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Sliding mode control to stabilization of nonlinear Underactuated 
mechanical systems 

 
 

Abstract. In this paper, a sliding mode control was applied to a particular underactuated mechanical system, the inertia wheel inverted pendulum. 
This mechanical system presents strong non-linearities and instabilities in its dynamic modeling. The technique found for control by sliding mode is 
very easy to implement, it presents a simple control algorithm which can be easily implemented in a real time system. The simulation results 
obtained are very interesting, they show the efficiency of the proposed approach and that it has good performance in terms of robustness and 
stability of convergence both for stabilization and for the rejection of external point disturbances to the system. 
 
Streszczenie. W tym artykule, sterowanie trybem ślizgowym zostało zastosowane do konkretnego niedostatecznie uruchamianego układu 
mechanicznego, odwróconego wahadła koła bezwładności. Ten układ mechaniczny wykazuje silne nieliniowości i niestabilności w modelowaniu 
dynamicznym. Technika sterowania w trybie przesuwnym jest bardzo łatwa do wdrożenia, przedstawia prosty algorytm sterowania, który można 
łatwo zaimplementować w systemie czasu rzeczywistego. Uzyskane wyniki symulacji są interesujące, pokazują skuteczność proponowanego 
podejścia oraz dobre wyniki w zakresie odporności i stabilności zbieżności zarówno dla stabilizacji, jak i dla zewnętrznych zakłóceń punktowych do 
systemu. (Sterowanie w trybie ślizgowym do stabilizacji nieliniowych układów mechanicznych o niedostatecznym uruchomieniu) 
 
Keywords: underactuated system, Inertia wheel inverted pendulum, Stabilization, Sliding mode control. 
Słowa kluczowe: Niedostatecznie uruchamiany system, Odwrócone wahadło koła bezwładności, Sterowanie w trybie ślizgowym. 
 
 

Introduction 
Mechanical systems have been used by humans for 

centuries to help them perform difficult or strain-intensive 
missions that are beyond their physical capabilities. With 
the evolution of robotics nowadays and with the delicate 
problems of modeling and controlling complex mechanical 
systems, the tools used are becoming more and more 
sophisticated [1], [2], [3]. 

One of the most important axes of research in the field 
of robotics concerns the control of mechanical systems 
which are divided into three types of actuated mechanisms 
with respect to the numbers of actuators with the number of 
their degrees of freedom. When there are more actuators 
than joints in a mechanism, it is said to be a redundant or 
overactuated system [4], [5]. 

A fully actuated system has as many actuators as it has 
degrees of freedom. Finally, the type of system that we 
study below is that of underactuated systems that have 
fewer actuators than degrees of freedom [6], [7].  

Underactuated systems have fewer actuators than 
degrees of freedom. This results in the presence of 
generally nonlinear and non-integrable dynamic constraints. 
Underactuation can be found in several situations, for 
example in the case of vehicles such as planes, helicopters, 
underwater robots [6], [8] 

It can also be intentionally introduced during the design 
of the system to reduce its weight and cost of production. 
Finally, when an actuator failure occurs, a fully actuated 
mechanical system can become underactuated and exhibit 
the same properties and difficulties [2], [7] 

The inverted pendulum is a very interesting classic 
underactuated system and widely studied in the automation 
community, given its non-linear and unstable dynamics. It 
has always been an interesting challenge to control it. We 
find different forms of inverted pendulum, the best known 
are: the inverted pimple pendulum, the inverted double 
pendulum, the inverted pendulum of Furuta, the inverted 
gyroscopic pendulum [3], [7], [9]. 
In our case, the study focused on the Inertia wheel inverted 
pendulum because it is practical for studying this type of 
under-actuated system given its price and its ease of use. 

The objective of this article is to stabilize the system by 
bringing it back to its point of unstable equilibrium and to  

maintain it in this position despite the presence of 
occasional external disturbances. For this, it is necessary to 
study and apply a robust control capable of respecting the 
specifications. The sliding mode control is chosen to be 
applied to our study system and to validate its robustness 
by simulations. 
 

Sliding mode control of a underactuated system  
Consider an underactuated system defined as following: 
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where u is control input, d is disturbance. 
The function  1 2 3, ,f x x x  must be satisfied to the 

suppositions as follows [10] : 
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The control objectives for the systems 
are  1 2 3 4, , , 0,x x x x when t  . We define the following 

relations [11]: 
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The strategy of sliding mode controller design is based 
on determining the sliding surface in the first place. The 
design sliding mode function is defined by the following 
equation:  
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Considering that the derivative of the sliding surface is 
zero 0s  , so we can get equivalent control described 
by the following equation [10]: 
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To satisfy 0ss  , the sliding mode controller can be 
designed as [11]: 
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substituting equation (6) into equation (4), we obtain : 
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Define 
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Design the Lyapunov function as 21

2
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derivative of the Lyapunov function V is defined by the 
following equation [12], [13]: 
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From equation (2), we have 1 2e e , 2 3e e and 3 4e e . 

0ss  indicates that there exists 0s  as 1t t , when 

0s  , we have 4 1 1 2 2 3 3e c e c e c e     [10]. 
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where  min Q is the minimum eigenvalue of Q. 

 
Simulations Results 

The Inertia wheel inverted pendulum is a mechanical 
system consisting of a rod connected to a fixed support by a 
non-actuated pivot link and an inertial flywheel connected to 
the other end of the rod by an actuated pivot link at the 
center of the steering wheel. The mechanical structure of 
this system is shown schematically in Fig. 1. 

 
 

Fig.1: The inertia wheel inverted pendulum 
 

Stabilizing the pendulum amounts to synthesizing an 
initial command in an unstable equilibrium position and 
maintaining it around this position (Fig. 2), despite the 
presence of external disturbances. 

In addition to the stability constraints, the control must 
ensure the best performance while respecting the energy 
constraints. In addition, it is also necessary to ensure a 
certain robustness towards any uncertainties which are 
naturally present in the real model due to the use of an ideal 
system for the simulation or which may occur following a 
change in parameter such as mass. 
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Fig.2: The inertia wheel inverted pendulum 
 

The dynamic model of the inertia wheel inverted 
pendulum can be represented by the following two-order 
nonlinear system [14], [15], [16]: 
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Table 1 present the summary of geometric and dynamic 
parameters of the system. 
 
Table 1. The parameters of the inertia wheel inverted pendulum  

Description Parameters values 
Body mass  

1 3.30810m Kg  

Wheel mass 
2 0.33081m Kg  

Body center of mass position 
1 0.06l m  

Wheel center of mass position 
2 0.044l m  

Body inertia 2
1 0.03146i Kgm  

Wheel inertia 2
2 0.00041i Kgm  

Gravity acceleration 29.81g ms  
 

The state representation of the inertia wheel inverted 
pendulum is given by the following equation with the state 

vector  1 2 3 4 1 1 2 2X x x x x        
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We will apply the sliding mode control to the system in 
order to stabilize it around its unstable equilibrium point. For 
this the two following scenarios were carried out: 
  • Nominal case 
  • Case of rejection external disturbances. 

- Nominal case  

The objective of this scenario is to stabilize the inverted 
pendulum, the results obtained in this case are illustrated in 
figures 3, 4, 5 and 6. They represent the evolution of the 
states of the system, as well as the control input 2  (torque 

motor). 
 According to the evolution of the states of the system, 
we notice that the sliding mode controller allows to bring the 

inverted pendulum back to its unstable point of equilibrium 
and to keep it around this position 

 
Fig.3. Angular position of the pendulum 

 
Fig.4. Angular velocity of the pendulum 

 
Fig.5. Inertia wheel rotation speed 

 
Fig.6. Control input 2  

- Case of rejection external disturbances 

The objective of this scenario is to test the robustness of the 
proposed controller with respect to external disturbances. 
For this, we propose to disturb the pendulum by applying a 
point force to it which tends to destabilize it, in order to see 
the behavior of the controller and its capacity to 
compensate for this disturbance. 
we apply a disturbance of value 0.1 N sure  the inverted 
pendulum for a period of 0.2s (14.8s - 15s).The simulation 
results relating to this scenario are shown in figures 7, 8, 9 
and 10. Note that the effect of these disturbances is 
manifested in the form of peaks on the curves. From these 
curves, we also notice that the sliding mode controller can 
reject these disturbances and bring the system back to its 
equilibrium position after the disturbance. 
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Fig.7. Angular position of the pendulum with disturbance 

 
Fig.8. Angular velocity of the pendulum with disturbance 

 
Fig.9. Inertia wheel rotation speed with disturbance 

 
Fig.10. Control input 2 with disturbance 

 

Conclusion 
The work done in this article is to study an 

underactuated system: the inertia wheel inverted pendulum, 
which has two degrees of freedom and a single actuator. 
The Lagrangian dynamic model of the system is nonlinear 
and its internal dynamics are unstable. For the stabilization 
of the system, it is first necessary to bring the pendulum 
from its position of stable equilibrium (pendulum pointing 
downwards) to its position of unstable equilibrium 
(pendulum pointing upwards) and then to maintain it in this 
position. position despite the external disturbances that 
affect it. We applied a sliding mode command. For that it 

was necessary to adapt this command by finding a trick in 
order to stabilize the system. The results obtained are very 
interesting, they show the effectiveness of the proposed 
approach and that it has good performance in terms of 
stabilization and releases from external disturbances to the 
system. 
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