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Internal Model Control for Underactuated Systems based on 
Novel Virtual Inputs Method 

 
Abstract. An internal model control strategy is proposed in this paper for underactuated linear systems. Their associated models are non-square. 
When applying internal model control strategy, a specific inversion of a square model is needed to design the controller. For that reason, squaring 
the model of underactuated system by adding virtual control inputs is proposed in this paper. The obtained internal model structure is then modified 
in order to eliminate the excess inputs. Simulation results on a three inputs/four outputs system is considered to prove the effectiveness and 
reliability of the proposed method. 

Streszczenie. W artykule zaproponowano strategię kontroli modelu wewnętrznego dla niedostatecznie dostosowanych systemów liniowych. 
Powiązane z nimi modele nie są kwadratowe. Przy stosowaniu strategii kontroli modelu wewnętrznego do zaprojektowania regulatora potrzebna jest 
specyficzna inwersja modelu kwadratowego. Z tego powodu w niniejszym artykule zaproponowano podniesienie do kwadratu modelu 
niedostatecznie uruchomionego systemu poprzez dodanie wirtualnych wejść sterujących. Uzyskana struktura modelu wewnętrznego jest następnie 
modyfikowana w celu wyeliminowania nadmiernych nakładów. Uważa się, że wyniki symulacji w systemie trzech wejść / czterech wyjść potwierdzają 
skuteczność i niezawodność proponowanej metody.(Kontrola modelu wewnętrznego dla systemów niedostatecznie aktywowanych w oparciu 
o nową metodę wirtualnych wejść) 
 
Keywords: Internal model control, virtual control, underactuated linear systems, NERGA, ETF. 
Słowa kluczowe: Wewnętrzna kontrola modelu, kontrola wirtualna, niedostatecznie uruchamiane systemy liniowe, NERGA, ETF. 
 
 

Introduction 
The control of underactuated systems is an open and 

interesting automation field. Underactuated systems have 
fewer inputs than degrees of freedom [1]. Therefore, some 
degrees of freedom are not excited directly by the 
actuators. This class of systems includes many applications 
in robotics, aerospace, naval vessels and submarines. 
During the past few years, this research area has attracted 
much attention. Generalized predictive control is proposed 
in [2], for the stabilization of the inertia wheel inverted 
pendulum. Position tracking for nonlinear underactuated 
vehicles is addressed in [3] via a nonlinear Lyapunov 
controller. Robust control design is proposed for a class of 
underactuated uncertain nonlinear systems in [4]. In [5], the 
control of underactuated systems with viability constraints is 
considered. A class of nonholonomic control solutions is 
redesigned by means of switching control, so that system 
trajectories are viable and converge to a goal set. 
 In this paper, Internal Model Control (IMC) design is 
investigated for linear underactuated mechanical systems. 
The IMC strategy is a powerful control approach thanks to 
its robustness, simplicity and good control performance [6, 
7].  
 The IMC controller corresponds to a specific inversion of 
an appropriate identified model, since direct inversion is 
rarely achievable [7, 8]. For underactuated systems, several 
approaches are considered for the synthesis of a specific 
inversion of the identified model. In this paper, two 
approaches will be briefly introduced, the non-square 
effective relative gain (NERGA) and the equivalent transfer 
function method (ETF). The NERGA strategy consists on 
the measurement of interactions between the loops of the 
system in order to square the system and make it invertible 
[9, 10]. While, the ETF method consists on tuning the 
pseudo-inverse of the process to design the internal model 
controller [11, 12].  
 In this paper, we focus on the virtual outputs method. 
The idea behind this approach is simple. Through the 
introduction of appropriate number of virtual inputs to 
square the underactuated model. The IMC controller can 
then be designed and the excess control inputs are 

eliminated when applied to the system. This method is 
compared to NERGA and ETF approaches. 
 
Internal model control 
 The Internal model control is an advanced control 
strategy introduced by Garcia and Morari in 1982. It has 
been developed in many forms such as continuous-time, 
discrete-time, SISO, MIMO stable systems. In the current 
section, the IMC principle will be presented in the case of 
square system and a specific design of the MIMO IMC 
controller will be discussed [13,14]. The MIMO IMC 
structure is depicted in Fig. 1. G(s) is the multivariable 
process; M(s) is the model; the MIMO IMC controller C(s) is 
chosen as the model inverse ; y(s) and ym(s) are the 
process and model output vectors; u(s) represent the 
control vector; v(s) is the external disturbance vector; r(s) 
represents the reference vector; d(s) describes the process-
model mismatch and e(s) is the error vector. 
 
 

 

 

 

 

 

 Fig. 1. IMC structure for MIMO systems 

     The process G(s) of dimension n can be effectively 
represented by the first order plus time delay (FOPTD) or 
the second order plus time delay (SOPTD), it is described 
by the following equation [11]: 
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gij(s) is given by the following equation:  

(2)          
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where ijk k    ,  ij     and ij     , are respectively 

steady gain, time delay and time constants. 
The closed loop IMC mapping for square systems of 
dimension n is represented as follows: 
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The Internal Model Control, is stable if and only if all 
elements of the matrix on the right hand of Eq. (3) are 
stable in open loop. The realization of an IMC controller as 
the model inverse is essential to ensure perfect set-point 
tracking. Unfortunately, model inversion for physical 
systems gives a structure generally unrealizable. For that 
reason, a specific inversion method is proposed. The IMC 
controller design proposed for MIMO square systems is 
illustrated by Fig. 2, [7, 8] 

 
Fig. 2. MIMO internal model controller 
 

 The controller transfer function C(s) is described by the 
following equation:         

(4)                  1
2 1 1( ) ( ( ))nC s A I A M s A                  

Where 1 n nA I  is a gain matrix,  is a positive coefficient 

chosen sufficiently high in order  to ensure a better 
approximation of the model inverse and the matrix 

1
2 1 1( (0)) ( (0))n nA A M I A M

                             
 

Internal model control for underactuated systems 
 In the present paper, we will dedicate the effort to 
control underactuated systems having fewer control inputs 
(n) than degrees of freedom (m), (n<m). The control task of 
such systems is harder than fully actuated systems. The 
non-square effective relative gain (NERGA) and the 
equivalent transfer function method are proposed in 
literature and are briefly described next. 
 

Model inversion based on NERGA method : 
 Non-Square Effective relative gain array (NERGA) 
method solves the problem of singularity of the process 
transfer function matrix. This method makes the process 
square by eliminating outputs or inputs that do not affect the 
dynamics of the multivariable system. In the literature the 
NERGA method is described as follows [6, 10, 15]: 
Step 1: Calculate the effective gain matrix 
(5)                   0E G                           

Where G(0) is the steady state gain matrix,   is the 

Hadamard product and   is the bandwidth frequency 
matrix. 
Step 2: Calculate the NERGA 

(6)                      TE E                 

 
1H HE E EE
     , E  is the generalized inverse of E. 

 

Step 3: calculate the sum of each NERGA row and column 

 By using information from matrix NERGA, it is possible 
to uniquely determine the sums of elements in each row 

and each column described as follows: 
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j j njj j j
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Step 4: eliminate the output that corresponds to the 
smallest sum row 

 If RS is very close to 0, so the output loop has poor 
impact on the input loop. This output loop can be removed. 

Model inversion based on ETF method : 

 The equivalent transfer function (ETF) method has been 
developed to approximate the inverse of the system transfer 
function matrix. The inverse process equation is expressed 
as follows [10, 16]. 
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 The ETFs parameters for FOPTD and SOPTD have the 
following form [17, 18, 19]. 

(10)
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where 
^

ijk k
     

, 
^

ij 
     

 and ij 
     

are steady gain, 

time delay and time constants. 

(11)

                     

N NK K

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K


 is the steady state gain matrix, N is The NRGA and 
 is the Hadamard division. 

(12)

                     

N 


                             
where  N is the NRARTA.   

(13)                         N 


                              
 This method has been applied for the design of internal 
model controller for non-square multivariable system; the 
controller is calculated as follows [20, 21]. 

(14)                        
^

m fC s G s G s G s                

where:  fG s is a low pass filter allowing the realization of 

the internal model controller,  mG s  is the process model 

non-minimum phase, it contains the time delay part and the 
right half-plane zeros [22]. 

Internal model control based on virtual inputs method :  
 As discussed previously, the IMC controller is chosen as 
the model inverse which requires a square transfer matrix 
[20]. However, the transfer matrix of the model M(s) isn’t 
square so non invertible. The process model M(s) must be 
square to evaluate the controller parameters. To circumvent 
this problem, virtual inputs of dimension (m-n) should be 
added to square the model transfer function matrix. The 
IMC controller can then be designed. The excess control 
inputs are eliminated when applied to the system. The 
virtual inputs method is illustrated through Fig. 3. 
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Fig. 3. Internal model control structure for under actuated systems 

 where : ( )G s  is the process transfer matrix of 

dimension      (m, n), ( )aM s  is the augmented square 

transfer matrix of the model transfer matrix ( )M s  of 

dimension (m, n) and the controller ( )C s of dimension (m, 

m) obtained as the approximate inverse of the square 
augmented model ( )aM s  
 Let’s consider the non-square process G(s) and model 
transfer matrices M(s) are given as follows: 
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 The IMC based on virtual inputs method is described as 
follows: 
Step 1: Square the model of the underactuated system 
 The model described by Eq. (16) is squared by adding 
the missing transfer functions bloc of dimension (m, (m-n)), 
the augmented model ( )aM s  is then described as follows: 
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Step 2: Calculate the IMC controller C(s) 

 The IMC controller C(s) is obtained as discussed in the 
previous section. It corresponds to the approximate inverse 
of the square model ( )aM s . 

 The control input vector 1mu   is composed of 
1n

gu  the real control inputs acting on the process and 

(m-n) virtual inputs: 

ݑ              (18) ൌ ቎ݑଵ . . ௡ݑ  .
︸
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ቮݑ௡ାଵ . . ௠ݑ  .
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 virtual inputs
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Step 3: Eliminate the excess control inputs 

 The virtual inputs should be eliminated before being 
applied to the square model ( )aM s , in order to reduce the 

process-model mismatch. The control input vector um is 
described by the following equation: 

݉ݑ	            (19) ൌ ቎1ݑ . . ݊ݑ  .
︸
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ܶ

       

Consider the matrices A and B defined as follows: 
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The control inputs applied to the process and the model can 
be described then by the following equations: 

(21)                ,g mu A u u B u                  

Simulation results 
 To demonstrate the effectiveness of the proposed 
controller design method for underactuated systems, we 
consider the following process, with 3 inputs (u1, u2, u3) and 
4 outputs (y1, y2, y3, y4) described as follows: 

(22)    
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The eigen values of G(s)  1 6...   have a negative real 

part, which confirms the process stability and justifies the 
IMC application. 
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Simulation parameters for the NERGA inversion method: 
 The NERGA algorithm is applied to the proposed 
system. The steady state gain matrix G(0), band width  , 
effective energy transmission ratio EG, NERGA , sum of 
the elements in each row RS and sum of the elements in 
each columns CS are calculated as follows: 
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(26)   0.99 0.96 0.97 0.06
T

RS 
 ,  1 1 1

T
CS 

  
 From the results shown previously, we notice that the 
fourth term in RS is the closest term to zero among the 
other three terms. Thus, the fourth output loop of the 
system can neglect and consequently removed.  
The gain matrix considered for NERGA is 1 30.01A I    
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Simulation parameters for the ETF inversion method : 
 By using the NRGA, NRNGA, NRARTA concepts, the 
ETF model parameters for process G(s) are deduced 
through the equations below:   

(27)   

2 1 1

2 1 1

1 2 3

1 1 1

0 0 02.65 2.40 2.07

0 0 02 2.20 2.97
,

0 0 01.89 3.80 1

2.64 2.79 9.823.66 2.21 3.68

e e e

e e e
K

e e e

e e e


 

    
       
    
   
    

                                  

(28)            

0 1 1

2 1 1

0 0 1

0 2 0

5.36 1.23 3.73

9.44 3.90 1.67

3.44 2.52 2.41

1.05 2.79 3.92

e e e

e e e

e e e

e e e





 





 
 
 
 
 
  

       

The ETF matrix is expressed by Eq. (28). 
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Finally, we can obtain an IMC controller as described 
below:  

(30)
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Hence, the feedback filter is obtained. 
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Simulation parameters for the novel virtual inputs inversion 
method : 
 With the assumption of imperfect modeling, the 
augmented transfer matrix Ma(s) for the proposed inversion 
method is expressed as follows: 

(33)           
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The first three columns of Ma corresponds to the transfer 
matrix M(s): 1 4

1 3

( ) ( )ij i
j

M s M 


 


, the last column of Ma 

matches the added transfer vector of dimension (4, (4-3)). 

The Ma(s) is stable. Its correspondent eigen values have 
negative real parts:  

 (34)         1 2 3 4

5 6
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The gain matrix 1A considered for the virtual inputs method 

and that ensures the regulator and the IMC structure 
stability is :  1 40.01A I   
Nominal case  
 The step responses of outputs y1(t), y2(t), y3(t) and y4(t) 
in the nominal case (in the absence of disturbances) are 
displayed respectively in Fig. 4, Fig. 5, Fig. 6 and Fig. 7. It 
can be noticed that the internal model controller based on 
virtual inputs method, has a smaller overshoot as compared 
to other methods (ETF and NERGA), the system has good 
traceability and accuracy. In fact, for the ETF method, 
diminished control performance is noticed. While the 
application of NERGA method isn’t efficient due to the 
neglected dynamics that may cause performance 
degradation. In our case, the output y4(t) is neglected.  
Besides, this method can’t be efficiently applied when the 
sums of the elements of each column of the NERGA matrix 
are very close to each other’s. 

 
Fig. 4. System output y1(t) (nominal case) 

 
Fig. 5. System output y2(t) (nominal case) 

 
Fig.  6.  System output y3(t) (nominal case) 

 
Fig. 7.  System output y4 (t) (nominal case) 
 
Robustness towards disturbances  

 The robustness of the proposed method (IMC based on 
virtual inputs method) is proved through simulation results. 
The proposed disturbances are steps of amplitude 0.5 that 
occur at t = 150s. System outputs are displayed in Fig. 8, 
Fig. 9, Fig. 10 and Fig. 11. We can notice that the set-point 
tracking is established despite the persistent disturbances. 
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Fig. 8. System output y1(t) (in the presence of disturbances) 

 
Fig. 9. System output y2(t) (in the presence of disturbances) 

- 
Fig. 10. System output y3(t) (in the presence of disturbances) 

 
Fig. 11. System output y4(t) (in the presence of disturbances) 
 

Conclusion 
 In this paper, a novel internal model control strategy for 
linear underactuated systems based on virtual inputs 
method was developed. The model of underactuated 
systems is non square. However, a square model is needed 
to design the internal model controller by a specific 
inversion method.  The under-actuation issue was solved in 
this paper by squaring the system’s model by adding the 
appropriate number of inputs. The excess control inputs are 
then eliminated when applied to the system. Numerical 
example exhibited the efficiency of the proposed control 
strategy based on virtual inputs method. The obtained 
controller is simple, easy to implement and presents good 
control and robustness performances as compared to the 
non-square effective relative gain array and equivalent 
transfer functions approaches considered in literature for 
the internal model control of underactuated systems.  
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