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Abstract. The paper describes and compares two forms of wavelet transformation: discrete (DWT) and continuous (CWT) in the analysis of 
electrocardiograms (ECG) to detect the anomaly. The anomalies have been limited to two types: cardiac and congestive heart failure. Two 
independent approaches to the problem have been considered. One is based on discrete wavelet transformation and feature generation based on 
statistical parameters of the results of the transformed ECG signals. These descriptors, after selection, are delivered as the input attributes to 
different classifiers. The second approach applies continuous wavelet transformation of ECG signals and the resulting two-dimensional image 
formed in time-frequency dimensions represents the input to the convolutional neural network, which is responsible for the generation of the 
diagnostic features and final classification. The experiments have been performed on the publically available database Complex Physiologic Signals 
PhysioNet. The calculations have been done in Python. The results of both approaches: DWT and CWT have been discussed and compared.  

Streszczenie. Artykuł predstawia dwa podejścia do wykrywania anomalii w sygnalach ECG. Jako anomalie rozważane są: arytmia i zastoinowa 
niewydolność serca. Podstawą analizy jest sygnał ECG poddany transformacji falkowej w dwu postaciach: transformacja dyskretna oraz 
transformacja ciągła. W przypadku transformacji dyskretnej sygnał ECG poddany jest dekompozycji falkowej na kilku poziomach a wyniki tej 
dekompozycji (sygnały szczegółowe i sygnał aproksymacyjny ostatniego poziomu) podlegają opisowi statystycznemu tworząc zbiór deskryptorów 
numerycznych – potencjalnych cech diagnostycznych. Po przeprowadzonej selekcji stanowią one atrybuty wejściowe dla zespołu 9 klasyfikatorów. 
W drugim podejściu sygnał ECG jest poddany ciągłej transformacji falkowej generując dwuwymiarową macierz w postaci obrazu. Zbiór takich 
obrazów podawany jest na wejście głębokiej sieci neuronowej CNN, która w jednej strukturze dokonuje jednocześnie generacji cech 
diagnostycznych i klasyfikacji. Eksperymenty numeryczne przeprowadzone zostały na ogólnie dostępnej bazie danych Complex Physiologic Signals 
PhysioNet. Wyniki eksperymentów wykazały przewagę podejścia wykorzystujacego dyskretną transformację falkową. (Porównanie metod 
klasycznych i uczenia głębokiego w problemie wykrywania zaburzeń ECG wykorzystując analizę falkową.) 
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Introduction  
An electrocardiogram (ECG) is a simple test that 

measures the heart's electrical activity using electrodes 
allocated on the skin. It shows whether the rhythm of the 
heartbeats is steady or irregular, and the strength and 
timing of the electrical impulses passing through your heart 
is normal. Changes in normal ECG patterns can be caused 
by numerous cardiac abnormalities, like cardiac rhythm 
disturbances, inadequate coronary artery blood flow, and 
electrolyte disturbances. The computer-aided analysis of 
ECG results assists physicians to detect cardiovascular 
diseases.  

Many signal processing methods are applied in the 
analysis of ECG signals [1-5]. The most efficient tool now 
seems to be the wavelet transformation of the ECG signal, 
producing results on different levels of signal resolution. 
The statistical numerical descriptors following from such 
transformation are usually combined with different 
classification systems, which are responsible for the 
decision, whether the anomaly is present or not. The 
numerical results reported in the published papers depend 
on the database used in experiments. The reported 
accuracy and sensitivity values are changing from 95% up 
to 100%, depending on the applied method and used 
database [1-6].  

An additional advantage of the wavelet transformation of 
ECG signals is the application of this technique in different 
pre-processing tasks, such as de-noising, extraction of 
basic parameters used by medical experts in abnormality 
detection, compression of data, etc. In ECG waveform we 
recognize five basic waves: P, Q, R, S, T (sometimes also 
U). The P wave represents atrial depolarization, Q, R, S are 
commonly known as QRS complex which represents the 
ventricular depolarization, and the T wave describes the 
repolarization of the ventricle. The most significant in ECG 
signal analysis is the shape of the QRS complex.  

The problem is that ECG signal sequences may differ 
for the same person and represent different types of 
anomalies [2]. Hearth beat without anomalies is very 

regular, and atrial depolarization is always followed by 
ventricular depolarization. In the case of arrhythmia, heart 
rhythm becomes irregular, which is either too slow or too 
fast.  
 The ECG waveform is not smooth, with many sudden 
transitions. If we analyze its spectrum the noisy and normal 
signal transitions cannot be separated by using the classical 
filter approach. This is, where wavelet transformation can 
be successfully applied [2,4,]. 
 This paper presents the computer system to detect the 
anomaly in the ECG waveform. It applies the wavelet 
transformation on the stage of pre-processing of the signal 
and application of the Convolutional Neural Network (CNN) 
network in final anomaly detection. 
 
Database used in experiments 

The database used in experiments contains 162 ECG 
recordings from Research Resource for Complex 
Physiologic Signals PhysioNet (publicly available) [6]. The 
ECG time series have been obtained from three groups 
(classes) of people with different hearth phenomena. They 
represent samples with 1) cardiac arrhythmia (ARR) in 
which the heartbeat is irregular, too fast, or too slow, 2) 
samples with congestive heart failure (CHG) when the heart 
is unable to pump sufficiently to maintain blood flow to meet 
the body's needs and 3) samples with normal sinus rhythms 
(NSR). The recordings represent part of MIT-BIH 
Arrhythmia Database, MIT-BIH Normal Sinus Rhythm 
Database, and BIDMC Congestive Heart Failure Database 
[6]. Every recording is sampled with 128 Hz and has a 
length of 216 samples. In total, there are 96 recordings of 
ARR, 36 of NSR, and 30 of CHG. These recordings 
contained in total 6144 ARR samples, 1920 samples 
representing CHG, and 2304 normal samples.  

Fig. 1 shows the exemplary ECG recordings 
representing these three classes of data. We aim to build 
an automatic system, which can recognize the class of 
samples belonging to any of these three groups. 
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Fig. 1 The exemplary ECG representations of three classes of 
ECG: arrhythmia (ARR), congestive heart failure (CHG), and 
normal sinus rhythm (NSR) 

 

Frequency analysis of signals 
As the ECG signal is recorded directly from a patient’s 

body, the recording will be disturbed by some noise. The 
noise signals are due to factors such as baseline 
wandering, motion artifacts, supply-line interference within 
the signal, electrode contact, or attenuation losses [7]. 
Baseline wandering noise is caused by respiration, 
electrode impedance variation, or excessive body 
movements.  
 

 
 

Fig. 2 The representation of three types of signals (left) and their 
Fourier transforms (right) 

 

One of the typical approaches to feature generation of 
ECG signals is the application of Fourier transformation. 
Fig. 2 presents three types of signals and their Fourier 
transforms. As it is seen power distribution differs 
significantly in different ranges of frequency, as the basic 
waves of the ECG signal are different. The most different is 
the spectrum of the CHG signal. 

However, it should be observed, that the Fourier 
transform is representative only when ECG segment 
variation over time is negligibly low since it assumes the 
stationarity of the analyzed signal. Moreover, it applies the 
basis function of infinite support, hence in the frequency 
domain, time dependency is irreversibly lost. Therefore, the 
Fourier approach to ECG analysis is of limited usage. 
Instead, we will use wavelet transformation in its continuous 
and discrete form. 

 

Applied methods 
In our approach, we will apply the wavelet 

transformation instead of Fourier. The wavelet transform 
provides simultaneously high resolution in the frequency 

domain and also in the time domain. This is obtained thanks 
to the application of the wavelet function of limited support, 
which is subject to scaling and shifting. This is in contrast to 
the sinusoidal function of infinite support applied in Fourier 
transformation [8-10]. 

Application of continuous wavelet transform (CWT) 
maps the signal x(t) to 2-dimensional space represented by 
scale a and shift b using the following equation [9] 
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where ψ represents the mother wavelet function used in the 
analysis, a – time scale, and b – the time shift. The result of 
CWT may be presented as the smooth image in (a,b) 
coordinate system.  
 

DWT in application to feature generation 
 In the case of discrete wavelet transform (DWT) the 
values of a and b are discrete and taken in a dyadic system 
as follows a→am=2m and b→bm,n=2mnT, T – the sampling 
period. The original discrete signal x(t) is now represented 
as the weighted sum of wavelet functions of different scale 
and shift values 
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where  ,m n t  is the wavelet function at mth level, shifted 

by n samples. 
 The DWT transformation is most often used in practice 
since it is very easily implemented using the Mallat 
algorithm [9, 11]. In this approach the integration is replaced 
by the digital filtering operations, applying FIR low-pass and 
high-pass filters [8,10,11]. The low-pass filter is responsible 
for generating the lower resolution approximation of signal 
and the high-pass filter generates the so-called details, i.e., 
the difference between approximated signals of two 
neighboring levels of resolution. The detailed signals of the 
highest resolution are usually associated with the high-
frequency components, often treated as the noise. The 
interesting point is that small detail values might be dropped 
without affecting the major features of the data set. 
Therefore, reconstructing signals deprived of such removed 
details results in the operation of de-noising [10,11]. 

The idea of DWT signal decomposition is to split the 
original signal into different frequency sub-bands. Their 
number is dictated by the user. It should be observed, that 
the succeeding levels of decomposition reveal separate 
frequency characteristics in particular sub-bands. Different 
statistical parameters characterizing these distributions in 
different levels of decomposition, such as mean, median, 
standard deviation, skewness, kurtosis, different percentile 
values, etc., may be used as the numerical descriptors, well 
characterizing the analyzed ECG waveform. Additionally, 
zero-crossings, mean-crossing, and entropy may be also 
calculated for each level of DWT decompositions and used 
as additional descriptors of the analyzed waveform 
[12,13,14]. In our approach, every coefficient of 
decomposition is assigned to the bin with a width of 0.2 
standard deviations. Entropy was estimated using the 
following equation: 

ሺ3ሻ														ܪ ൌ െ
ଵ

ே
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where N is the total number of coefficients, and pi is the 
probability of the ith coefficient.  

The next step of processing is the selection of the most 
significant features. The selected descriptors create the set 
of diagnostic features, serving as the input attributes to the 
classifier, which is responsible for the final recognition of 
classes. Different types of classifiers have been used in this 
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work: Random Forest (RF), Gradient Boosting (GB), 
Multilayer Perceptron (MLP), Support Vector Machine 
(SVM), KNN, Naive Bayes, etc. [15,16]. All of them belong 
to the most efficient set of classification systems. 

 

CWT in the transformation of the signal to an image 
The continuous wavelet transformation converts the 1D 

signal into a 2D image of the coordinate system 
represented by (a,b), in which the scale factor a represents 
scale in a time domain and b – the time shift (both of 
continuous form). Scale a is inversely proportional to 
frequency, i.e., the higher value of the scale, the lower 
frequency range. 

 
Fig. 3 The image of the CWT transformation of ECG signals from 
Fig. 1. The upper image corresponds to cardiac arrhythmia, the 
middle one – to normal sinus rhythm, and the bottom one – to 
congestive heart failure  

 
Fig 4 Compressed CWT coefficient matrices corresponding to their 
original images presented in Fig. 3 

 

Fig. 3 presents the CWT graphical results of the wavelet 
transformation of three types of ECG signals presented in 
Fig. 2. The scale was changing up to 64 and the Mexican 
hat has been applied as the mother wavelet function. The 
analyzed ECG signals were first split into sections of the 
length equal to 1024. Therefore, the resulting image, which 
is used in the analysis is of the size 64x1024. Analyzing the 
original signals of Fig. 2 it is evident, that the CHG signal is 
significantly distinguishable from the others. However, ARR 

and NSR signals are very similar. These observations are 
very well depicted in the obtained images of the 
transformed signals. It is observed, that the largest 
differences are seen in the range of high scales (low 
frequencies).  

To save computation resources, the resizing process 
was applied in further experiments. The initial matrices of 
size 64×1024 were resized to 64×128. The resizing process 
is done to reduce the complexity of the CNN network while 
preserving the details of “images” with satisfactory 
accuracy. The graphical results of the compressed images 
are presented in Fig. 4. 

 

Convolutional Neural Network 
The convolutional neural network is a deep network 

structure that is specially designed to analyze the two-
dimensional data [17,18]. Nowadays, CNN is not restricted 
only to two-dimensions and can be used with multi-
dimensional data, including also 1-dimensional. Many 
hidden layers applied in the structure CNN perform locally 
connected convolution process. 

The convolution is a linear operation that includes the 
multiplication of a set of weights of a kernel (linear filter) 
with the input signals representing pixel values of an image, 
like in traditional neural networks. Assuming, the system is 
designed for two-dimensional data, the multiplication is 
done for a defined array of input data and a two-
dimensional array of weights called a filter or a kernel. 

The filter is of a much smaller size than the size of input 
data (typical 3×3 for small images to 15×15 for large 
images). The multiplication applied between a filter-sized 
patch of the input and the filter is a dot product. As the 
moving filter is applied multiple times to the input array, the 
result is a two-dimensional image of output values called a 
feature map. Once a feature map is created, every value of 
this map is passed through a nonlinearity. Usually, the 
rectified linear unit (ReLU) is used. The next layers are 
created by reducing the size of the convolved images 
through the pooling operation (max or average pooling is 
most often used). The final CNN structure used in 
experiments is presented in Fig. 5. 

The structure of input data is organized in the tensor 
form of the dimension 1x128x128 (the greyscale image of 
the size 128x128). The width and height of it represent the 
size of the image and the depth – the number of images 
subject to processing in each layer. 

Three convolutional, locally connected layers applying 
ReLU activation and MAX pooling have been used in the 
circuit structure. The first convolution layer has used 128 
filters of the size 2x2, creating the same number of output 
images of the size 64x64 reduced do 32x32 after MAX 
pooling. 

 The second layer has reduced the size of images to 
8x8 (after convolution and MAX pooling) and the number of 
output images was increased to 256.  

The third convolution followed by the MAX pooling layer 
produced 256 images of the size 2x2 pixels. Every image 
was converted to the vector form and formed the 
concatenated vector of the length 1024, which performed 
the role of input attributes to the fully connected network 
(the dense connection between neurons) performing the 
role of final softmax classifier. 

The fully connected part of CNN has the structure: 
1024-64-3. The network was trained in the mode of softnet 
to recognize three classes of ECG beats. In the final 
scoring, both ARR and CHG represent the anomaly and 
NSR - the normal class. The learning algorithm was based 
on ADAM with the application of mini-batches of the size 
32. The experiments have been performed in Python. 
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Fig. 5 CNN structure used in experiments 
 

Numerical experiments 
Applied recognition systems 

The original ECG signals are split into 10-second 
interval frames and then CWT or DWT are applied. Such a 
split of data is suggested by the authors of the database 
and interprets results of anomaly detection resembling the 
way the medical experts do. The resulting wavelet 
coefficients were resized from 1024 to 128. Two types of 
experiments have been performed: 
 Application of discrete wavelet transformation to create 
a set of numerical descriptors defined based on statistics of 
all decomposition levels. Six levels of decomposition have 
been applied. The performed selection process assesses 
the class discrimination ability of each descriptor and the 
set of the descriptors of the highest discrimination ability 
form input attributes to the family of 9 classifiers. 
 The second set of experiments has been done at the 
application of continuous wavelet transformation. As a 
result of this transformation, the 1-dimensional ECG 
waveform is changed to the 2-dimensional data (images). 
These data are delivered in the form of tensor to the CNN 
network, which performs also the role of classifier 
[16,17,18]. In the case of CWT, the obtained images were 
directly supplied to the CNN network of the structure shown 
in Fig.5. This network is responsible for two tasks at the 
same time: the creation of diagnostic features and the final 
recognition of the class. 

In the case of DWT, the ECG signals transformed to 
wavelet coefficients were described by different statistical 
parameters. They include: variance, standard deviation, 
mean, median, 5th, 25th, 75th 95th percentile value, RMS 
value; skewness, kurtosis; zero-crossing rate (the number 
of times a signal crosses the level of y = 0), mean crossing 
rate, i.e. the mean value of the number of times of zero 
crossings within the 10-second interval frames [12]. 

These parameters were estimated for all 6 levels of the 
wavelet decomposition. The total number of descriptors 
created in this way was 78. Among these descriptors, there 
are many irrelevant, not well representing the particular 
class. Therefore, the selection process was needed to form 
a smaller number of diagnostic features, well correlated with 

a class. There are many different selection procedures 
developed in the past [12,13]. In this work, we have applied 
the method based on chi-squared statistics. The score from 
computed chi-squared between each feature and class was 
used to select top n the most important features. The 
importance is measured by the value of the test chi-squared 
statistic concerning the considered class.  

Different values of n have been tried in experiments and 
the selected quality measures of anomaly detection are 
depicted in Table 1. The results are presented for 
recognizing the abnormal cases and are limited to 
accuracy, sensitivity, and precision. Accuracy is the ratio of 
the number of true positive decisions of abnormal rhythms 
to the total number of rhythms, i.e. 

(4)            
TP

ACC
TP TN FP FN


  

 

where TP represents true positive, TN – true negative, FP – 
false positive, and FN – false-negative cases.  Precision is 
defined as the ratio of true positive to the total of true 
positive and false positive cases, i.e., 

(5)            
TP

PREC
TP FP




 

Sensitivity (called also recall) is the ratio of true positive to 
the sum of true positive plus false-negative cases. i.e., 

(6)             
TP

SENS
TP FN




 

Both abnormal beats have been jointed in one abnormal 
class and represented true positive cases. All normal beats 
represent the true negative in such a statement of the 
recognition problem. 
 

Results of DWT application  
Table 1 depicts the values of the presented above 

quality measures at four populations of selected diagnostic 
features: n=78 (maximum number of features), n=48, n=24, 
and n=12. The reduced number of features has been 
chosen as the set of the top important features indicated in 
the selection process [19]. 70% of the available data have 
been used in learning and the remaining 30% only in 
testing. The results of testing are given for different 
classifiers of the names shown in the upper row of the table. 
All experiments have been performed using Python and 
Keras libraries [18].  

The best results have been obtained at the application 
of an ensemble of classifiers named Extra Random Forest 
and using 24 of the best diagnostic features selected by chi-
squares statistics. In almost all cases the maximum number 
of descriptors used as input attributes was the least 
efficient. To the best classifiers belong random forest, K-
nearest neighbor, and SVM classifier. The SVM and K-
nearest neighbor classifiers happened to be the least 
sensitive to the number of input attributes. The least 
effective was the naïve Bayes classifier (irrespective of the 
number of input attributes).  

 

Results at CWT application 
The second set of experiments has been performed at 

the application of CNN and CWT. Table 2 presents the 
numerical results of abnormality detection. In this case, 
different types of mother wavelet and the different number 
of scales have been checked [19]. The results 
corresponding to different types of mother wavelets are 
differing. However, the best seems to be the Mexican hat 
wavelet function. These results have been obtained at the 
application of 128 scales in CWT transformation. The CNN 
network seems to be less efficient in comparison to DWT. In 
our opinion, the main reason is the too-small number of 
learning samples, especially those corresponding to CHG 
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and ARR. The other reason may be the not fully optimal 
structure of the CNN network, designed from the scratch. 
Future investigations will be directed to find the optimized 

number of convolution layers and their parameters, 
including the size and number of filters in each layer. 

 
Table 1 The results of numerical experiments at the application of DWT at the different number of diagnostic features for different 
implementation of the classification system.

Features selected 
Gradient 
boosting 

ADA 
classifier 

Extra 
Random 
Forests 

Random 
Forests 

SVM 
classifier 

Gaussian 
Process  

MLP with 
SGD 

KNN 
Naïve 
Bayes 

12 
ACC [%] 94.19 83.79 96.07 94.99 93.42 89.76 81.91 95.27 81.3 

PREC [%] 92.68 81.78 94.93 93.55 91.78 87.55 81.8 93.53 78.53 
SENS [%] 93.84 86.18 95.75 94.56 92.82 88.26 76.53 94.57 75.41 

 
24 

ACC [%] 95.12 90.18 97.78 97.61 95.82 92.61 84.5 97.37 80.05 
PREC [%] 95.09 88.56 97.54 97.13 94.28 91.54 81.42 96.3 73.92 
SENS [%] 93.49 89.62 97.20 96.49 94.44 90.34 81.09 96.07 72.32 

 
48 

ACC [%] 93.00 91.88 96.14 92.81 90.79 93.85 85.51 95.85 73.71 
PREC [%] 93.25 93.38 96.58 94.37 93.22 93.50 86.64 95.30 69.08 
SENS [%] 88.90 87.37 94.27 88.74 84.95 89.43 80.05 94.45 65.86 

 
78 

ACC [%] 92.61 92.10 94.27 91.40 90.18 94.08 88.97 96.32 50.65 
PREC [%] 90.53 90.20 94.78 92.70 93.51 94.67 89.50 96.03 70.95 
SENS [%] 91.18 89.47 91.29 86.80 84.71 91.06 84.54 95.11 52.28 

 

Table 2 The results of numerical experiments at the application of CNN and CWT at different types of wavelet mother function  

 
 
onclusions 
The paper has presented the application of wavelet 
transformation in recognition of anomaly in ECG 
waveforms. Two types of anomaly have been considered: 
the ARR and CHG. The results of wavelet transformation 
have been used as the source of the ECG waveform 
descriptor forms, either as vector  (DWT) or matrix (CWT). 

 In the case of DWT, the statistical parameters (mean, 
median, skewness, kurtosis, etc.) associated with each 
decomposition level have formed the initial set of potential 
diagnostic features. After the selection process was 
performed by the chi-square method, their number was 
significantly reduced and then the selected features have 
been applied as the input attributes to different types of 
classifiers.  

In the case of CWT, the ECG signals have been 
converted to images and these images formed the input to 
CNN performing at the same type the role of feature 
generation and selection, as well as the classification.  

The obtained results have shown the superiority of the 
DWT approach over CWT. The best results of the proposed 
methodology give an accuracy of 97.78% in anomaly 
detection, the sensitivity of 97.20%, and precision of 
97.54%. These results have been obtained for testing data 
(not taking part in learning) for the analyzed database of 
ECG. 
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Levels 16 32 64 128 
Wavelet ACC [%] PREC [%] SENS [%] ACC [%] PREC [%] SENS [%] ACC [%] PREC [%] SENS [%] ACC [%] PREC [%] SENS [%]
Gauss8 69.62 70.53 68.33 71.93 72.37 71.16 81.00 81.31 80.55 81.42 81.69 81.03 
Mex hat 72.96 73.47 72.19 75.98 76.38 75.57 80.16 80.51 79.81 82.06 82.28 81.51 
Morlet 72.16 72.58 71.32 75.15 75.63 74.83 77.27 77.76 76.43 80.00 80.46 79.55 


