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Nonlinear predictive control for trajectory tracking of 
underactuated mechanical systems 

 
 

Abstract. The objective of this article is to present an automatic demonstrator of underactuated mechanical systems. It is the inertia wheel inverted 
pendulum, which has two degrees of freedom and a single actuator. Nonlinear predictive control is applied to the underactuated system allowing 
dynamic control for optimal tracking of periodic reference trajectories. The simulation results show the performance and efficiency of the proposed 
control. 
Streszczenie. Celem tego artykułu jest przedstawienie automatycznego demonstratora niedostatecznie uruchomionych układów mechanicznych. 
Jest to odwrócone wahadło stabilizowane kołem zamachowym, które ma dwa stopnie swobody i jeden siłownik. Nieliniowe sterowanie predykcyjne 
jest stosowane do niedostatecznie uruchomionego systemu, umożliwiając dynamiczne sterowanie w celu optymalnego śledzenia okresowych 
trajektorii odniesienia. Wyniki symulacji pokazują wydajność i skuteczność proponowanego sterowania. (Nieliniowe predykcyjne sterowanie 
demonstratora niedostatecznie uruchomionych układów mechanicznych) 
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Introduction 
Robotic systems are mechanical systems with actuators to 
control the evolution of the system over time. Depending on 
the number of degrees of freedom and actuators of the 
system, 3 classes of mechanical systems result, namely: 
fully actuated mechanical systems, underactuated 
mechanical systems, and overactuated mechanical systems 
[1], [2], [3]. 

Underactuated mechanical systems are defined as 
systems where the number of actuators is less than the 
number of degrees of freedom. Thus, a subset of degrees 
of freedom of the system does not have a command entry 
[4], [5]. Therefore, conventional controls of fully actuated 
mechanical systems cannot be implemented for such 
systems [6]. Indeed, the command inputs only allow to 
completely control a part of the dynamics, the other part, 
called internal dynamics [7], depends on the evolution of the 
actuated coordinates (because of the coupling between the 
coordinates of the system). The system is said to be at 
minimum-phase if its internal dynamics are stable, 
otherwise the system is at non-minimum phase. 

Underactuation is often introduced on purpose to reduce 
the number of actuators, and therefore the cost of building 
prototypes. This problem is of great academic interest since 
the classical techniques for controlling nonlinear systems 
are no longer valid for this kind of systems. Due to its 
complexity and richness, the task of designing control laws 
for this type of system is attracting more and more 
researchers who are interested in the development of new 
control techniques [8]. 

The inertia wheel inverted pendulum, is, because it has 
fewer degrees of freedom actuators, an underactuated 
mechanical system. Moreover, because its internal dynamic 
is unstable, it has non-minimum phase. Different control 
approaches have been developed for stabilizing and 
tracking desired trajectories of this system [9], [10]. The 
control of the systems under-actuated by the PID controller 
is not recommended to use it as it is a non-robust control 
[11], [12]. 

In this paper, a nonlinear predictive control strategy will 
be applied for tracking a sinusoidal reference path is 
developed. 

 
Nonlinear predictive control 
Model Predictive Control (MPC), also called optimal control 
over a sliding finite horizon, is a strategy well suited for the 

control of nonlinear processes subjected to constraints on 
the control variables and / or states. The pursuit objective is 
formulated as a constrained nonlinear optimization problem. 
It is then a matter of minimizing a performance criterion, a 
function of the difference between the reference trajectory 
and the output of the process, over a finite prediction 
horizon [13], [14]. 
One of the main advantages of this approach lies in the 
explicit taking into account of the constraints in the 
synthesis of the control law. The command structure 
considered here is the command structure with internal 
model to which an output return of the model has been 
added, figure 1. The process is written by a discrete 
nonlinear model [15]: 
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Fig.1. the internal model control structure 
 

In a predictive control strategy associated with an 
internal model control structure, the objective of pursuing 
the reference trajectory v by the output of the method yp 
amounts to determining a sequence of commands 

      u u k , u k 1 , ,u k Nc 1     over a control 

horizon Nc such that the difference between the desired 
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trajectory yd and the output predicted by the model ym is 
minimal over a prediction horizon Np. 
Indeed, according to the control diagram, figure 1, one can 
write: 

(2)                d fy k v k e k   

For k sufficiently large compared to the dynamics of the 
filter: 
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In the multivariable case, the mathematical formulation of 
this problem is written [14]: 
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subject to the constraints on the control variables (of 
threshold type and / or speed) and states: 
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yd(j)     : desired output at the moment  j.Te 
ym(j)    : model output at the instant j.Te  
Np : finite prediction horizon 
Nc         : order horizon (Nc ≤ Np) 
Q   : symmetric positive definite matrix 
Te   : sampling period 

 
Dynamic modelling of the plant 

the underactuated system studied in this paper is an 
inertia wheel inverted pendulum, figure1, which consists of 
an inverted pendulum equiped with a rotating wheel. Figure 
2, illstrates its mechanical structure. 

 
 
Fig.2. The inertia wheel inverted pendulum 

In order to develop the dynamic model of the Inertia wheel 
inverted pendulum, the following assumptions are 
considered: 
• Hypothesis 1: The masses of the pendulum and the inertia 
wheel are considered to be point masses located at their 
centers of gravity. 
• Hypothesis 2: The study of the dynamics of the inverted 
pendulum is carried out by neglecting the mechanical 
phenomena related to friction. 
• Hypothesis 2: The dynamics of the actuator motor 
associated with the inertia wheel is not taken into account in 
the modeling of the system. 

 
Fig.3. Synoptic of the system’s mechanical structure 
 

The nonlinear dynamic model of the inertia wheel 
inverted pendulum is obtained by applying the Lagrange 
formalism [16]. This approach requires the calculation of the 
Lagrangian according to the kinetic and potential energies 
of the various components of the system according to the 
generalized coordinates. Lagrange Formulation is based on 
the Lagrange equation:  
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where L=T – V is the Lagrangian, with T the kinetic energy, 
and V the potential energy. Knowing that iq  and iq  are the 

vectors of generalized positions and velocities. Qi is the 
vector of generalized forces. 
The application of such a formalism to the case of the 
inverted pendulum led to the nonlinear dynamic model [17]:  
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The different variables used in the modeling are grouped 
together in Table 1. 
Table 1. Summary of the variables used in the modeling 

Description Parameter  

1  pendulum position (rad) 

1  Pendulum velocity (rad/s) 

1  Pendulum acceleration (rad/s2) 

2  Inertia wheel position (rad) 

2  Inertia wheel velocity (rad/s) 

2   Inertia wheel acceleration (rad/s2) 

1  External disturbing torque applied to the 
pendulum (N.m) 

2  torque exerted by the actuator (N.m) 

 

Table 2 summarizes all the geometric and dynamic 
parameters of the inertia wheel inverted pendulum: 
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Table 2. Description of dynamical parameters of the inverted 
pendulum 

Parameter value Description  

1m 3.30810Kg  Body mass  

2m 0.33081Kg  Wheel mass 

1l 0.06 m  Body center of mass position 

2l 0.044 m  wheel center of mass position 

2
1i 0.03146Kgm  Body inertia 

2
2i 0.00041Kgm  Wheel inertia 

2g 9.81ms  Gravity acceleration 

 

The external disturbing torque applied to the pendulum 1  

is assumed to be zero, the dynamics of the pendulum can 
be rewritten: 
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(15)         2 1 2 2i ( )      

The discretization of the inverted pendulum using Euler's 
approximation. This Euler transformation uses the state 
vectors  x t  and  x t  at time t approximated respectively 

as follows [18], [19]: 
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where x at time kT is denoted by  x k , Te being the 

sampling period. 
It follows the approximate discrete model, corresponding to 
the inverted pendulum, as follows: 
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The inverted pendulum stabilized by an inertia wheel 
has two equilibrium points. The first is a point of unstable 
equilibrium, it corresponds to the state in which the 
pendulum is pointed upwards. This point of equilibrium is 
said to be unstable because in the absence of control 
torque, the pendulum, under the effect of the slightest 
disturbance, is unable to maintain this position indefinitely. 

The second point, on the other hand, corresponds to the 
state in which the pendulum is pointing downwards. In the 
presence of a disturbance acting on the pendulum, if the 
state of the system is in a neighborhood of this point, it 
naturally remains there in this state. These two equilibrium 
points are illustrated in figure 4. The control objective that 
we will discuss concerns particularly the monitoring of the 
system instructions. 

 
a) Stable equilibrium point  b) Unstable equilibrium point 

 

Fig.4. Illustration of the equilibrium points of the system 
 
Simulations Results 

In this section simulation results are presented. They attest 
the feasibility of the proposed predictive control. 

Consider the dynamic model of system inertia wheel 
inverted pendulum described by equations (14) and (15) 
with dynamical parameters described in Table 2. The initial

 

conditions of simulations are as follows  1 1 2 0      .  

The choice of the initial value of the position of the 
pendulum is not arbitrary, for reasons of the mechanical 
structure of the pendulum. 

Figures 5 and 6 respectively represent the angular 
position and the angular velocity of the articulation of the 
body of the pendulum as a function of time in solid lines, 
while the dotted lines represent their corresponding position 
and reference velocity. It is clear that the nonlinear 
predictive control ensures a good convergence of the 
position and the velocity of the pendulum towards their 
reference trajectories. 

 
Fig.5. Evolution of angular position of the inverted pendulum 

 
 

Fig.6. Evolution of angular velocity of the inverted pendulum 
 

Figure 7 represents the control input which is made up 
of the voltage of the motor driver (proportional to the motor 
torque), where it can be seen that it remains within the 
admissible limits (± 10 V). 
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Fig.7. Control input 2  
 

Figure 8 shows the evolution of the plan portrait  1 1,  . 

We notice the convergence of the initial condition towards a 
stable limit cycle. We can deduce that this predictive control 
technique meets the desired performance. 

 
Fig.8. The inertia wheel inverted pendulum 
 
Conclusion 

In this paper, a nonlinear predictive control  approach is 
proposed for reference trajectories tracking for 
underactuated mechanical systems. The control scheme is 
designed in the special case of the inertia wheel inverted 
pendulum. The Lagrangian dynamic model of the system is 
nonlinear and its internal dynamics is unstable. As a result, 
the system is at non-minimum-phase. 

The simulation results obtained show the effectiveness 
of the proposed approach. however, a nonlinear predictive 
control, it can be easily applied to the more general case of 
underactuated mechanical systems. 
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