
44                                                                                 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 6/2021 

Yuriy SHAPOVALOV1, Dariya BACHYK1, Ivan SHAPOVALOV2, Ksenia DETSYK1  

Lviv Polytechnic National University (1), Queen's University (2) 
 

doi:10.15199/48.2021.06.08 
 

Analysis of Linear Periodically Time-Varying Circuits by the 
Frequency Symbolic Method with Applying the D-Trees Method 

 
 

Abstract. The D-trees method ensures near optimal factoring in the formed algebraic equations, which results in a significant cut-down of the time 
needed for their formation. The analysis of the example linear circuits with fixed and variable parameters presented in the paper revealed that 
application of the D-trees methods ensures from 10-to-100-fold time saving as compared to the standard MATLAB tools. Such reduction of time 
allows a considerable rise in the efficiency of the FS method in problems of statistical studies or optimization of electronic devices modelled by linear 
periodically time-varying circuits 
 
Streszczenie. Analiza przykładowych obwodów liniowych o stałych i zmiennych parametrach przedstawionych w artykule wykazała, że 
zastosowanie metody D-trees zapewnia od 10 do 100-krotną oszczędność czasu w porównaniu ze standardowymi narzędziami MATLAB. Takie 
skrócenie czasu pozwala na znaczny wzrost efektywności metody FS w problemach badań statystycznych lub optymalizacji urządzeń 
elektronicznych modelowanych przez liniowe obwody zmieniające się okresowo w czasie. (Analiza obwodów liniowych okresowo zmieniających 
się w czasie z zastosowaniem metody D-trees) 
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Introduction 
A number of multivariate problems that require multiple 

computing of the characteristics of electronic circuits at the 
change of their elements’ parameters can be conveniently 
solved by symbolic methods. These methods provide for 
the formation in the PC memory of the formula for 
computing the needed circuit characteristic, in which the 
parameters of the circuit elements are presented by 
symbols. Further, on, the formula is multiple-computed for 
various sets of numerical values of these parameters. This 
technique is used, for instance, for problems of statistical 
analysis and optimization of electronic devices.  

The proposed research focuses on the analysis of 
electronic devices modelled by linear electric circuits with 
time-varying parameters. The speed of parameter variation 
is commensurate with the speed of variation of the circuit 
signals [1,2,3,4,5]. Such circuits are linear periodically time-
varying (LPTV) circuits. The study used the symbolic 
analysis of LPTV circuits, which relies on the solution of 
symbolic systems of linear algebraic equations (SSLAE) in 
the form of rational fraction algebraic symbolic equations. 
Importantly, the time of formation of these expressions and 
the number of further substitutions of numerical values in 
them determine the speed of obtaining the results of 
designing the device as a whole. The required number of 
substitutions in said problems can reach hundreds or 
thousands, which is why the speed becomes a defining 
factor of effective solution of the problem within reasonable 
time limits.  

The proposed symbolic method is a frequency method as 
it models a LPTV circuit in the frequency domain. 
Therefore, the paper discusses the frequency symbolic 
method (FS method) [2,3] of analysis of the stationary mode 
of LPTV circuits in the frequency domain. The method 
bases on the approximation of the parametric transfer 
functions ( , )W s t  of the circuit in the form of the Fourier 

polynomials, where s  is the complex variable and t is the 
time variable. In transfer functions, the user-selected 
parameters of the circuit elements and variables s  and t  
are presented by symbols, therefore such operations as 
factoring, differentiation or integration with respect to these 
parameters and variables can be applied to them. This 
increases the self-descriptiveness and, consequently, the 
value of such functions. According to the FS method, 

transfer functions, or, to be exact, the coefficients of the 
corresponding Fourier polynomials, are the solutions of 
SSLAE, which can be fairly high-order. The drawback of 
solving such SSLAE using conventional methods and tools 
is that the process is tedious, requires a significantly longer 
computing time for higher-order SSLAE or there can even 
be no solution [3]. In our research, we propose eliminating 
this drawback or diminishing its effect by applying a sub-
circuits method, namely the D-trees method [3]. The 
method is software implemented in the form of the 
D_trees() function in the system UDF MAOPCs [5,6]. The 
efficiency of the D_trees() function is comparable with the 
features offered by the symbolic solution of  SSLAE in the 
MATLAB environment.  

The rc -circuits were selected as test circuits. They 
consist of resistors r  and capacities c  with lumped 
parameters and can model long two-wire lines which 
contain both fixed parameters and variable ones [7].  

 
The principles of the D-trees method 

The D-trees method is a method of analysis of complex 
linear electronic circuits with fixed parameters. It is based on 
the division of a certain circuit into parts (sub-circuits), 
analysis of these sub-circuits and synthesis of the results in 
order to determine the characteristics of the whole circuit.  
At the nodes, the circuit is divided into sub-circuits (further 
referred to as initial sub-circuits). For the initial sub-circuits, 
as it will be demonstrated below, the sets of certain 
algebraic degree polynomials are calculated as functions of 
the complex variable s , which fully characterizes these 
circuits.  Then these sub-circuits with shared nodes 
(neighbouring sub-circuits) are paired to form higher-order 
sub-circuits. Due to the pairing of two sub-circuits, based on 
the sets of polynomials of these two sub-circuits, a similar 
set of polynomials of the resulting sub-circuit can be 
computed. All the sub-circuits (both initial and combined) 
are described by similar polynomial sets, which 
standardizes the combination of two neighbouring circuits 
into one regardless of the number of initial sub-circuits that 
these two sub-circuits comprise. After (n-1) pairings (where 
n is the number of initial sub-circuits in the circuit), such 
pairing of sub-circuits results in a polynomial set of the 
whole circuit. This set expressly defines all possible transfer 
functions of the circuit between its inputs and outputs. 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 6/2021                                                                                        45 

It is shown in [3] that several neighbouring elements or 
even separate elements of the circuit can be selected as the 
initial sub-circuits. The developed algorithm for determining 
the sequence of combining sub-circuits into pairs ensures 
minimal or near minimal duration of the analysis of the 
whole circuit.  

 
Fig.1. Combining the sub-circuits a  and b  into the sub-circuit c  

Combining two neighbouring sub-circuits 
Let us assume that a certain circuit is dividable into 

three-pole sub-circuits, and two neighbouring sub-circuits a  

and b  form a combined sub-circuit c , as shown in Fig.1. 
The D-trees method states that for each such pair of sub-
circuits a , b and the combined sub-circuit c  (since they are 
three-pole circuits), the polynomial sets describing them are 
identical and are presented by the determinant of the 
conductivity matrix of a respective sub-circuit and its 
algebraic complements [3]:  

(1)  ,, , , , ,ij ii ji jj ii jj        

It is known [3] that this determinant and algebraic 
complements are equal to the weights of certain d-trees (or 
the sum of the weights of the d-trees) of the conductivity 
graph of such sub-circuit; they are degree polynomials of 
the complex variable s .  In our research, we opted for the 
matrix form as it is more widespread.  Then, according to 
the D-trees method, the correlations between the 
determinants and algebraic complements of the sub-
circuits a , b  and the combined sub-circuit c will appear as 
[3]: 

(2) ,

, , , ,

, ,

, ,

, .

c a b a b c a b
ii jj ij ij ij

c a b a b c a b
ii ii jj ii ii ji ji ji

c a b a b c a b a b
jj ii jj jj jj ii jj ii ii jj ii jj jj

         

         

           

 

In (2) the superscripts signify the sub-circuit a , b or c that a 
determinant or algebraic complement belongs to. It should 
be noted that the sub-circuit c  is described by the same 

number of expressions (1) as the sub-circuits a and b that 
the sub-circuit c  is formed of. For pairing the sub-

circuits a and b we assume that each sub-circuit (initial sub-
circuits and all those obtained by their combination) is 
described by six expressions (1), the formation of which for 
initial sub-circuits poses no difficulties. Then combining two 
sub-circuits into one resulting sub-circuit consists in 
computing the expressions of the form (1) for the combined 
sub-circuit based on (2), using the known expressions (1) 
for these two sub-circuits. The expressions (1) obtained for 
the whole circuit determine all the transfer functions of this 
circuit with respect to its inputs and outputs.  For better 
understanding of the similarities between the matrix 
representation of the sub-circuits and their representation 
using a set of D-trees (1), the following explanation can be 
made. According to [8], the matrix equation characterizing 
the multi-pole sub-circuits a  or b  in Fig. 1 in relation to 
their external nodes ,i j  is written using the algebraic 

complements of the conductivity matrix of the corresponding 
sub-circuit as: 

(3) 
,

1
i j

jj i iji

ij j jiiii jj

U I

U I

     
            

 

where  ,i jU U   denote node voltages between the nodes 

,0i  and ,0j  ; ,i jI I   are currents in the nodes i  and j  ; 

,, , , ,ii ij jj ji ii jj       are algebraic complements of the 

conductivity matrix of the sub-circuit. The matrix equation (3) 
completely describes the sub-circuit and therefore can be a 
basis for its combination with other sub-circuits. This can be 
done even using the expressions (2). For this to be done, 
five algebraic complements from (3) suffice, as they define 
the determinantof the sub-circuit matrix and together form 
its set (1). For instance, according to Jacobi’s theorem [8], 
  is determined from (3) as: 

(4)  
,

1 jj ji

ij iiii jj

 
  

 
. 

 However, as a result of making substitutions with (4) for 
the corresponding sub-circuits into the expressions (2), they 
come to have denominators. As the combination process 
proceeds, the number of such algebraic expressions with 
denominators will increase drastically and they will become 
complex fractions. This will result in a significant extension 
of the computing time required for combining the sub-
circuits between themselves. The formation of symbolic 
transfer functions in such a form becomes tedious and most 
probably unnecessary. 

 On the other hand, the determinant  of the initial sub-
circuit a  or b in Fig. 1, as well as its other algebraic 
complements from (3), can be found from the conductivity 
matrix of this sub-circuit using the known rules [8] in the 
form of degree polynomials of s with no denominators. The 
sets (1) of the sub-circuits a  and b  formed in this way 
according to the expressions (2) determine the set (1) of the 
combined sub-circuit с  with no denominators either. It is 
obvious that the result of using the expressions (1) and (2) 
for combining the previously combined sub-circuits will not 
comprise denominators. This is the main advantage of the 
D-trees method. It is hoped that these explanations make 
the application of the D-trees method easy-to-understand 
and practicable. 
 The D-three method presented herein is designed for 
arbitrary possible combinations of multi-pole sub-circuits 
between themselves by shared nodes [3]; an algorithm for a 
time-optimal sequence of their combination was developed.   
Although the D-trees method appeared in the 1970-ies [3], it 
has not lost its importance. This is due to the fact that the 
method ensures optimal or near optimal factoring in the 
formed algebraic expressions, this ensuring that the number 
of required arithmetic operations is close to minimal. We 
affirm that owing to that, the D-trees method has long 
demonstrated its efficacy as compared to other symbolic 
methods, in particular the methods implemented in the 
MATLAB det() function [9]. This is confirmed by the 
experimental outcomes presented below. Therefore, we 
believe that the application of the D-trees method in the FS 
method [3] in problems of analysis of linear parametric 
circuits is a logical way to improve the efficiency of the 
system UDF MAOPCs developed by the authors [6]. This is 
true both from the standpoint of increasing the admissible 
complexity of circuits and from the point of view of 
increasing the speed of the system in the parametric 
analysis of parametric circuits in the frequency domain. 
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Comparison of the D_trees() and det() functions in test 
circuits 

Three types of linear rc -circuits were taken as test 
circuits, each formed of in-series rc -elements shown in 
Fig. 2a, Fig. 2b or Fig. 2c.  At the driving point of each 
circuit there is a power supply source i(t). Each element of 
the circuit for the D-trees method is considered an initial 
sub-circuit. The number of elements n  in the test circuit is 
selected depending on the needs of a specific computer 
experiment. The first type of linear circuit is the circuit with 
fixed parameters. The second type has variable 
parameters, and the parameter of all parametric capacities 
varies synchronously in time according to the expression:  
(5)  0( ) (1 cos( ))c t c m t    ,  

where 0 , ,c m   are the mean value of the capacity, its 

modulation depth and pumping frequency, respectively. The 
third type also contains time-varying, though different ( )pc t , 

capacities: 
(6) 0( ) (1 cos( ))p pc t c m t     ,   1,2, ,p n  ,  

in which the initial phase p  of the change of the capacity 

parameter in each element has a steady increment with 
respect to the initial phase 1p   of the change of the 

capacity of previous element. This increment is such that 
regardless of the number of the elements n  from the first 
element to the last (numbering them from left to right)  

varies steadily from 0 to   radians ( 0 0, n    ).  

 

 
а) 
 

 
b) 
 

 
c) 

Fig. 2. Elements rc ( 1 )r y  by in-series connection of which 

test circuits are formed: а) circuits with fixed parameters; b) circuits 
with synchronously time-varying capacity parameters; c) circuits 
with time-varying capacity parameters with the delay of the phase 

of their variation ( 1,2,...,p n  is the ordinal number of the 

element) 

The selection of such test circuits is associated with a 
number of features. All combinations of sub-circuits occur 
according to the non-complex expressions (2) presented 
above; each initial sub-circuit of the parametric circuit (each 
element of the circuit) contains a parametric element; all the 
variants of the circuits can be physically implemented. In 
particular, they can model two-wire long lines with fixed or 
variable parameters, as, for instance, in [7]. 

To simplify computer experiments, the solution of SSLAE 
will be understood as determination not of all the transfer 
functions but only of those that co-relate the circuit inputs 
with its outputs, which, in their turn, are determined by the 
determinant and algebraic complements of the 
corresponding conductivity matrix of the circuit. For further 
simplification of the computer experiments, only the 
determinant of the SSLAE matrix of the circuit is calculated, 

as computation of the algebraic complements can be 
performed in the similar way using the preliminary modified 
matrix by Cramer's rule [10].  At that, we should remember 
that the D-trees method by definition provides for the 
determination of not only the determinant, but also of all its 
algebraic complements needed for the formation of the 
transfer functions. 

For the test circuits the determinants of the matrices of 
the respective SSLAE are calculated using both functions, 
D_trees() and det(), on condition that all the parameters of 
the circuit elements are designated by symbols. The values 
of the computing time spent by the two functions are 
presented in the tables. As the symbolic expressions formed 
by both functions were rather bulky, their identity was every 
time checked by verification that their difference was equal 
to zero. 

 

Computer experiments 
Computer experiment 1. Problem. Assess the time of 

formation of the determinant   of the conductivity matrix for 
a circuit formed by in-series connection of n  rc -elements 
from Fig. 2а, using the D_trees() and det() functions for all 
the parameters of the circuit elements designated by 
symbols. Each time the number of elements n  is to be 

increased from 16n   until the system message «Out of 
memory». 

Solution. The system of equations written by the node 
voltage method has a dimension ( 1)n   for each value of n.  

For instance, for 2n   it will be as follows: 

(7)
1 1

2

3

   

0

2 0 ( ) ( ) ( )

0 0

 

y y U I

y y sc y U or Y s U s I s

y y sc U

     
                
           

  

For the convenience of description of further experiments, 
we write (7) as:  

(8)
11

21

31

0 1

2 0 (    ) ( ) 1

0 0

y y W

y y sc y W or Y s W s

y y sc W

     
                
           

, 

where 11 1 1( )W s U I , 21 2 1( )W s U I , 31 3 1( )W s U I . 

We can build SSLAE and conductivity matrix Y of the 
circuit for 2n  . However, this is unnecessary. According to 
the D-trees method, each rc -element of the circuit is 
considered to be an initial sub-circuit, for which the 
conductivity matrix is 

(9)  
y y

y y sc

 
   

,  

and the polynomial set for it will appear as 

,, , ,       , ,  1 ii ij jj ji ii jjysc y sc y y y             . 

The sequence of sub-circuits combination for 4n   is 

shown in Fig. 3. For instance, for 4n   the result of 
combining two initial sub-circuits 1 and 2 into a sub-circuit 5 
or sub-circuits 3 and 4 into a sub-circuit 6 from Fig. 3 
according to the expressions (2) is a set of polynomials   

2 2

2 2
,

  

   

; ( ) ;

; ( ) ; ; 2   

ii

ij jj ji ii jj

c s y +c s y (y +c s) y s c y s c

y y s c y y y + c s.

              

           
 

The next combination of the two neighbouring sub-circuits 5 
and 6 from Fig. 3, according to those same expressions (2) 
results in the following set of polynomials: 

2 2

2 2

(( ) ) ( ( ))

( ) ( ( ));   (2 )ii

y cs cs y cs y cs y y cs

y cs y cs y cs y y cs y cs

    

 

      

         
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2 2 2 4

2 2 2

4 2 2
,

( ( )) (( ) )       

( ) (2 ) ( ( ));

   (2 ) ( ) (( )

) (2

;

;

.

;

)

ij

jj

ji ii jj

cs y cs y y cs y cs cs y y

y cs y y cs cs y cs y y cs

y y cs y cs y y cs

cs y y cs

      

      

    

    

      



  



 

 
 
Fig. 3. The order of combining four initial sub-circuits 1, 2, 3 and 4 
into combined sub-circuits 5, 6 and 7 

For other values of n , the sequence of combination is 
selected in a similar way. It is clear that for a specific value 
of n , ( n -1)th combination results in the set of polynomials 
(1), which is the determinant and algebraic complements of 
the conductivity matrix of the whole circuit. It should be 
noted that this set determines all possible transfer functions 
between the external nodes of this circuit, which is a 
positive feature of the method. 

Table I presents the time* of determining   of the 
conductivity matrix of the circuit using both D_trees() and 
det() functions for n  varying from 16 to 8192. As seen from 
Table I, the function D_trees() is hundreds or thousands 
times more time-efficient than the function det(), and the 
«Out of memory». situation for the function D_trees() did 
not occur till n  8192, which is a significantly better result 
than for the function det(), in which case the «Out of 
memory». situation was obtained at n  1024.  

Table 1. The time of formation of   of the symbolic SLAE of the 
circuit with fixed parameters using the standard Matlab tools and D-
trees method 

n 16 512 1024 2048 4096 8192 
Function 
det(), t,s 

0.36 2363.07 OutOfM OutOfM OutOfM OutOfM

Function 
D_trees(), t,s 

0.21 7.22 15.46 44.13 60.36 329.09

- n denotes the number of elements in the circuit from Fig.2а; 
-  Function det(), t,s is the time taken by the MATLAB function det() to 

form the determinant  of the SSLAE matrix of the circuit; 
- Function D_trees(), t,s is the time taken by the function D_trees() in the 

system UDF MAOPCs in the MATLAB environment to form the determinant  
of the SSLAE matrix of the circuit.  

 

Computer experiment 2. Problem. Assess the time of 
formation of the determinant   of the SSLAE matrix formed 
with respect to unknown transfer functions by the FS 
method for a parametric circuit formed by in-series 
connection of n  rc -elements from Fig. 2b, using the 
D_trees() and det() functions for all the parameters of the 
circuit elements designated by symbols. Each time the 
number of elements n  is to be increased from 8n   until 
the system message «Out of memory». 

Solution. Based on the system of differential equations of 
the parametric circuit written by the node voltage method, 
using the FS method, we write SSLAE having the form of 
[3]: 
(10)   F W D  ,  

where W denotes the vector of unknown coefficients of the 
Fourier polynomials of all the transfer functions from the 

signal source i(t) to the node voltages of the circuit. The 
transfer functions are approximated by the Fourier 
polynomials containing k harmonic components. 

For example, let 2n  . Then the circuit contains three 
nodes (in addition to the zero node), and by approximating 

11 21 31
ˆ ˆ ˆ, ,W W W  of the transfer functions 11 21 31, ,W W W  by the 

Fourier trigonometric polynomial with one harmonic 
component ( 1k  ) we obtain: 

(11) 11 0,11 1,11 1,11
ˆ ( , ) ( ) ( )cos( ) ( )sin( )c sW s t W s W s t W s t     ,  

(12) 21 0,21 1,21 1,21
ˆ ( , ) ( ) ( )cos( ) ( )sin( )c sW s t W s W s t W s t     ,  

(13) 31 0,31 1,31 1,31
ˆ ( , ) ( ) ( )cos( ) ( )sin( )c sW s t W s W s t W s t     .  

At that, SSLAE (10) by the FS methods assumes the form: 

(14)

0,11

1,11

1,11

0,2144 45

1,2154 55 56

1,2164 65 66

0,3177 78

1,3187 88 89

1,3197 98 99

1

0

0

0 0

0

0

0 0

0

0

c

s

c

s

c

s

Wy y

Wy y

Wy y

Wy Y Y y

Wy Y Y Y y

Wy Y Y Y y

Wy Y Y

Wy Y Y Y

Wy Y Y Y

    
       
   
      
     
  

    
  
  

   
      






 
 
 
 
 
 
 
 
 


,  

where 44 55 66 02Y Y Y y c s,     77 88 99 0Y Y Y y c s,     

54 87 0Y Y c sm,   45 78 0 2Y Y c sm ,   64 97 0Y Y c m,     

65 98 0Y Y c ,    56 89 0Y Y c   . 

The system (14) will be solved by applying the Cramer’s 
rule, and for the formation of the determinants required for 
this, we will use the D-trees method.   

When comparing (8) and (14), the focus will be on the 
following. 

1. Each unknown transfer function from (8), which is a 
rational fraction expression at fixed circuit parameters, 
according to (11)-(13), is represented by three rational 
fraction expressions in (14) for variable parameters.  
Generally, the number of algebraic expressions (coefficients 
in the Fourier polynomial) in the transfer functions of the 
parametric circuit is determined by the selected number of 
harmonic components k  in them and by analogy with (11)-

(13) equals (2 1)k  .  

2. The matrices in the expressions (8) and (14) have the 
dimension of the conductivity.  

3. If in the expression (14) we put 0m  , then 

1,11 1,11 1,21 1,21 1,31 1,31 0c s c s c sW W W W W W      , and 

for 0c c  and 0,11 11 0,21 21 0,31 31, ,W W W W W W    it is 

transformed into the expression (8).  
The comparison of the expressions (8) and (14) prompts 

the following suggestions. The expression (14) formed for 
the parametric circuit with variable parameters is the 
transformed expression (8) formed for the circuit with fixed 
parameters, if we start to change these fixed parameters. 
Considering this, the expression (14) conveniently appears 
as 

(15) 

0

2 0

0 0

ˆ

ˆs

ˆs

                          

11 1

21

31

WY Y 1

Y Y C Y W

Y Y C W

,  
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where ,

y

y

y

 
   
  

Y

0 0

0 0 0

0 0 0

1
0

2
c c m

c m c c s

c m s c s c

 
 
 

  
    
 
 

C , 

0,11

1,11

1,11

ˆ ,c

s

W

W

W

 
   
  

11W
0,21

1,21

1,21

ˆ ,c

s

W

W

W

 
   
  

21W
0,31

1,31

1,31

ˆ ,c

s

W

W

W

 
   
  

31W

1

0 .

0

 
   
  

11  

As we see, the expressions (15) and (8) are similar in form 
and dimension. We should also keep in mind that the Y -
matrix is the sum of the Y -matrices of each element. 
Therefore, we conclude that the conductivity matrix of the 
element with fixed parameters (9) can be placed in 
correspondence with the conductivity matrix of a parametric 
element with variable parameters 

(16)  
s

 
   

Y Y

Y Y C
,  

in which the role of the conductivity y  and capacity c  from 

(9) is performed by the conductivity matrix Y  and the 
capacity matrix C , respectively.  In general, the order of 

the matrices Y  and C  in (16) is (2 1)k  . Then, everything 

bases on the analogy between the matrices (9) and (16). 
For instance, by analogy with the experiment 1, we can 
build SSLAE and its matrix of the parametric circuit for 

2n  . However, as in the computer experiment 1, this is 
not obligatory. According to the D-trees method, each 

( )rc t -element of the parametric circuit is considered an 

initial sub-circuit, for which the matrix (16) is considered to 
be the conductivity matrix, and   therefore the set (1) for it is 
formed using the same rules as for the matrix (9). However, 
if for the matrix (9) this led to the formation of algebraic 
expressions, for the matrix (16) the set (1) is formed as 
matrix expressions: 
(17) 1ii ij jj ji ii , jj      s ; s ; ; ; ;           Y C Y C Y Y Y .  

Each matrix expression in (17) determines matrix 
operations, the performance of which for 1k   results in 

the formation of the (2 1) 3k   order matrix. As the Y  

matrix is diagonal and consists of identical elements, then 

the matrices Y  and C  are commuting matrices, and the 

order of their multiplication is not important:  Y C=C Y . 
Therefore, in contrast to circuits from the computer 
experiment 1 (fixed parameters), the sub-circuits of 
which are described by a set of polynomials, the sub-
circuits in the computer experiment 2 (variable 
parameters) are characterized by a set of matrices. By 
analogy, if the combination of two sub-circuits with 
fixed parameters results in polynomials, then the 
combination of two sub-circuits with variable 
parameters results in matrices. 

Let us consider the combination of the two initial sub-
circuits 1 and 2 into the sub-circuit 5 (Fig. 3) in more detail. 
From (14)-(16) appears that the matrices of the sub-circuits 
1 and 2 are block matrices [10] and have the following form: 

(18) 1

s

 
    

Y Y
M

Y Y C
,  

(19) 2

s

 
    

Y Y
M

Y Y C
,  

where the superscript signifies that the matrix belongs to a 

respective sub-circuit, 1 or 2. Since the matrix Y is diagonal 
and its elements are identical, the determinants and 

algebraic complements of the block matrices 
1M  and 

2M  
are determined using the conventional rules [10]. Thus, for 
the sub-circuit 1, 

(20) 
,

( ) ;    

            

( );

; ; ;

     

   

 

   

1 1

1 1 1 1 1

ii

ij jj ji ii jj

Y Y sC YY Ys Y sC

Y Y Y
,  

and for the sub-circuit 2, 

(21)
,

    ( ;

    

) ; ( )

; ; ;        

     

   

 

   

2 2

2 2 2 2 1

ii

ij jj ji ii jj

Y Y sC YY YsC Y sC

Y Y Y
.  

For the combination of the sub-circuits 1 and 2, to the sets 
of the matrices (20) and (21) we apply the expressions 
which are correct for this parametric circuit and which 
directly result from (2) for 1a  ,  2b   and 5c  . We 
obtain the set of six matrices of the combined sub-circuit 5: 

(22) 

5 1 2 1 2

5 1 2 1 2 5 1 2
,

5 1 2 1 2 5 1 2
,

5 1 2 1
, , ,

       

       

( )

) ;

; ;

; ;

ii jj

ii ii jj ii jj ij ij ij

jj ii jj jj jj ji ji ji

ii jj ii ii jj ii jj

s s

s s s s (2 s )s

      

   

    

    



Δ = Δ Δ +Δ Δ

Δ = Δ Δ +Δ Δ Δ = Δ Δ

Δ = Δ Δ +Δ Δ Δ = Δ Δ

Δ = Δ Δ +Δ

YsC Y C Y Y C =

= Y C Y Y C C Y Y C = Y Y + Y C C

Y Y

Y Y
2 .jjΔ

  

By multiplication and addition of the matrices, from (22) we 
obtain the resulting six 

matrices 5 5 5 5 5 5
,, , , , ,ii ij jj ji ii jjΔ Δ Δ Δ Δ Δ  of the combined 

sub-circuit 5: 

(23) 5 ,

a b c

d e f

g h k

 
   
  

  

0 0 0 0

0 0 0 0

0

2 2 2 2

2 2 2

2 2 2
0 0

0 0 0 0

0 0

2

2 2 2

2 2 2 2 2

( ) / 2 ( );

( ) / 2 ( ) / 2 ( ( )) / 2;    

( ) / 2;

( );    

(

s y m s y s y y s

m s y s m y ms y y

a c c c c

b c c c c

c c d c c

c c c e

s

m s y m s y m y

m s y m s y y c y

y m sc c

s s

  

        

  

         



         



  

      

    

   



 

 0 0

0 0 0 0

0 0

2 2

2
0

) / 2 ( );

( );

( )

y s y y s

y s y y y s

m y

c c

f c c c c

g c c cm y y s

  

 

     

       

 

   

        

 

0 0 0

0 0 0

0 0 0 0

2 2 2

2 2

2 2 2

2 ;    

( ) ( ) / 2;

( );

m s y y s y

y y s

c h c c

c c c

k c

m s

c

y

s y y s y yc c s

       

          

       

       

 

   

 

2
1 1 1

5 5 2
1 1 1

2
1 1 1

0 0

; 0 0 

0 0

  , ii ij

a b c y

d e f y

g h k y

  
      
     

   

2 2 2 2

1 1

2

1

2
1

2

( ) ( ) / 2;

( ) / 2;

2 ( );

0 0 0

0 0 0 0

0 0 0 0

a c c c

b (c m s y)/2 + c m s (y +

y s s y m s

ms

m s

 c s);c c

d c c cy m m s scy

     

      

  



  

         

 

1

1 1

1

2 2 2 2 2 2

2

( ) ( ) / 2;

2 ( ) ; 2 (

0 0 0 0

0 0 0 0

0 0 0 0

e c c c c

f 2 c (y+c s) + c

y s s y m s

ms

m y s m y y

y; g c

c c c h c

      

      
           

 

    
      

  

2 2 2 2 2
1) ( ) / 2; ( ) ;0 0 0 0 0 0c c c ks y m c cs s cy sy          
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(24) 

 

 

2

5 2
0

2
0 0

2

5 2

2

5
, 0

0 0

/ 2 0

;

0 0

0 0 ;

0 0

/ 2 0

0 0

jj 0 0

0

ji

0 0

ii jj 0 0

0

y +c s y c s m

c s m y y +c s y c y

c m y c y y +c s y

y

y

y

2 y+c s c s m

c s m 2 y+c s c .

c m c 2 y+c s

    
        
        

 
   
  

    
       
       



Δ

Δ   

Similarly, we obtain the matrices of the set (1) for the sub-
circuit 6:  

(25) 6 6 6 6 6 6
,, , , , ,ii ij jj ji ii jjΔ Δ Δ Δ Δ Δ ,  

which in our case are equal to the corresponding matrices 
from (24), as the sub-circuits 1,2 and 3,4 are identical in 
terms of structure and parameters.  

The sub-circuits 5 and 6 are combined into the sub-circuit 
7 in a similar way. Using the formed sets of matrices (24) 
and (25) based on the expressions (2), which are correct 
also for this parametric circuit, we determine the set of 
matrices (1) for the sub-circuit 7: 

(26) 7 7 7 7 7 7
,, , , , ,ii ij jj ji ii jjΔ Δ Δ Δ Δ Δ . 

The adequacy of the operations mentioned in (20)-(26) 
can be demonstrated using Fig. 4, 5, 6 and their 
descriptions presented below. Fig. 4 offers the graphic 

imaging of the matrix F  from the expression (10), which is 
the 15-order matrix obtained (by the FS method by analogy 
to (14)) for the circuit for 4n  . Fig. 5 shows the graphic 
imaging of that same matrix for the initial sub-circuit. In 

these figures the elements of the diagonal matrices Y  are 
marked by the symbol ‘  ’, and the other by the symbol ‘ ’, 
because for further explanation this is the fact of their 
presence that is important, not their value. 
 From the expressions (24) and the form of the matrix 
equation (3), which is correct for the case of parametric 

circuit, we can build the graphic image of the matrix F , 
which corresponds to the combined sub-circuits 5 (see 

Fig. 6). The matrices F obtained for the combined sub-
circuits 6 and 7 will have similar graphic representation. 
Therefore, we can assume that the graphic image in Fig. 6 
is common for all the sub-circuits 1-7, irrespective of the 
fact if these sub-circuits are initial (Fig. 5) or they already 
comprise other initial sub-circuits (Fig. 6). The only 
difference is that in case of initial sub-circuits the elements 
of the diagonal matrices B, C from Fig. 6 equal y , while in 

the other cases, these elements equal iy . The degree i  

here shows that the sub-circuit contains the number of i  of 
the initial sub-circuits. This is well illustrated by the third and 
fifth matrices from the set of matrices (24) for the sub-circuit 

5, the diagonal elements of which are equal to 2y  for 2i  . 

This is also the case for an arbitrary value of the number of 
initial sub-circuits n in the test circuit. Thus, from Fig. 6 and 
explanations thereto, taking into account the rules of 
operations with block matrices [10], we can conclude that 
the determinant of the block matrix from Fig. 6 is found 
using the same rules as for ordinary matrices. For instance, 
for the symbols used in Fig. 6 the determinant of such a 
block matrix appears as 

(27)  
A B

A D C B D A B C
C D

           

and does not depend on the order of multiplications. This 
also means that all other methods, including the trees 
method and D-trees method [3] for calculating determinants 
in this case are correct and applicable. Regarding the 
algebraic complements from the set (1) for the matrix from 
Fig.6, formed in our case by deleting three rows and three 
columns (1,2,3 or 4,5,6) simultaneously, the results will also 
be a priori correct, as they are formed of separate 
matrices , , ,A B C D  or unit diagonal matrix. Now we can 
make another conclusion: the above-presented transfer 
from the operations with algebraic expressions in case of 
circuits with fixed parameters (computer experiment 1) to 
the operations with matrices for circuits with variable 
parameters (computer experiment 2) is correct. However, it 
should be understood that the correctness of such transfer 
in our case is ensured by the fact that the selected test 
circuit between the neighbouring nodes contains solely the 
fixed parameter resistor. This provides for the diagonal form 
of the matrices with identical elements marked in Fig.6 by 
the symbol ‘  ’. For the other linear circuit structures, we 
also managed to reduce the problem to the above-
considered form. 
 

              

 
 
 
 
    
   
 

   
    

   
    
   
 

   
   
 

   
    

    

 
 
 

 
 
 
 
 
 
 
 
 


  

Fig. 4. Graphic imaging of the 15-order matrix F obtained by the 
FS method for the four sub-circuits 1-4 
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Fig. 5. Graphic imaging of the matrix of the initial sub-circuits 

( ( )rc t -elements) 
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Fig. 6. Graphic imaging of the matrix obtained by the combination 
of two neighbouring sub-circuits 
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Thus, it is clear that by combining all the sub-circuits of 
the parametric circuit between themselves we obtain not 
polynomials but a set of six matrices of the form (1). The 
order of combining sub-circuits is similar to the computer 

experiment 1. The determinant  of the obtained matrix of 
the circuit from the set (1) is one of the required 
determinants that form the SSLAE solution by Cramer's 
rule. The other determinants are formed in a similar way 
using the Cramer’s rule. This results in the formation of the 
required transfer functions between the input and outputs of 
the parametric circuit. However, the further experiments 
showed that the formation of determinants of such matrices, 
the degree of which is not very high and equals (2 1)k  , 

can also take lots of computing time. This is due to the fact 
that the elements of such matrices are also bulky 
expressions. This problem can be solved both by using the 
MATLAB det () function and by the system UDF MAOPCs 
D_trees() function. As the experiments showed, in this case 
the D_trees() function is also much more effective that det(), 
which is why it was used in all the further experiments.  

Summing up the above-presented information, we will 
make the following points. There are three ways of 
computing the determinant of the SSLAE of the LPTV circuit 
and its transfer functions: a) by applying the det() function to 
the SSLAE matrix of the circuit; b) by applying the D_trees() 
function to the SSLAE matrix of the circuit and the det() 
function to the final (2 1)k  -degree matrix; c) by applying 

the D_trees() function both to the SSLAE matrix of the 
circuit and to the final (2 1)k  -degree matrix.  

Table 2 presents the time of forming the determinant of 
the SSLAE matrix of the circuit using the three methods (a), 
(b) and (c) for  n  varying from 8 to 256. From Table 2 it 
follows that: 

 - the det() function in the variant (a) formed the 
determinant for circuits for the cases when the number of 
sub-circuits does not exceed 32; 

-  for the case of 32 sub-circuits in the circuit, the variant 
(b) is 4.5 times faster than the variant (a), and the variant  
(c) is 500 times faster than the variant (a); 

- the variant (c) produced results even for the case of 256 
sub-circuits in the circuit; 

- for the case of 32 sub-circuits in the circuit, the variant 
(c) was 110 times faster than the variant (b); 

- the variant (с) turned out to be much more effective 
than the variants (a) and (b).  

 
Table 2. The time of formation of    of the SSLAE of the circuit 
with variable parameters using the standard Matlab tools and D-
trees method 

n 8 32 64 128 256 
The variant a, t,s 51.68 3592.98 OutOfM OutOfM OutOfM
The variant b, t,s 0.71 791.23 OutOfM OutOfM OutOfM
The variant c, t,s 0.09 7.13 56.03 772.26 10777.07
- n denotes the number of elements in the circuit from Fig.2b; 

 - The variant a —the time of formation the determinant of the 
SSLAE matrix of the circuit using the MATLAB  det() function; 

- The variant b – the time of formation the determinant of the 
SSLAE matrix of the circuit using the D_trees() function to the 
SSLAE matrix of the circuit and the MATLAB det() function to the 
final -degree matrix ; 

- The variant c –  the time of formation the determinant of the 
SSLAE matrix of the circuit using double application of the 
D_trees() function in the system UDF MAOPCs of the MATLAB 
environment. 
 

Computer experiment 3. Problem. Assess the time of 
formation of the determinant   of the SSLAE matrix formed 
by the FS method for a parametric circuit formed of 
n ( )rc t -elements (Fig. 2c), the parametric capacities of 

which vary with different initial phases  
( 1)

1p

p

n

 
 


 , 

where p  is the ordinal number of the element (the circuit 

elements are numbered starting from the power supply 
source) for all the symbolic parameters of the circuit 
elements using the D_trees() and det() functions. Each time 
the number of n  ( )rc t -elements is to be increased from 

8n   until the system message «Out of memory».. 
The experiment is practically similar to the experiment 2 

with the following slight differences.  
For the case of 2n   SSLAE (10) by FS method will 

appear in the form (14) except for the elimination of signs in 
the expressions: 

(28)  0
78 2

c sm
Y ,  87 0Y c sm,  97 0Y c m  . 

This means that the expression (15) is correct for both 
initial sub-circuits, but, as it follows from the FS method, the 

matrices C  for them will be different. For the sub-circuit 1, 

this matrix (let us designate it 1C ) is identical to that in (15), 

and for the sub-circuit 2 this matrix 2C  is different: 

(29)      

0 0

1 0 0 0

0 0 0

0.5 0c c m

c m c c s

c m s c s c

 
   
     

C ,  

0 0

2 0 0 0

0 0 0

0.5 0c c m

c m c c s

c m s c s c

  
    
    

C . 

For 2n  , since the parametric capacity of each element 

has a shift in the initial phase, the matrices pC  of the initial 

sub-circuit will also be different. Therefore, the conductivity 
matrix for different initial elements will be different. For 
instance, for the p th initial element, the conductivity matrix 

is 

(30)   
ps

 
   

Y Y

Y Y C
.  

At that, the matrix expressions (17) for the p th initial 

element will appear as 

(31)  
,

; ; ;        

        ; ; 1.

p ii p ij

jj ji ii jj

s s      

     

Y C Y C Y

Y Y
 

The expressions (18) and (19) for the initial sub-circuits p  

and 1p   will be  

(32)  p

ps

 
    

Y Y
M

Y Y C
,  

(33)  1

1

p

ps




 
    

Y Y
M

Y Y C
.  

As the matrix Y  in (32) and (33) did not change and 
remained diagonal with identical elements, then the 
determinants and algebraic complements of the block 

matrices 
pM  and 

1pM  are determined using expressions 
similar to (20) and (21): 
 

(34) 
,

    

           

( ) ; ( );

; ; ;  

     

   

 

    1

p p
p p ii p

p p p p
ij jj ji ii jj

Y Y sC YY YsC Y sC

Y Y Y
, 
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(35) 
,

( ) ; (    ;

           

)

; ; ;  

 
  

   

     

   

 

   

1 1
1 1 1

1 1 1 1 1

p p
p p ii p

p p p p
ij jj ji ii jj

Y Y sC YY YsC Y sC

Y Y Y
. 

However, the fact that the matrices pC  are not equal has 

no effect whatsoever on combining two neighbouring sub-
circuits, as the D-trees method does not require such 
equality. Therefore, the combination occurs according to the 
expressions similar to (22). 

Table 3, as Table 2, presents the time of determining    
of the matrix of the circuit SSLAE using three variants (a), 
(b) and (c) for n  varying from 8 to 256.  

From Table 3 it follows that 
- the det() function in the variant (a) formed the 

determinant for circuits for the cases when the number of 
sub-circuits does not exceed 10; 

-  for the case of 10 sub-circuits in the circuit, the variant 
(b) is 10.3 times faster than the variant (a), and the variant 
(c) is 1391 times faster than the variant (a); 

- the variant (c) produced results even for the case of 256 
sub-circuits in the circuit; 

- for the case of 16 sub-circuits in the circuit, the variant 
(c) was 134 times faster than the variant (b); 

- the variant (с) turned out to be much more effective 
than the variants (a) and (b). 

 
Table 3. The time of formation of   of the SSLAE of the circuit 
with variable parameters using the standard Matlab tools and D-
trees method 

n 8 10 16 64 128 256 
The variant a, t,s 64.96 1099.07 OutOfM OutOfM OutOfM OutOfM
The variant b, t,s 4.96 106.54 2660.49 OutOfM OutOfM OutOfM
The variant c, t,s 0.09 0.49 0.66 87.97 867.96 15600

- n denotes the number of elements in the circuit from Fig.2b; 
 - The variant a —the time of formation the determinant of the 
SSLAE matrix of the circuit using the MATLAB  det() function; 

- The variant b – the time of formation the determinant of the 
SSLAE matrix of the circuit using the D_trees() function to the 
SSLAE matrix of the circuit and the MATLAB det() function to the 
final -degree matrix ; 

- The variant c –  the time of formation the determinant of the 
SSLAE of the circuit using double application of the D_trees() 
function in the system UDF MAOPCs of the MATLAB environment. 

 

Conclusion 

1. The FS method for the analysis of LPTV circuits is a 
development of the frequency symbolic methods of the 
analysis of circuits with fixed parameters and their extension 
to parametric circuits.  

2. The application of the FS method to linear circuits 
with fixed or variable parameters described by differential 
equations using the node voltage method made it possible 
to obtain SSLAE with respect to the transfer functions that 
were solved by correctly applying the d-trees method. 

3. The implementation of the D-trees method in the 
form of D_trees() function in the system UDF MAOPCs 
enabled an objective comparison of the D-trees method with 
the methods implemented in the MATLAB det() function. 
This comparison was done on the SSLAE describing linear 
circuits with fixed and variable parameters by the FS 
method.  

4. Linear circuits were selected as test circuits, as they 
allow for the use of a significant number of parametric 
elements in the circuit, can effectively model long lines with 
variable parameters and simplify the representation by the 
D-trees method.  

5. The results of the computer experiments presented 
in the paper convincingly demonstrate that the application of 
the D-trees method for the solution of symbolic SLAE when 

parametric circuits are analysed by the FS method provides 
a significant reduction of the time and increases the 
allowable complexity of the circuits being analysed. The 
presented computer experiments were hundreds and 
thousands times more time-efficient as compared to the 
symbolic methods used in the MATLAB det() function. The 
admissible complexity of the LPTV circuits in terms of the 
number of elements increased from 32 sub-circuits for the 
standard det() function to 256 sub-circuits for the D-trees 
method.  
It should also be noted that: 

1. The D-trees method was developed both for linear 
circuits and for circuits that have an arbitrary structure. 

2. The presence of variable resistors, capacities and 
inductances do not change the character of the obtained 
results. 

3. We believe that the presented material opens up the 
opportunities for applying the system UDF MAOPCs in 
multivariate problems of analysis and design, in particular of 
electronic devices modelled by linear parametric circuits. 
*Hereinafter, each value of the time was obtained by averaging the 
time values obtained in ten corresponding computations. For 
computer experiments, MATLAB R2014a and Dell/Intel(R) 
Core(TM) i-5-3317U CPU, 1.70 GHz, RAM:8.00 GB were used. 
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