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Trajectory Planning and Motion Control Schemes for 2DoF 
Planar Parallel Manipulator Biglide Type with Elastic Joints: A 

Comparative Study  
 
 

Abstract. This research paper develops a nonlinear backstepping sliding mode design scheme for the motion control of two-degree of freedom 
planar parallel robot. The main objective of this paper is to gain a strong control in trajectory tracking case. However, dynamical equations of motion 
for a 2DoF parallel manipulator, including structured and unstructured uncertainties, are taken into account. Furthermore, the hybrid control strategy 
is based on backstepping scheme and on a switching function is that are presented for high accuracy of a mixed space tracking trajectory of robot. 
Also, the application of control technique in presence of parameter uncertainties in a massive change is studied. In addition, the benefit of this 
method is that it imposes the intended stability properties by first fixing the Lyapunov candidate functions and then calculating the other functions in 
a recursive way. Therefore, simulation outcomes are shown so as to assess the tracking performance and to evaluate the total stability of the closed-
loop system. Finally, the results accomplished in simulation show the efficiency of the controller proposed for a parallel robot with two degrees of 
freedom Biglide type with elastic joints. 
 
Streszczenie. W artykule opracowano nieliniowy tryb ślizgowy backstepping do sterowania ruchem równoległego robota planarnego 2DoF z 
elastycznymi przegubami. Badane jest zastosowanie techniki sterowania w obecności niepewności parametrów przy masywnej zmianie. Zaletą 
proponowanej metody jest to, że narzuca ona zamierzone właściwości stabilności poprzez wcześniejsze ustalenie unkcji Lyapunova. Wyniki 
uzyskane w symulacji wskazują na skuteczność proponowanego regulatora.(Schematy planowania trajektorii i sterowania ruchem dla 
planarnego manipulatora równoległego 2DoF typu Biglide z elastycznymi przegubami:). 
 
Keywords: Parallel robot, Nonlinear control, Trajectory tracking, Flexible robot manipulators.  
Słowa kluczowe: Robot równoległy, Sterowanie nieliniowe, Śledzenie trajektorii, Elastyczne manipulatory robotyczne. 
 
 

1. Introduction 
Parallel robots are a closed-loop system in which all the 

links are instantly attached to the ground and the movable 
platform. These latter are characterized by a high precision 
of load capacity particularly structural stiffness when the 
end effector is connected to the mobile platform at multiple 
points [1], [2], [3], [4], and [5]. However, the parallel 
manipulators have many disadvantages: They are limited in 
workspace [34] and also complex kinematic issues due to 
the existence of singularities and multiple closed-loop 
chains. 

Two categories of parallel robots exist, spatial and 
planar robot manipulator. The former contains spatial 
parallel robots that can rotate and translate in the three-
dimensional space. For instance, Gough-Stewart is one of 
the most popular spatial manipulator platform is particularly 
preferred in flight simulators [6], [7]. That’s why, they are 
related to a lot of researcher's interests in recent decades 
[8] and [9].The latter on the other hand, translates along the 
x and y axes, and rotates only around the z-axis. 

Parallel robots have taken a great interest in several 
applications, such as high-speed machining, assembly, 
packaging task, and micro or nano positioning applications 
[10, 11]. In this paper, I am going first to tackle the motion 
control in case of planar parallel robot known as Biglide 
having two degrees of freedom (DoF) [12], [27], [13] and 
[14]. This type of parallel robot is used in the industrial 
production of electronic outcomes, as place and picks 
applications [12], [27]. 
 A dynamical modeling analysis of parallel manipulator is 
extremely complex because of the presence of multiple 
closed kinematic chains. Additionally, due to uncertainties 
such as not modeled errors of dynamic parameters, 
external disturbances and measurement noise. A great 

number of researchers succeed to work on the dynamic 
modeling of parallel robots as shown in [15], [16], [17] and 
[35]. 

In the second part of this paper a formulation in 
Cartesian space of the dynamic model with 2-DoF parallel 
manipulator is illustrated. The Conventional control methods 
of parallel manipulators have appealed many researchers in 
studying their performances. For example, in [20] and [21], 
an adaptive switching learning PD control method was 
proposed to control the displacements of parallel 
manipulators. A corresponding proportional derivative (PD) 
controller [18], a nonlinear PD controller [19]. It is also 
acknowledged in [22] that all of these approaches are 
simple and easy to implement, however, they are not robust 
when the robot supports various payloads, and in the 
occurrence of uncertainties in their modeling. Other 
advanced controllers were presented, such as the 
computed torque controller [12] [22], and also the adaptive 
controller [24]. Those controllers are based on a complete 
knowledge of dynamic model and require a computational 
power. Consequently, it is difficult to get a precise dynamic 
model of parallel robots because of the above-mentioned 
drawback [21]. 

In the recent years, many research investigations have 
been devoted to the control of mechanical systems using 
nonlinear conventional modern controller [25],[28], an 

adaptive control [26] and [25], H  control [39], [40], TS 

disruptor [12, 38] and [35], Sliding mode control [27], 
computed torque control and neural network optimized have 
been proposed in [23] and [36, 37]. Although these types of 
controllers work excellently when all the dynamic and 
mechanical parameters are valid, when the manipulator has 
a variation in the dynamic parameters; the controller will not 
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provide sustainable performance [12]. [27], [29] proposed 
sliding mode control which is a method and can be a 
solution too, but some bounds on system uncertainties must 
be pre estimated. In the third part of this paper, a further 
contribution of backstepping sliding mode approach is 
proposed for the motion control of planar parallel robot with 
elastic joints in the operational space. This approach of 
control is based on sliding mode surfaces and the nonlinear 
dynamic model of system. Finally, the control theories of 
sliding mode control and backstepping design methodology 
have been successfully used to control a parallel planar 
robot as in [27] and [28]. The advantage of this type of 
controllers is having less sensibility versus disturbances 
and parameter variations. Various applications of sliding 
mode control have been investigated, for instance, Active 
vehicle suspensions [30], Underwater vehicles [27], 
Magnetic levitation [31], DC-DC converters [32] and 
photovoltaic solar in [33]. 
 

2. Dynamics modelling of BIGLIDE parallel robot 
2.1 Kinematic and geometric analysis  

To obtain the geometric and kinematics modeling of a 
Biglide parallel manipulator, the following conventions are 
investigated according to [12, 27]. The manipulator provides 

2DoF of translation on the ,X Y  plane, the positioning of 

end effector is represented by operational variables ( , )x y  

driven by two active joints prismatic type 1 2,[ ]Tq q q  in 

the same axis of X . 
The operational vector is then written as follow: 
 

(1)                               [ , ]TP x y             

The generalized joint variable vector is equal: 

(2)                            1 2,[ ]Tq q q                        

The mechanism contains two constant length struts having 
moveable foot points as shown in Fig. 1. Both struts have 
the same length a.  The equation between both coordinate 
vectors is given with kinematic loop-closure constraints 
shown in Fig. 1. 

(3)

2 2 2
1

2 2 2
2

( )
( , ) 0, ( , )

( )

x q y a
P q P q

q x y a

   
     

   
    

The Inverse geometric model (IGM) is given by: 
 

(4)                                   q g P                    

with 

(5)             2 2( )
( ) ,

( )

x C y
g P C y a y

x C y

 
    

  

 

The Direct geometric model (DGM) can be obtained from 
(4): 

(6)                               1P g q                 

with 

(7)              

1 2

1

2
2 1 2

2
( )

( )

4

q q

g q
q q

a



 
 
 
 

 
 

                  

The relation between the joint space of parallel robot 
and the operational space is conveniently depicted by two 

Jacobian matrices ( , )pJ P q  and ( , )qJ P q  is given as: 

(8)                 ( , ) ( , )p qJ P q P J P q q           

The parallel singularities occur when the Jacobian matrix 

pJ  is rank deficient. The Biglide robot has two types of 

parallel singularities: [12]. 

•  High singularity: 1 2q q x  , the struts are superposed 

and 0.07y  , Fig 2. 

•  Low singularity: 0y  , the struts are aligned, which is 

illustrated in  Fig 2. 

 
Fig 1. Kinematic schemes of Biglide parallel robot. 
 

 
 

Fig 2. Workspace boundaries and trajectories: (T1) Low trajectory, 
(T2) High trajectory, (T3) Left trajectory, and (T4) Right trajectory. 
 

The equation of kinematic between joint velocities and 
end-effector velocities is calculated by differentiating (3) 
with respect to time: 

1

2

( , ) ( , ) , / ( , )p q p

x q y
J P q P J P q q with J P q

x q y

 
    
 

(9)                  
1

2

0
( , )

0p

x q
J P q

x q

 
   

            

2.2 Dynamic Model 
The dynamics relationship of the Biglide parallel robot in 

operational space is illustrated as follows: 

(10)               ( ) ( , )M P P N P P            

with 

 , , ( )
T

P x y M P is the inertial matrix presented as 

follow: 



90                                                                                       PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 8/2021 

(11)   
1 1 2 1

2 2 1 2

1
( ) ( )

2( )
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 

 
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with 

1,2 1,2 /ms a   

2 2
1 1 1 2 1

2
2 2

2 2 2 1 1

2

( ) [(2 3 ) ( )

] / (2 ( ) )

( ) [(2 3 ) ( )

] / (2 ( ) )
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( , ) ( , ) ( )N P P R y y p y    

( , )R y y is a coriolis / centripetal matrix can be presented 

as: 

(12)                      
11 12

21 22

( , )
r r

R y y
r r

 
  
 

                 ) 

11 12
2

1 1 2 1 1 2
2 3

1 2
2

22 2 2 1 2 2 1
2 3

1 2

21

0

[(2 3 ) (2 3 )

( ) ] / (2 ( )

[(2 3 ) (2 3 )

( ) ] / (2 ( )

r r

r m y m

C y J J y C y

r m y m

C y J J y C y

   

   

 
      

 
     

 













 

( )p y is a vector containing gravity torques can be given 

as: 

(13)         
1 2

1 2

( ( )( )) / 2
( )

( ( )( )) / 2

gC y m y
p y

gC y m y

 
 

  
     

        

 
3. Controller design 
3.1 Backstepping sliding mode approach  

The backstepping is a recursive approach that achieves 
asymptotic stability of nonlinear systems by interlacing the 
choice of a Lyapunov function with the design of feedback 
control [28]. In this part, the control low depending on 
backstepping sliding mode control that is used on the direct 
dynamic model in operational space of 2DoF planar parallel 
manipulator. The results obtained by proposed controller 
were compared to results of PID, Classical sliding mode 
control and Computed torque control witch are presented in 
[27, 12]. The backstepping approach is considered as a 
recursive algorithm to determine the synthesis of nonlinear 
control-law, we simplify all the calculation steps concerning 
the tracking error and Lyapunov function in the fallowing 
way. 
 

(14)

 

 
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/ {2,4,6,8,10,12}( 1
  

) ( 1)1
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(15)         
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/ 2, 4,6,8

 

,10,12
2

i

i

i i

e i
v

v s i

  
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We use the backstepping algorithm to develop the 
control allowing the system to follow the desired trajectories 

in the ( , )x y plane; in fact the backstepping schemes is 

designed  in the following steps. 
 
Step 1: For the first step we consider the tracking-error 

about P position as: 

(16)                     1e =P -Pdt t t                   

where  ,
T

P x y is output trajectory position of the end-

effector in operational space. The derivative equation of 
tracking-error (16) is computed as: 

(17)                           1e =P -Pdt t t        

Our objective in this step is to force the convergence of the 

regulated variable to zero  e 0t   by designing a virtual 

control. To reach this goal, Using the following Lyapunov 
function condidate as: 

(18)                         1

1

2
TV t e t e t            

Its first time derivative is obtained as follows: 

(19)                 
     
      

1
T

T
d

V t e t e t

e t P t P t



 

 
            

Choosing  P t  as virtual control variable. Then, an 

appropriate stabilizing function is selected to ensure stability 
as follows: 

(20)                               
1( ) ( )

( ) ( )d

P t t

P t Ke t


 


           

Substituting the stabilizing function 1( )t in the first time 

derivative of the Lyapunov function (19) leads to: 
 

(21)                         1( ) ( ) ( )TV t e t Ke t             

From the above equation, it is clear that 1( )V t  is negative 

definite, which proves that the convergence of the tracking 

error ( )e t  to zero is ensured. 
 

Step 2: Defining now the switching function to be the 
difference between the virtual control and the stabilizing 
function as: 

(22)                         
1( ) ( ) ( )

( ) ( ) ( )d

S t P t t

P t P t Ke t

 
  


            

Differentiating the above sliding surface (22) with respect to 
time and using the inverse dynamic model manipulator in 
(10) gives: 

(23)     

1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( , ) ( ) ( )

d

d

S t P t t

P t P t Ke t

M P t N P P P t Ke t





 
  

      

  
  

  
 

Therefore, based on (22), the first time derivative of the 

error ( )e t in (17) can be rewritten as follows: 

(24)     ( ) ( ) ( )e t S t Ke t            

Thus, the second Lyapunov function is selected as: 
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(25)                 2 1

1
( ) ( ) ( ) ( )

2
TV t V t S t S t                  

Its first time derivative is calculated as: 
(26) 

 
 
 

2 1

1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( , ) ( ) ( )

( ) ( ) ( ) ( , ) ( ) ( ) ( )

( ) ( )

T

T T

T

T
d

T
d

T

V t V t S t S t

e t e t S t S t

e t S t Ke t

S t M P t N P P P t Ke t

S t M P t N P P P t Ke t e t

e t Ke t





 
 
 

      

       


 


  

  

  

by choosing: 

)27)    
 

 

1( ) ( ) ( , ) ( ) ( ) ( )

( ) ( )
dM P t N P P P t Ke t e t

S t sign S t 

     

  

  
  

As for the backstepping approach, the control input ( )t is 

extracted 

(28)             ( ) ( ) ,t M P t N P P             

where 

   
   

1 1 1

2 2 2

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

d x x x x

d y y y y

x t k e t e t sign S t S t
t

y t k e t e t sign S t S t

 


 

    
  

     

 

 

 1 2( ) ( ) ( )t t t    is the vector of control signal. 

where    1 2 1 2K=diag , , =diag ,k k     and 

 1 2=diag ,   are diagonal positive matrices. 

Finally, the  sign   function is defined by 

     sign ( ) = sign ( ) ,sign ( )
T

x yS t S t S t   with: 

(29)      

1, ( ) 0

( ( )) 0, ( ) 0

1, ( ) 0

i

i i

i

if S t

sign S t if S t

if S t


 
 

                  

3.2. Common control approaches for robotics  
In order to provide some comparisons, this section 

recalls briefly two schemes of control, which are employed 
in [12, 27]. 
 

3.2.1) PID controller 
The control law based on PID controller in the joint 

space is given by the following expression: 
 

(30)                          ( ) qG s                      

The specified trajectory in the operational space ( )dP t is 

transformed into desired joint positions ( )dq t . For that, the 

equation of invers geometric model IMG (3) is used to 
compute the desired joint positions. 
 

(31)                         d dq g P                      

with q dq q    and the PID controller 

( ) /p d iG s g g s g s    Gain  , ,p d ig g g  

are ( )dof dofn n positive definite diagonal matrices. 

The main advantage of this structure is its simplicity and 
a low computational cost. Its major drawback is its 
incapacity to be a solution for the whole workspace region. 
For PID control design in the operational space, the control 
law is depicted by transforming the operational space error 
signal into the joint space as follows [12]: 
 

(32)                     ( )T
pJ G s                 

With 1
p qJ J J  and the PID controller 

( ) /p d iG s g g s g s   . 

The error vector is given by 

(33)                           P dP P                
 

3.2.2) CTC Computed torque control 
Employing the property of differential flatness of the 

model (10) a control law that linearizes and decouples the 

equations ( dofn decoupled linear systems) can be 

computed. Therefore, the manipulator is resumed to a 
double integrator formulate in operational space [12]: 

 

(34)                        ( ) ( )t P t              

Joint forces   obtained from inverse dynamic model 

(10) depend on the new control input ( )t  and the 

operational position ( )P t .They are calculated as follows 

[12]: 

 (35)                    ˆ ˆ( ) ( ) ( , )t M P N P P         

Usual choices for are linear controllers such as PID with 
desired feedforward acceleration: 

(36)                   ( )d PP G s            
 

4. Simulation results 
This section provides numerical simulation results 

carried out with SimMechanics environment in 
Matlab/Simulink software to illustrate and verify the 
effectivness of the proposed approach. The reference 

trajectory tracking is a 5th
order polynomial interpolation. 

The 2DoF Biglide parallel robot parameters used in 
simulation are listed in Table.1 in Appendix. 

Two cases are considered in the simulation test. In the 
first case, trajectory tracking with no parameter 
uncertainties is considered. When for the second case, the 
system is simulated with parameter uncertainties. We 
consider parametric uncertainty in the system by increasing 

the value of mass variation m of the end-effector 

to 0.816kg .  

The simulation results of PID, Classical sliding mode 
(SMC), Computed torque control (CTC), and Sliding mode 
based on backstepping approach (SMC-BS) controllers, are 
illustrated in Fig. 3 and Fig. 5 for the trajectories T1 (near 
work space low boundary). Fig. 4 and Fig. 6 for T2 (near 
work space high boundary), for each figure trajectories, 
parts (a) and (b) show the set point and the response in the 

( , )x y plane, the control input of both actuators are shown 

in parts (c) and (d). Note also that Fig. 3 and Fig. 4 are 

without mass variation 0m  where as Fig. 5 and Fig. 6 

use a mass variation 0.816m kg  . The variation in 

mass is used to check the robustness and effectiveness of 
proposed controller and compared to results of PID, 
Classical sliding mode and Computed torque controllers 
[27]. 
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4.1 Discussion of simulation results 
Un-modelled dynamics such as elastic joints and 

Stribeck friction appear in the simulation model to provide a 
more realistic behaviours are presented in Appendix. 
Noticing that two resonant modes are employed in the 
simulation model simulating the elastic joint such as the 

lower value of the resonant frequency is 29 /r rad s  . 

Usually, the tuning of the PID, CTC and Sliding mode 
controllers use a pole placement method for robot 
manipulators [12, 37]. The gains are adjusted for both 
controllers in order to obtain a negative real triple pole with 
a frequency   which is not greater than half of the lower 
resonant frequency [5, 6]. The "reasonable" value 

10 /rad s  is used for simulation. 

In the first case of simulation, 0m  ; The (SMC-BS), 
(SMC) and (CTC) Controllers illustrate a good capability of 
response. Whereas PID shows important overshoot in 
response. Based on Fig. 5 and Fig. 6 and comparing 
trajectory response with mass variation of platform 

0.816m kg  , Sliding mode based on backstepping 

approach presents good results according to structured 
uncertainties (parametric variation), compared to Classical 
sliding mode and Computed torque control which present 
some oscillations in trajectories response. PID is even worst 
with unstable closed-loop. 

 
 

Fig 3. Schemes of control for low trajectory (T1) and 0m   
 

Finally, two well-known criteria are computed over a 

time simulation ( 2 )T s  in order to quantify the behavior 

of both controllers. The criteria are computed for 4 
trajectories T1, T2, T3 and T4 in the workspace [12], [27] 
and [28].  
 

The first criterion is the integral of absolute error (IAE): 

(37)       
,

0

( ) ,
T

IAE i iJ t dt i x and y            

and the Integral of Square Value of the control input (ISV): 

(38)         
2

,

0

( ) , 1 2
T

ISV i iJ t dt i and            

 
 

Fig 4. Schemes of control for high trajectory (T2) and 0m   

 
 

Fig 5. Schemes of control for low trajectory (T1) and 0.816m   
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Fig 6. Schemes of control for high trajectory (T2) and 0.816m   
 

 
Fig 7. (a)-(c) Performance criteria (position error and control force) 
calculated for all displacements ( 1& 4)T T trajectories in the 

( , )x y plane), 0m   

 
 

Fig 8. (b)- (d) Performance criteria (position error and control force) 
calculated for all displacements ( 1& 4)T T trajectories in the 

( , )x y plane), 0.816m   
 

Based on Fig. 7(a) and Fig. 8(b), comparison is making 
for obtained results of error positions. In the different cases 

( 0m  , 0.816m kg  ) the proposed approach 

shows a good trajectory tracking with small error. However, 
(SMC) and (CTC) controllers are present important position 
error in trajectory tracking.  Meanwhile, PID has unstable 
behaviour with mass variations. Fig. 7(c) and Fig. 8(d) 
illustrate the different results of control force. 
These simulation results show that a proposed sliding mode 
backstepping approach gives an acceptable performance 
and robustness in trajectory tracking. In the different cases 

( 0m  , 0.816m kg  ), Classical sliding mode and 

Computed torque control are much more sensitive to the 
variation than the Sliding mode based on backstepping 
approach. 
 

5. Conclusion 
Yet, this research paper shows many results of a 

nonlinear control approaches used for a planar 2DoF 
parallel manipulator Biglide type. By utilization of 
backstepping sliding mode approach to get the best 
robustness control and performance for trajectory following, 
the control is depending on the direct dynamic model in the 
Cartesian space of the parallel manipulator. The proposed 
approach is investigated successfully for the tracking and 
regulation of a multi output multi input planar parallel robot 
in existence of nonlinearities. Also, asymptotic stability of 
the closed loop system is established according to 
Lyapunov theorem. Therefore, The obtained results for 
position control problem are accepted and the control effort 
is reasonable. 

 

APPENDIX  
 Numerical simulations include a model with structured 
and unstructured uncertainties based on the nominal model 
used to design the controller. Un-modeled dynamics such 
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as Stribeck friction applied on prismatic joints and elastic 
joints between actuators and linkages appear in this 
augmented model to provide more realistic simulations [12, 
27, 28]. 
The dynamics of the actuator writes: 

 

(39)              a a a t fM q bq                   

With [ ] , ( ) , [ ]1 2 1 2
T Tq q q M diag m m Z Za a a a a a f f f      , 

the elastic joint model: 

(40)        ( ) ( )t t a t ak q q b q q                 

and the Stribeck friction model of the dry friction: 

(41)              

2( / )[ ( ) ] ( )

0( )

min( , ) )

0 )

  
(

(

q vai se sign qfc fs fc ai

if q slipaifi
signi ti fs i ti

ifq stickai

   

 




 






 


 



 





 

Where am is the actuator mass, tk  the stiffness of the joint, 

tb  the damping of the joint, fs the static friction force, 

fc the Coulomb friction force and sv the sliding speed 

coefficient. The linkage and effector dynamics are: 

(42)                   ˆ ˆ( ) ( , )t M P P N P P              

Where 
1

( ) ( )1 1 2 12ˆ ( )
1

( ) ( )2 2 1 22

m m f PL
M P

m m f PL

 

 

    
 
    
 

 

2 2( ) [(2 3 ) ( ) ]/(2 ( )· )1 1 1 2 1 2f P m y mC y J J C y yL         

2 2( ) [(2 3 ) ( ) ]/(2 ( )· )2 1 1 2 1 2f P m y mC y J J C y yL         

11 12ˆ ( , ) ( )
21 22

r r
N P P P p y

r r

 
  
 

   

11 21
2 2[(2 3 ) (2 3 ) ( )12 1 1 2 1 1 2

3] /(2 ( )1 2
2 2[(2 3 ) (2 3 ) ( )22 2 2 1 2 2 1

3] /(2 ( )1 2

r r

r m y m C yL L

J J y C y

r m y m C yL L

J J y C y

   

   




      
 


      








 

where the mass linkage mLi satisfies: , 1,2m m m ii a Li    
 

Table 1. A. model Parameters of Biglide parallel manipulator 
Parameters Values 

m  

m1  

m2  

First moment of links ( )kgm  

1ms  

2ms  

Second moment of links 
2( )kgm  

1J  

2J  

Gravity acceleration 
2( )ms  

g  

for the simulation model Mass ( )kg  

m  

0.034  

0.8040  

0.7940  
 

0.0045  

 0.0043  
 
 

4222.643 10  

42.539 10  
 
 

9.81  
 

0.816  
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