Results in Tables 2 and 4 demonstrate that the given NR 
filter had an accurate zero phase shift. The proposed 
optimal design can be used for large magnitude 
specifications using linprog() command with the option of 
interior point methods. 
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