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Analysis of Dielectric Relaxation Spectra by Diffusive 
representations  method : Case of Organic Dielectrics 

 
 

Abstract.  This paper deals with the phenomena of polarization and dielectric relaxation of organic dielectrics in the particular context of simulation 
and identification, the concept of diffusive representation was been introduced in order to transform certain non-standard causal convolution 
operators such as fractional order integrations or derivations into dissipative input/output linear dynamic systems in a functional state space 
The application of diffusive representations for the identification of the relaxation parameters of an organic dielectric has shown the efficiency of this 
method compared to others used in the field, particularly in terms of simulation time and working memory. The elaboration of behavioral state 
models of linear but non-rational input-output systems using diffusive representation has given, so the identification of the characteristic parameters 
of these models, gathered in the diffusive symbol, has also presented in the frequency and time domain. The parameter of discretization K has a 
significant effect on the results obtained, hence its delicate choice. The parameters of the Cole-Cole relaxation model were identified with acceptable 
precision, which opens a wide field of application of this method in applications of electrical engineering. 
 
Streszczenie. W artykule omówiono zjawiska polaryzacji i relaksacji dielektrycznej dielektryków organicznych w szczególnym kontekście symulacji i 
identyfikacji. Pojęcie reprezentacji dyfuzyjnej zostało wprowadzone w celu przekształcenia niektórych niestandardowych operatorów splotów 
przyczynowych, takich jak całki ułamkowe lub pochodne na dyssypatywne liniowe układy dynamiczne wejścia / wyjścia w funkcjonalnej przestrzeni 
stanówZastosowanie reprezentacji dyfuzyjnych do identyfikacji parametrów relaksacji organicznego dielektryka wykazało skuteczność tej metody w 
porównaniu z innymi stosowanymi w tej dziedzinie, szczególnie pod względem czasu symulacji i pamięci roboczej. Dano opracowanie 
behawioralnych modeli stanu liniowych, ale nieracjonalnych systemów wejścia-wyjścia z wykorzystaniem reprezentacji dyfuzyjnej, więc identyfikacja 
charakterystycznych parametrów tych modeli, zebranych w symbolu dyfuzyjnym, została również przedstawiona w dziedzinie częstotliwości i czasu. 
Parametr dyskretyzacji K ma istotny wpływ na uzyskiwane wyniki, stąd jego delikatny dobór. Parametry modelu relaksacji Cole-Cole'a 
zidentyfikowano z dopuszczalną precyzją, co otwiera szerokie pole zastosowań tej metody w zastosowaniach elektrotechniki. (Analiza widm 
relaksacji dielektrycznej metodą reprezentacji dyfuzyjnych : Przypadek dielektryków organicznych) 
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Introduction 
The dielectrics properties of organic insulators are 

widely used in electrical engineering for applications such 
as cable connections, capacitors, coating of components, 
various supports.However, the electrical properties of these 
materials depend on the chemical structure of the 
macromolecules that make them up, but also on various 
factors and in particular on voluntary or involuntary 
excipients. The non-conductivity of insulating polymers 
makes it easy to observe a whole range of finer electrical 
effects. The consequent polarization of the distortion and 
the alignment of molecules under the influence of an 
applied field appear, for example. A dielectric material 
consists of atoms or molecules that possess one or more of 
the basic types of electrical polarization: [1-6] electronic, 
atomic or ionic, dipolar, spontaneous and interfacial 
polarization (or space charge). The phenomenon of 
polarization generally comes from the orientation of an 
electric dipole, induced or permanent, in the presence of an 
applied field, it corresponds to changes in the distribution of 
the bonded charges that make up the stable groups of 
matter (atoms, molecules, ions). Each type of polarization 
requires a time of realization, that is why the polarization of 
the whole depends on the temporal variation of the electric 
field.  

The review of the literature has shown us the diversity of 
approaches used to study a rather complicated 
phenomenon such as dielectric relaxation, given that it has 
two aspects, microscopic and macroscopic on the one hand 
and its dependence on several factors such as temperature, 
frequency, the state of the material itself on the other hand.  
[1],[5],[ [7-9]. The electron and atomic polarizations are 
essentially due to the elastic displacements of electron 
clouds and vibrations in the network of atoms or molecules. 
Orientation polarization is a rotational process, which not 
only meets resistance due to thermal agitation, but also due 
to the inertial resistance of the surrounding molecules, 

giving rise to mechanical friction. By virtue of an external 
force, it tends to change from its initial state of equilibrium to 
a new state of dynamic equilibrium, and when the force is 
removed, it relaxes and then returns to its initial state of 
equilibrium (relaxation process). 

The numerical simulation of these phenomena, with 
classical methods, requires very complicated calculations, 
and therefore computers with an enormous capacity, so the 
search for new methods to reduce the cost of these 
calculations. Progress in the production of highly advanced 
measuring instruments, on the one hand, and the 
connection to computer equipment, which is equipped with 
ever-faster algorithms and optimization methods, has, on 
the other hand, made it possible to characterize these 
materials. In addition, analyze its characteristic variables 
with increased accuracy. However, in these field 
phenomena have known as 'long memory' such as 
relaxation of dielectric, this process requires enormous 
computation time and huge working memory, unacceptable 
things today, precisely in the field of research and 
simulation.  

In 1998, G. Montseny and al developed a new method 
called Diffuse Representation (DR), a mathematical tool 
that allows us to deal with objects with dynamic behavior 
with memory, folded, non-rational, and which can also 
include non-linearities. The ability to obtain accurate and 
compact models makes it an optional tool for modeling such 
objects. 

This work will present the DR tool, its application in 
simulation, these different stages of development and its 
application in frequency and time identification. The use of 
this tool to identify a dielectric relaxation model of organic 
materials is the subject of this report. Our objective is to 
apply this method to the identification of the Cole-Cole 
relaxation model for organic dielectrics 
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 Relaxation Models  
      Fig.1 shows different effects on permittivity and 
dielectric loss of relaxation and resonance modes. We can 
see that a variation of the real permittivity causes a peak in 
the dielectric losses. In this figure, we find that the 
permittivity at frequencies higher than the optical 
frequencies is equal to 1 (vacuum contribution). Then, 
according to the decreasing frequencies: electronic and 
atomic polarizations which are resonance phenomena and 
dipole polarizations and space charge which are relaxation 
phenomena.  
 

 
 
Fig.1. The different effects on the permittivity and dielectric losses s 
of relaxation and resonance modes 
 

Fig.1. shows that each type of polarization induces a 
decrease in the permittivity with frequency as well as a peak 
of dielectric losses. This interweaving between the real 
permittivity and the dielectric losses is described by the 
relations of Kramers-Kronig.  

Classically, four relaxation functions have been 
developed and widely applied to describe dielectric 
relaxation: Debye [10], Cole–Cole [11], Davidson–Cole [12], 
and Havriliak–Negami [13] functions. Out of these four, the 
HN function is the most general because of its ability to 
model a broad and asymmetric distribution of relaxation 
times and it is employed in the following analysis. 
Dispersion in small organic or inorganic molecules is 
studied in measuring the complex dielectric constant of the 
material at constant temperature on the wider range of 
frequencies than possible. The temperature is then varied 
and the repeated measurements until the desired 
temperature range are covered. From of each isothermal 
data set the Cole-Cole diagrams are obtained and analyzed 
to check whether a semicircular arc is obtained in 
accordance with the equation Cole-Cole or a faulty bow in 
accordance with the Davidson-Cole equation is obtained. 
The Cole-Cole diagrams of polymers obtained by 
isothermal measurements do not lend themselves to the 
simple processing that is used in the case of simple 
molecules. The main reasons for this difficulty are: 
-The dispersion in polymers is usually very wide so that 
fixed temperature data are not sufficient for a dispersion 
analysis. Data from several temperatures should be pooled 
to describe dispersions in a meaningful way. 
-The shapes of Cole-Cole diagrams are rarely as simple as 
those obtained with molecules of simpler structure making 
the determination of the very uncertain dispersion 
parameters. 
In an attempt to study the -dispersion in many polymers, 
Havriliak and Negami measured the dielectric properties of 
several polymers. -dispersion in a polymer is the process 

associated with the glass transition temperature, where 
many changes in the physical properties are significant. In 
several polymers the Cole-Cole diagram is linear at high 
frequency and an arc of a circle in the low frequencies. 
Attempts to adjust to an arc (Cole-Cole) is possible at lower 
frequencies but not at higher frequencies. Similarly, an 
attempt to fit with an oblique arc (Cole-Davidson) is possible 
at higher frequencies, but not at lower frequencies. 
Havriliak and Negami (HN) proposed to the complex 
dielectric constant the following equation: 
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 It is easily seen that this equation is both a generalization 
of the Cole-Cole equation, to which it reduces for =1, and 
a generalization of the Cole-Davidson equation to which it 
reduces for =0. Separation of the real and the imaginary 
parts gives rather intricate expressions for  and  can be 
related to the zero frequency єݏ and infinite frequencyє∞ 
limits. 
0 ൑α < 1 represents the width of the distribution. 0<  β ൑1 
represents the skewness distribution.  
This function is a generalization of the three previous ones: 
 

 α= 0 and β = 1 , Debye's equation; 

 α ് 0 and β= 1 , Cole-Cole's equation; 

 α = 0 and  β ് 1 , Cole-Davidson's equation. 
 

The separation of the real and imaginary parts gives rather 
complex expressions 

for 
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These models were simulated in the frequency domain 

in order to identify each behavior.  These results are 
presented for the real permittivity є ’, the dielectrics losses є 
'' in Fig. 2.  and tan (δ) in Fig.3 [14]. 
We therefore find that the frequency of the peak of tan (δ) 
depends both on t, but also єஶ and є௦. For the other 
models, the frequency of the peak depends on the same 
parameters, with in addition the coefficients α and β. 
Thus any reasoning on the frequency of the relaxation peak 
visible on the tan (δ) should be done with the utmost 
caution. In particular, extract activation energy on the peak 
of tan (δ) to deduce that of the relaxation phenomenon can 
be done if and only if the єஶ, є௦, α and β parameters remain 
constant regardless of the temperature. 
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Fig. 2. Variation of real permittivity and dielectric losses as a 
function of the frequency for different models. ( є∞= 1,   є௦ = 5,        
τ= 10-2 / (2 ࣊) in seconds α = 0.6 and β = 0.8). 

 

 
 

Fig.3. Variation of the tangent of the loss angle as a function of the 
frequency for different models. ( є∞= 1,   є௦ = 5, τ= 10-2 / (2 ࣊) in 
seconds α = 0.6 and β = 0.8). 

 

 
 

Fig.4. The Cole-Cole graph the dielectric losses as a function of the 
real permittivity for the different models ( є∞= 1,   є௦ = 5, τ= 10-2 / (2 
 .(in seconds α = 0.6 and β = 0.8 (࣊

Fig.4. represents the Cole-Cole graph which gives the 
dielectric losses as a function of the real permittivity for the 
models presented previously 
 
Research Method  
    Let the constant field E0, at time t=0, applied to a 
dielectric, the resulting electrical displacement D(t) at any 
later time is given by : 
 
ሻݐሺܦ		             (5) ൌ ൅∞ߝሾ	0ߝ ሺݏߝ െ          0ܧሻሿݐሻ߶ሺ∞ߝ

                                              
߶ሺݐሻdescribing the evolution over time of the underlying 
orientation process and verify ߶ሺݐሻ and 								߶ሺ∞ሻ ൌ 1. We 
further assume that the rates at which the rise of the dipole 
polarization Pd(t) towards its equilibrium value ܲ݀ሺ∞ሻ ൌ
ݏߝሺ	0ߝ െ  : is proportional to its initial equilibrium value  0ܧሻ∞ߝ

 

(6)                      ሶܲ ݀ሺݐሻ ൌ 	െ	
௉ௗሺ∞ሻି௉ௗሺ௧ሻ

ఛ
                                

 

τ is a characteristic time constant, it is the "dielectric 
relaxation time", it refers to a gradient of a stress (the 
resulting polarization or electrical displacement) following a 
sudden change in a stress (the applied electric field).  
When a macroscopic relaxation function obeys a simple 
exponential law:[10]. 
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Debye's well-known formula for the function of 
frequency-dependent dielectric permittivity is given by : 
 

 (8)                              
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Experimental data are best described by exponential 
relaxation laws. This requires empirical relationships, which 
take into account the distribution of relaxation times. In the 
most general sense, the non-Debye dielectric behavior can 
be described in terms of a continuous relaxation time 
distribution Φ(τ), this implies that the complex dielectric 
permittivity can be presented as follows: 
          

(9)                        
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where the distribution function Φ(τ) satisfies the 
standardization requirement : 
            

׬                   (10) ሺ߬ሻ݀߬ߔ ൌ 1
∞

଴                                  
 

The corresponding expression for the decay function is : 
     

(11)                    ߶ሺݐሻ ൌ ׬ ሺ߬ሻ݁ିߔ
೟
ഓ݀߬

∞

଴                                 
 

By virtue of relation (11) it must be clearly understood 
that the calculation of Φ(τ) does not, in itself, provide 
anything more than another way of describing the dynamic 
behavior of dielectric materials in the time domain. 
Moreover, such a calculation is a mathematically poorly 
posed problem, which leads to other difficulties of a 
mathematical nature. This difficulty may be one of the 
reasons why the superposition of some parametric 
functions has been privileged in the description of dielectric 
response spectra [15] 

Diffusive representation (DR)   is an approach dedicated 
to the analysis, approximation and synthesis of integral non-
rational operators of pseudo-differential type. This method 
is used in many problems in modeling, numerical 
simulation, estimation and control. For linear systems, the 
Laplace transformation is a basic tool, allowing to transform 
a constant coefficient differential equation into an algebraic 
equation that can be solved with relatively few calculations. 
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However, even in the linear case, the classical frequency 
approach is not suitable for real-time problems 
(identification, tracking, control, etc.).[16]. For non-linear 
systems, many approaches have been used to solve 
various problems in a satisfactory and inexpensive way 
[17]. Among these approaches, diffusive representation 
(DR) introduced in 1998 by G. Montseny, is an approach of 
general scope that extends to various fields: analysis of 
dynamic systems, modeling and synthesis of signals and 
images, modeling and identification of physical processes, 
robust control, control of distributed systems, etc.Serval 
examples of the use of DR  are introduced  in electrical 
engineering,diffusive control of an electric machine; 
[18] ,FPGA implementation of diffusive realization for a 
distributed control operator[19], identification of the 
dynamics of a lead-acid battery by a diffusive model [16], 
taking into account the distribution of relaxation times in 
dielectric materials, taking into account the eddy currents in 
a winding [20], diffusive representation modelling thermal 
and overvoltage for permanent magnet synchronous motor 
fed by voltage inverter[21] and identification of non-linear 
dynamic models for physical systems such as Micro-
Electro-Mechanical Systems (MEMS) from measurement 
data, presented in [22]. 

  The concept of diffusive representation (DR)  
introduced in order to transform certain non-standard causal 
convolutional operators such as fractional order integrations 
or derivations into dissipative input/output linear dynamic 
systems in a functional state space.  

The D.R. allows formalism adapted to a dynamic 
analysis of the input/output type of pseudo-differential 
operators (of a non-rational nature) in the form of 
symbol	ηሺξ, tሻ  
 

,ݐሺܪ             (12) ሻ݌ ൌ ׬
	ηሺξ,୲ሻ

௣ା	ξ

ା∞
଴ ݀ξ                     

 

The symbol η(ξ,t) is obtained by the inverse Laplace 
transform of the inverse response h(t): 

ηሺξ, tሻ
ࣦ഍
→ ݄ሺݐ, ሻݏ

ࣦೞ
,ݐሺܪ→  ,ሻ  The symbol η(ξ,t) when it exists݌

fully characterizes the operator and must be considered as 
the usable symbol. 
The input-output relation is expressed in the form of an 
equation in infinite dimension called diffusive realization. 
 

 (13)       ቊ
߲௧ߖሺߦ, ሻݐ ൌ െߖߦሺߦ, ሻݐ ൅ ,ߦሺߖ			,ሻݐሺݑ 0ሻ ൌ 0

ሻݐሺݕ ൌ ׬ ,ݐሺߟ ,ߦሺߖሻߦ 																								ߦሻ݀ݐ
ା∞
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Numerical simulation, in addition to temporal 
discretization, requires a discretization of the symbol 
according to the variable ߦ. 

We are looking for an approximation of the diffusive 
realization of an H operator (߲ݐ). To do this, we give 
ourselves a discretization ሼߦ௞	ሽ௞ୀଵ:௄ of ߦ from which we can, 
in various ways, define a continuous time model of finite 
dimension, making it possible to realize an operator 
approximated to ܪሺ߲ݐሻ. The range covered is fixed by the 
extreme values ߦଵ and ߦ௄. This range will depend on the 
dynamics of the operator that we wish to approximate by a 
realization of a state of dimension [15]. 

 This choice allows, in a logarithmic representation, to 
assign the same importance to each of the studied 
decades, but this choice is however not necessary from a 
mathematical point of view and one can take for example 
an arithmetic distribution of ߦ௞ in some cases [15]. 

The low frequencies having more "weight" than the high 
frequencies in the realization of the operator, a 
discretization in ߦ all the less fine as the frequencies are 
large will be used. The points of discretization ߦ௞ are thus 

often defined as elements of a geometrical sequence of 
reason ݎ : 
 

  (14)         ሼߦሽ௞ାଵ 	ൌ                                   ሽ௞ߦሼݎ	
 

to cover the frequency band ሾߦଵ	,  .௞ሿߦ
 

  The approximate diffusive realization of the corresponding 
K-dimension is written[12] : 
 

(15)       ൜
߲௧߰௞ሺݐሻ ൌ െߦ௞߰௞ሺݐሻ ൅ ߰௞ሺ0ሻ			ሻ,ݐሺݑ ൌ 0,			݇ ൌ ܭ:1
ሻݐሺݕ ൌ ∑ 																																																								ሻݐ௞߰௞ሺߟ

௄
௞ୀଵ

      

 

Thus writing the model in an approximate form of a 
classical equation of state leads to: 
 

(16)       ቊ
డటሺ௧ሻ

డ௧
ൌ ሻݐሺ߰ܣ ൅ ߰ሺ0ሻ					,	ሻݐሺݑܤ ൌ 0,

ሻݐሺݕ ൌ 																																																	,ሻݐሺ߰ܥ
                     

 

With :߰ሺݐሻ ൌ ൫߰ܥଵሺݐሻ, . . . , ሻ൯ݐ௄ሺ߰ܥ
்
ܣ			, ൌ ݀݅ܽ݃ሺߦ௞ሻ,	 

ܤ ൌ ሺ1,… ,1ሻ்		et 			ܥ ൌ ሺߟଵ, … ,  .௄ሻߟ

To obtain directly an approximation of ܪሺ߲/߲ݐ	ሻ, i.e. to 
solve a particular optimization problem, let's take a column 
vector  Hഥ ൌ ሺHഥሺ݆߱ሻ௠ሻ௠ୀଵ:ெfrequency response 
measurement of ܪሺ߲/߲ݐሻ.  

We can define the column vector : 

(17)														H௄ ൌ ቀ∑
ఎೖ

௝ఠ೘ାకೖ
௄
௞ୀଵ ቁ          

                                        

in which the column vector ࣁ ≔ ሺߟ௞ሻ௞	ୀ	ଵ:	௄ must be found. 
The vector  ܪ௞can be written in condensed form  
 

௞ܪ		                           (18) ൌ                                           								ߟܩ
 

With  ܩ:ൌ ሾܩሺ௠,௞ሻሿ an ܯ ൈܭ matrix, defined by: 
 

௠,௞ܩ					         (19)  ൌ
ଵ

௝ఠ೘ାకೖ
                                                  

 

The problem is to look for a vector ߟ that minimizes the 
Euclidean distance between the two vectors. The problem 
is to look for a vector ߟ that minimizes the Euclidean 
distance between the two vectors	ܪഥ  and  ܪ௞ [17]: 
               
ሺ20ሻ																	min

ఎ∈Թ಼
‖ሺߟܩሻ௠ െ Hഥ‖ଶ																													                         

This leads to a unique solution η given by: 
 

ߟ̂        (21) ൌ ሾReሺG∗GሻሿିଵReሺG∗Hഥሻ																				                           
 

with : ܩ∗ dual matrix of G and Hഥ ≔ ሺH௠ሻ௠	ୀ	ଵ:	ெ 
 

In practice, only a finite set of data is accessible, for 
example for a frequency grid.	ሼ߱௠ሽ௠ୀଵ:ெ 
The transfer function identified H ̃ is then given by: 
 

(22)                 H෩ሺ݆߱ሻ ൌ ∑ ఎෝೖ
௝ఠାకೖ

௄
௞ୀଵ                               

 

The approximate optimal state realization of dimension 
K of the unknown operator H( ∂/∂_t ) obtained from the 
vector of frequency measurements ߟ	ഥ   is : 
 

(23)       
						ௗటೖ

ௗ௧
ൌ െߦ௞߰௞ ൅ ௞ሺ0ሻ߰				,ݑ ൌ 0,					݇ ൌ 1: ,ܭ

ሻݐሺݕ ൌ ∑ 																																															ሻݐ௞߰௞ሺߟ̂
௄
௞ୀଵ

             

The obtained solution is in general sensitive to 
measurement noise when the matrix ܩ is ill-conditioned, 
especially in the case where ߦଵ ≪  ௄ when we want to coverߦ
several decades. we use the Tikhonov regularization 
method, the optimization problem (20) becomes: 
 
(24)      	minఎሼ‖ߟܩ െ Hഥ‖ଶ ൅                                         ଶሽ‖ߟ‖ߝ
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This is written in a finite dimension:  
 

 (25)    				minఎሼ∑ ሾ|ሺߟܩሻ௠ െ ௠|ଶߟ̅ ൅ ଶሿெ‖ߟ‖ߝ
௠ୀଵ ሽ 

                             

and  the solution is : 
  

ߟ̂       (26) ൌ ሾܴ݁ሺܩ∗ܩሻ ൅   												ሿߟ̅∗ܩॴ‖ିଵܴ݁‖ߝ
 

The error increases at the boundaries of the domain of 
the selected ξk, it is a problem related to the discretization of 
the ξ on the range [1,M]. To limit the side effects on the 
identified solution, one must choose ξk over a range [ξ1, ξK] 
included in [1,M] [18] 

This involves determining the diffusive symbol using 
system time response measurements. Given a time interval 
t∈ [0 ,T[ over which the input u(t) of the system is known 
and the measured output is noisy,               
 

ሻݐതሺݕ                        (27) ൌ ሻݐሺݕ ൅ ݁ሺݐሻ																																									 
 

Let the linear operator : 
  

 (28)                
డటሺ௧ሻ

డ௧
ൌ ሻݐሺ߰ܣ ൅ ߰ሺ0ሻ					,	ሻݐሺݑܤ ൌ 0,

ሻݐሺݕ ൌ 																																									,ሻݐሺ߰ܥ
          

    

with Ψ solution of the dynamic equation in infinite dimension 

 (29)         
డΨሺ௧,కሻ

డ௧
ൌ െߦΨሺݐ, ሻߦ ൅ ,ሻݐሺݑ Ψሺ0, ሻߦ ൌ 0	, ߦ ൐ 0	       

or 

  (30)     :									Ψሺݐ, ሻߦ ൌ ׬ ݁ିకሺ௧ି௦ሻݑሺݏሻ݀ݏ														
௧
଴              

The solution of  ݕ	̅ ൌ   obtained from  ,ߟܩ
 

(31)  																				minఎ‖ߟܩ െ                 																																		,ത‖ଶݕ

is of the same structure as that obtained from the 
frequency response 

 

ߟ̂              (32) ൌ ሺܩ∗ܩሻିଵሺݕ∗ܩതሻ,																																							            

In order to obtain a finite formulation we discretize ξ 
and t such that : 

  

ሻߦ෤ሺߟ                (33)  ൌ ∑ ߦሺߜ௞ߟ െ ௞ሻߦ
௄
௞ୀଵ                             

         
and t on [0 ,T] according to the vectorሾݐ௠ሿ௠ୀଵ:ெ,   
it  notes 
 

 (34)     

ഥ௠ݕ	 ൌ ௠,௞ܩ			,௠ሻݐതሺݕ ൌ Ψሺݐ௠, ௞ሻߦ

ൌ න ݁ିకೖሺ௧೘ିఛሻݑሺ߬ሻ݀߬																									

௧೘

଴

 

Considering the vector ࣁ ൌ ሾߟ௞ሿ௞ୀଵ:௄∈Թ಼and the matrix 
	ࡳ ൌ ሾܩ௠,௞ሿ, problem (27) is transformed into a finite 
dimension : 
 

(35)               min
ఎ∈Թ಼

∑ |ሺࣁࡳሻ௠ െ ത௠|ଶݕ
ெ
௠ୀଵ                           

 

the solution can be written: 
 

ෝࣁ			(36)		 ൌ ሺࡳ்ࡳሻିଵሺݕࡳതሻ																																																																									 
 

with  ݕത the vector ሾݕ௠ሿ௠ୀଵ:ெ  and regularization by 
Tikhonov's method gives : 
 
ෝࣁ     (37) ൌ ሺࡳ்ࡳ ൅ εॴሻିଵሺݕࡳതሻ                                             
 
 

Algorithm: identification under DR 
1. initialization of variables (M, K, fmax, fmin) ; 
2. calculation of ݎ ; 
3 .reading data from an Excel file ; 
4. choice of vector ሾ߱௠ሿ௠ୀଵ:ெ; 
5 . calculation of ԯሺ݆߱௠ሻ ൌ ∑ ఎೖ

௝ఠାకೖ
௄
௞ୀଵ ; 

6.  choice of vector ሾߦ௞ሿ௞ୀଵ:௄  following ݎ 
7.  construction of the matrix ܣ௠,௞ ൌ

ଵ

௝ఠ೘ାకೖ
; 

8. conditioning with the function Λ; 
9. realization of the estimated symbol ̂ߟ by pseudo-
inversion; 
10. calculation of the matrices ܣ, ,ܤ ,ܥ  ;of the state model ܦ
11. diffusive realization of the entrance ߟ ; 
12.  displaying results. 
 

This algorithm is for resolution of the diffusive system, to 
perform the frequency identification of ܪ, we must first 
choose a vector of ሾ߱௠ሿ௠ୀଵ:ெ  for which we obtain the 
frequency measurements ԯሺ݆߱௠ሻ.  We then choose a 
vector of ߦ௞, construct the matrix ܣ௠,௞ and carry out the 
inversion calculation with penalization. The solution is then 
the vector minimizing the error between the frequency 
measurements and the model built from ߦ௞. 
 
Effect of the number of measurments (ࡷሻ  

The main difficulty lies in the choice of the value of ܭ 
making identification delicate. From a mathematical point of 

view, the choice of  ܭ, the number of points k   of the mesh 

 min max,  , is random, but for numerical reasons, this 

choice is important, Fig 5 and 6 show these effects. 
 

 
Fig.5.  the gain of the identified operator we notice the oscillation of 
the system for ܭ ൌ 15 and its stability for ܭ ൌ 30. 

 
Fig.6.  The relative error between the operator realized and the 
same operator identified by diffusive realization, we notice the 
effect of the choice of the number ܭ on the relative and an energy 
ܳ. 
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   For ݇ ൌ 	30 the stability of the system and the relative error 
on the identified curve does not exceed 20%. On the other 
hand, for ݇ ൌ 15, oscillations are observed on the identified 
curve and the relative error can reach 90%. 
 

Simulation Results 
   To realize the frequency identification of ܪ we have 

chosen the vector 
1:64m m




 , which contains the frequency 

measurements ( )
m

H j .  

The discretization of the frequency axis according to the 
variable ߦ  has done in such a way that we obtain the vector 

 
1:k k K




 included in the interval 
0 510 ,10    in order to 

avoid the border effect, for ܭ ൌ 25  we will have a vector 

 
k

  of 25 values distributed according to the geometric 

progression 
1

1.4918
k k

 

  , with 

1
101   and 

25
99990   as border values which allows us to obtain the 

solutions  on Figure 3. 
We have applicate this method (RD) on a Cole-Cole model 
which his transfer function is given by the relation: 

1
( )

1 ( )
p

p 






 , with the polymer (Polyvinyl acetate 

PVAc) material (data: 
4

max min
3.13, 6.00, 10 , 0.1f Hz f Hz 


      and    

 0.2, 0.4, 0.6, 0.8,1  ) [17]. 

We were able to draw the curves of the (Fig.7) concerning 
the real and imaginary components of the PVAc permittivity 
as well as the Cole-Cole diagram. 
 
Interpretation and Discussion 
    It can be seen in (Fig.7) that there is a good superposition 
of the two curves, identified and simulated, except near the 
two borders of the frequency interval, we notice a small but 
important error due to the : 
-Effect of the value of ݇, the discretization factor of [14] ; ߦ 
-The material of the electrodes used in the experiment [4]. 
  The simulation program has executed for 81.2 seconds, 
which is relatively long, and this is due to: 
- Complexity of the diffusive symbol of the Cole-Cole (C-C) 
model transfer 
- Optimization algorithm in need of improvement. 
  Despite the apparent long duration of the simulation time, it 
remains much smaller than the durations obtained with other 
finite element based or other methods.   
 

 
 
Fig.7.The measured curve (ᇞ) and the one identified by RD of the 
diffusive symbol of the C-C model. 

The calculation of the relative error has given in the (Fig. 
8), where the edge effect has clearly observed in the low 
frequency and high frequency regions. 
In figures 9 and 10 we obtained the real and imaginary 
curves of the model C-C, and in (Fig.11) we represent the 
Cole-Cole diagram of material. 

 

 
Fig.8. The relative error on the identified curve compared to the 
measured curve in (%). 

 
Fig.9.  The Cole-Cole function: real component of the relative 
permittivity plotted against log (frequency) for several values of the 
broadening parameter (α). 

 
Fig.10. The Cole-Cole function: imaginary component of the 
relative permittivity plotted against log (frequency) for several 
values of the broadening parameter (α). 

 

 
Fig.11. Complex plane plot of the Cole–Cole function for various 
values of the broadening parameter (α). 
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Conclusion  
      In this work, we have presented the different main 
relaxation models adapted nowadays for the analysis of 
dielectric relaxation spectrum and mainly the C-C model that 
we have used afterwards.  An analysis of the so-called 
diffusive representation tool is necessary to present the 
mathematical aspects of this tool and a good understanding 
of its foundations. We presented the application of this new 
method to the identification of dielectric relaxation of the C-C 
model. In perspective, it has recommended to implement 
this method in an FPGA, in order to increase its speed 
further. 
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