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Analysis of Caputo-Fabrizio Operator Application for Synthesis 
of Fractional Order PID-controller  

 
 

Abstract. Using the representation of Caputo and Fabrizio, the influence of substitution in the linear model of a two-mass system of integer 
derivatives on fractional order derivatives is shown in this paper. So, the change of parameters of PID-controller of fractional order in comparison 
with classical PID-controller is analyzed. The influence of the use of PID-controller of fractional order on the transient characteristics of the system is 
demonstrated in the results of this paper.  
 
Streszczenie. Korzystając z reprezentacji Caputo i Fabrizio, ukazano wpływ zastąpienia pochodnych całkowitego rzędu w liniowym, modelu układu 
dwóch mas, pochodnymi ułamkowego rzędu. Przeanalizowano zmianę parametrów regulatora PID ułamkowego rzędu względem klasycznego 
regulatora PID. Zademonstrowano wyniki przedstawiające wpływ wykorzystania regulatora PID ułamkowego rzędu na charakterystykę przejściową 
układu. (Analiza wykorzystania operatora Caputo-Fabrizio w syntezie regulatora PID ułamkowego rzędu) 
 
Keywords: Caputo-Fabrizio operator, fractional order PID-controller, two mass system, fractional order derivatives. 
Słowa kluczowe: operator Caputo-Fabrizio, regulator PID ułamkowego rzędu, układ dwóch mas, pochodne ułamkowego rzędu. 
 
 

Introduction 
Today the industry is putting increasing demands on the 

quality and accuracy of regulation. The problem of 
synthesis of effective management is complicated as the 
presence of different types of nonlinearities and change 
system parameters during its operation. For these reasons, 
the use of traditional regulators, in particular, PID-
controllers, does not always provide highly effective 
regulation and therefore there is a need to find new 
approaches. 

 Methods of nonlinear control theory, such as back-
stepping [1], feedback linearization [2], passivity base 
control [3] due to their complexity are not widely used in 
industry 

At the same time, many publications on the use of 
fractional order regulators in technical systems 
demonstrates their advantages over classical regulators.  

Such, in particular, papers on two- and three-mass 
systems and control systems for flexible and mobile works 
[4-7]. The actual problem is and synthesis regulators PIλDμ 
[8-11], which in turn is associated with having a more 
synthesized settings, and the ability to use various functions 
for approximating the Laplace transform of the derivative or 
integral fractional order. 

 Along with solving control problems, the use of 
fractional derivatives to describe processes in electric 
machines, in particular with permanent magnets, and 
systems with semiconductor converters is promising, as 
shown in [12-15]. 

Traditionally, until recently, in most cases, to describe 
the fractional derivative in the electromechanical converters 
models developing or the controllers synthesis used the 
representation of Caputo: 

(1) ஼ܦఈ݃ሺݐሻ ൌ
ଵ

௰ሺଵିఈሻ
∙ ׬ ሺݐ െ ߬ሻିఈ ∙ ሶ݃ ሺ߬ሻ ݀߬,

௧
଴  

and to describe the fractional integral - the representation of 
Riemann-Liouville: 

(2)    ோ௅ܫఈ݃ሺݐሻ ൌ
ଵ

୻ሺఈሻ
∙ ׬ ሺݐ െ ߬ሻఈିଵ ∙ ݃ሺ߬ሻ ݀߬.

௧
଴  

In the case of a generalized integro-differential 
operator of fractional order, obtained form: 

ఈܦ      (3) ்
ఊݔሺݐሻ ൌ

ە
۔

׬ۓ ሻߛܴ݁ሺ						ሺ߬ሻ݀߬ఊݔ ൏ 0
௧
଴

ሻߛܴ݁ሺ															ሻݐሺݔ ൌ 0
ௗം ௫ሺ௧ሻ

ௗ௧ം
											ܴ݁ሺߛሻ ൐ 0

 

where ߙ, T  - top and bottom limits.  
When using the Laplace operator under zero initial 

conditions it turns out: 

൛ܮ    (4) ఈܦ ்
ఊݔሺݐሻ; ൟݏ ൌ  .ሻݏఊܺሺݏ

To approximate the fractional derivative sγ when 0 < γ <1 
by integer operator, one of the most commonly is to use the 
Oustaloup approximation: 

ఊݏ   (5) ൎ ߱௛
ఊ ∏ ௦ାఠೖ

ᇲ

௦ାఠೖ

ே
௞ୀଵ  

where  ߱௞
ᇱ ൌ ߱௖ ሺ

ఠ೎
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ሻ
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ଶே
, ߱௞ ൌ ߱௖ ሺ

ఠ೎
ఠ೐
ሻ
ଶ௞ିଵାఊ

ଶே
, γ – 

the order of the fractional derivative, N – the order of 

approximation; (ωୣ ,ω୦ ሻ – frequency range. 
 This approximation does not always adequately reflect 
the fractional order derivative in the whole frequency range. 
Results that are more accurate obtained using the modified 
Oustaloup approximation: 

ఊݏ ൎ ቆ
݀ ∙ ߱௞௡

ܾ
ቇ
ఊ

ቆ
݀ ∙ ଶݏ ൅ ܾ ∙ ߱௡ ݏ
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ᇱ
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ே
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where  0 < γ <1, γ – the order of the fractional derivative, N 

–  the order of approximation; (ωୣ ,ω୦ ሻ – frequency range: 

߱௞
ᇱ ൌ ߱௘ ሺ

ఠ೙
ఠ೐
ሻ
ଶ௞ିଵାఊ

ଶே
  , ߱௞ ൌ ߱௘ ሺ

ఠ೙
ఠ೐
ሻ
ଶ௞ିଵାఊ

ଶே
. 

In this case are recommended parameters in value b=10, 
d=9. 

As noted in [16] inuse proposed approach causes some 
difficulties at the stage of synthesis control actions and the 
analysis of systems in the time domain. 

In [17] Caputo and Fabrizio proposed a representation 
of a fractional derivative of order 0 < α < 1 in the form: 

(6)       ஼ிܦఈ݃ሺݐሻ ൌ
ሺଶିఈሻ∙ெሺఈሻ

ଶ∙ሺଵିఈሻ
∙ ׬ ݁

షഀ∙ሺ೟షഓሻ
భషഀ ∙ ሶ݃ ሺ߬ሻ ݀߬

௧
଴  

which is obtained from the Caputo representation by 

replacing the kernel ሺݐ െ ߬ሻିఈ on  ݁
షഀ∙ሺ೟షഓሻ

భషഀ , and 1/Γ(α) on 
1
ඥ2 ∙ ߨ ∙ ሺ1 െ ଶሻ൘ߙ , and when ܯሺߙሻ normilized factor, which 

depends on α.   
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 In [18] is shown, that ܯሺߙሻ ൌ 2
ሺ2 െ ሻൗߙ  and then 

fractional order representation when order is in average 
0 < α < 1 is described by equation: 

(7)         ஼ிܦఈ݃ሺݐሻ ൌ
ଵ

ሺଵିఈሻ
∙ ׬ ݁

షഀ∙ሺ೟షഓሻ
భషഀ ∙ ሶ݃ ሺ߬ሻ ݀߬.

௧
଴  

The fractional integral can be represented as [19]: 

஼ிܫఈ݃ሺݐሻ ൌ ሺ1 െ ሻߙ ∙ ݃ሺݐሻ ൅ ߙ ∙ න ݃ሺ߬ሻ ݀߬
௧

଴
 

or [20]: 
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1
ߙ
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௧

଴
 

 Laplace transforms are often used to analyze systems 
with fractional derivatives [21,22]. In the case of the Caputo-
Fabrizio operator using, we obtain (8): 

ࣦሺ஼ிܦఈ݃ሺݐሻሻ ൌ
1

1 െ ߙ
∙

1

ݏ ൅
ߙ

1 െ ߙ
൫ݏ ∙ ሻݏሺܩ െ ݃ሺ0ሻ൯ 

ൌ
ଵ

௦∙ሺଵିఈሻାఈ
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ࣦሺ஼ிܫఈ݃ሺݐሻሻ ൌ
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ఈ
∙
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ഀ
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ଵ

ఈ∙௦ାଵିఈ
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or 

(8)  ࣦሺ஼ிܫఈ݃ሺݐሻሻ ൌ ሺ1 െ ሻߙ ∙ ሻݏሺܩ ൅
ఈ

௦
∙  .ሻݏሺܩ

So, the Caputo-Fabrizio operator applying open 
possibility to represent integer derivative of the fractional 
derivative and integral as a result of Laplace transform. This 
avoids approximation of the fractional derivative sα and 
integral s-α and thus provide leeway to in modeling 
processes and synthesis control systems.  

In [23, 24] it is noted about the limited application of the 
Caputo-Fabrizio and other operators with a non-singular 
kernel for the study of systems, in particular the need to 
fulfill the condition f (0) = 0, which follows from the (9): 

 (9)      ஼ிܦ଴
ఈൣ ଴ܬ

ఈ݂ሺݐሻ஼ி ൧ ൌ ݂ሺݐሻ െ ݌ݔ݁ ቀെ
ఈ

ଵିఈ
ቁݐ ݂ሺ0ሻ. 

This remark is not critical in solving the problem of 
control influence synthesis, because in classical control 
theory for the control systems synthesis traditionally use 
models in increments of variables and do not take into 
account the initial conditions.  

Similarly, the initial conditions are assumed to be zero 
when using the Oustaloup approximation. And the 
possibility of transition to the model with integer derivatives 
allows to apply the classical methods of control effects 
synthesis without transforming to the frequency domain and 
applying the approximations required when using operators 
with a singular kernel to describe the derivative of the 
fractional order. 

 

Aim and baseline of the research 
In the traditional theory of automatic control, the PID-

controller when using a parallel circuit is described by an 
equation (10) [25]: 

ሻݏሺݑ  (10) ൌ ݇௣_௖௟ ∙ ቆ1 ൅
ଵ

ఛ೔೎೗∙௦
൅

ఛ೏೎೗∙௦
ഓ೏೎೗
ಿ

∙௦ାଵ
ቇ ∙ ݁ሺݏሻ									 

where e - the error of the mismatch between the input and 
the output signals of the control circuit, u(s) - the controller 
output signal; kp_cl, I_cl, d_cl - controller parameters; 
N = 2 ÷ 20 and is often taken as equal 10. 

For the fractional PID-controller, the equation (11) 
describing its operation: 

ሻݐሺݑ      (11) ൌ ݇௣ ∙ ݁ሺݐሻ ൅ ݇௜ ∙ ሻݐఓ݁ሺܫ ൅ ݇ௗ ∙  ,	ሻݐఈ݁ሺܦ

and when using an operator with a non-singular kernel, in 
particular Caputo-Fabrizio, the following equations for the 
frictional order PID-controller are obtained as: 

ሻݏሺݑ ൌ ݇௣ ∙ ݁ሺݏሻ ൅ ൬݇௜ ∙ ሺ1 െ ሻߤ ൅
݇௜ ∙ ߤ
ݏ

൰ ∙ ݁ሺݏሻ ൅ 

൅

݇ௗ
ߙ ∙ ݏ

1 െ ߙ
ߙ ∙ ݏ ൅ 1

∙ ݁ሺݏሻ 

or  

ሻݏሺݑ ൌ ݇௣ ∙ ݁ሺݏሻ ൅
݇௜

ߤ ∙ ݏ ൅ ሺ1 െ ሻߤ
∙ ݁ሺݏሻ ൅ 

൅

݇ௗ
ߙ ∙ ݏ

1 െ ߙ
ߙ ∙ ݏ ൅ 1

∙ ݁ሺݏሻ 

Block diagrams of regulators are shown in fig. 1 and 2. 

 

 
Fig.1. Block diagram of the fractional order regulator for which the 
integral component obtained on the basis of the Laplace image of 
the fractional order derivative using the Caputo-Fabrizio operator. 
 

 
Fig.2. Block diagram of the fractional order PID-controller obtained 
using an integrated operator with a non-singular core [20]. 
 

For the structure, which is shown in Fig. 1, the equation 
can be written as follows: 

ሻݏሺݑ ൌ ቀ݇௣ ൅ ݇௜ ∙ ሺ1 െ ሻቁߤ  ݔ

ݔ ቌ1 ൅
ଵ

ೖ೛శೖ೔∙ሺభషഋሻ

ೖ೔∙ഋ

∙
ଵ

௦
൅

ೖ೏

ഀ∙൬ቀೖ೛శೖ೔∙ሺభషഋሻቁ൰
∙௦

భషഀ
ഀ
∙௦ାଵ

ቍ ∙ ݁ሺݏሻ  

 
Then, by analogy with the classic PID-controller, we obtain 
(12): 

ሻݏሺݑ      (12) ൌ ݇௣∗ ∙ ൭1 ൅
ଵ

ఛ೔
∗∙௦
൅

ఛ೏
∗ ∙௦

ഓ೏
∗

ಿ
∙௦ାଵ

൱ ∙ ݁ሺݏሻ,		 

where	݇݌
∗ ൌ ݌݇ ൅ ݇݅ ∙ ሺ1 െ ሻ, ߬௜ߤ

∗ ൌ
௞೛ା௞೔∙ሺଵିఓሻ

௞೔∙ఓ
, 

           ߬ௗ
∗ ൌ

௞೏
ఈ∙ቀ௞೛ା௞೔∙ሺଵିఓሻቁ

	,				
ଵିఈ

ఈ
ൌ

ఛ೏
∗

ே
. 

Thus, for the synthesis of the fractional controller it 
becomes possible to use the methods of classical PID -
controller synthesis. 
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 For example, in the case of PID control adjustment 
methods, in particular such as Ziegler-Nichols’; Chien, 
Hrones and Reswick; Tyreus-Luyben, to determine the 
parameters of the fractional controller, we obtain the 
following system of equations (13): 

(13)                   

ە
ۖۖ
۔

ۖۖ
ۓ
݇௣ ൅ ݇௜ ∙ ሺ1 െ ሻߤ ൌ ଵߚ ∙ ݇௨
௞೛ା௞೔∙ሺଵିఓሻ

௞೔∙ఓ
ൌ ଶߚ ∙ ௨ܶ										

௞೏
ఈ∙ቀ௞೛ା௞೔∙ሺଵିఓሻቁ

ൌ ଷߚ ∙ ௨ܶ

ଵିఈ

ఈ
ൌ

ఉయ
ே
∙ ௨ܶ

							 

where β1, β2, β3 – parameters that depend on the selected 
method of the PID-controller adjusting, ku and Tu – the factor 
of the proportional controller, at which the system occurs 
steady-state oscillations and the period of these oscillations, 
respectively. 

From (13) we will received equation 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
௣݇ۓ ൌ ଵߚ ∙ ݇௨ ∙ ൬1 െ

1 െ ߤ
ଶߚ ∙ ௨ܶ ∙ ߤ

൰

݇௜ ൌ
ଵߚ ∙ ݇௨
ଶߚ ∙ ௨ܶ ∙ ߤ

݇ௗ ൌ
ଵߚ ∙ ଷߚ ∙ ݇௨ ∙ ௨ܶ

1 ൅
ଷߚ
ܰ ∙ ௨ܶ

ߙ ൌ
1

1 ൅
ଷߚ
ܰ ∙ ௨ܶ

 

 On the other hand, in the fractional order PID-controller 
at the same settings as the classic PID-controller, an 
additional signal is generated. Writing the equation for the 
PID-controller in the form (14): 

ሻݏሺݑ   (14) ൌ ቀ݇௣ ൅ ݇௜ ∙ ሺ1 െ ሻቁߤ ∙ ቆ1 ൅
ே∙
భషഀ
ഀ
∙௦

భషഀ
ഀ
∙௦ାଵ

ቇ  ݔ

ሻݏሺ݁	ݔ          ൅
௞೔∙ఓ

௦
∙ ݁ሺݏሻ 

We could use ௙ܶ ൌ
ଵିఈ

ఈ
, and also, after simplification – 

get equation (15)  

ሻ࢙ሺ࢛ ൌ ቀ݇௣ ൅ ݇௜ ∙ ሺ1 െ ሻቁߤ ∙
ሺேାଵሻ∙்೑∙௦ାଵ

்೑∙௦ାଵ
∙ ݁ሺݏሻ ൅

௞೔∙ఓ

௦
∙

݁ሺݏሻ ൌ ݇௣ ∙
ሺேାଵሻ∙்೑∙௦ାଵ

்೑∙௦ାଵ
∙ ݁ሺݏሻ ൅ ݇௜ ∙ ሺ1 െ ሻߤ ∙

ሺேାଵሻ∙்೑∙௦ାଵ

்೑∙௦ାଵ
∙

݁ሺݏሻ ൅
௞೔
௦
∙ ݁ሺݏሻ െ

௞೔∙ሺଵିఓሻ

௦
∙ ݁ሺݏሻ ൌ ݇௣ ∙

ሺேାଵሻ∙்೑∙௦ାଵ

்೑∙௦ାଵ
∙ ݁ሺݏሻ ൅

௞೔
௦
∙ ݁ሺݏሻ ൅ ݇௜ ∙ ሺ1 െ ሻߤ ∙ ൬

ሺேାଵሻ∙்೑∙௦ାଵ

்೑∙௦ାଵ
െ

ଵ

௦
൰ ∙ ݁ሺݏሻ ൌ

ሻ࢙ሺ࢒ࢉ࢛ ൅   ሻ࢙ሺ࢛∆
 

ሻݏሺݑ										   (15) ൌ ሻݏሺ݈ܿݑ ൅  ሻݏሺݑ∆
 
where 

ሻݏ௖௟ሺݑ					  ൌ ݇௣ ∙
ሺேାଵሻ∙்೑∙௦ାଵ

்೑∙௦ାଵ
∙ ݁ሺݏሻ ൅∙

௞೔
௦
∙ ݁ሺݏሻ  component, 

that corresponds to the classic PID-controller, 

ሻݏሺݑ∆ ൌ ݇௜ ∙ ሺ1 െ ሻߤ ∙ ൬
ሺேାଵሻ∙்೑∙௦ାଵ

்೑∙௦ାଵ
െ

ଵ

௦
൰ ∙ ݁ሺݏሻ – the extra 

signal that corresponds to the fractional PID-controller. 
 This additional signal ∆u(s) can be represented as: 

ሻݏሺݑ∆ ൌ ݇௜ ∙ ሺ1 െ ሻߤ ∙
ሺேାଵሻ∙்೑∙௦

మା൫ଵି்೑൯∙௦ିଵ

൫்೑∙௦ାଵ൯∙௦
∙ ݁ሺݏሻ ൌ ݇௜ ∙

ሺ1 െ ሻߤ ∙
ሺ௦ା௣భሻ∙ሺ௦ି௣మሻ

൫்೑∙௦ାଵ൯∙௦
∙ ݁ሺݏሻ, 

where  

ଵ݌ ൌ
1
2
∙
1 െ ௙ܶ ൅ ට4 ∙ ܰ ∙ ௙ܶ ൅ ൫1 ൅ ௙ܶ൯

ଶ

ሺܰ ൅ 1ሻ ∙ ௙ܶ
, 

ଶ݌ ൌ
1
2
∙
௙ܶ െ 1 ൅ ට4 ∙ ܰ ∙ ௙ܶ ൅ ൫1 ൅ ௙ܶ൯

ଶ

ሺܰ ൅ 1ሻ ∙ ௙ܶ
. 

In a further signal Δu(s) appear unstable component of 
zero.  

Effect of change µ on the system transient characteristic 
with a fractional PID-controller in a close-loop control 
system of a dynamic object with a transfer function  

ܹሺݏሻ ൌ
1

12 ∙ ଶݏ ൅ 0.3 ∙ ݏ ൅ 1
 

at the controller settings kp = 2.1, ki = 0.49 and Tf = 0.125 are 
shown in Fig. 3a.  
 The Bode diagram and phase frequency characteristic 
of the fractional  PID-controller when changing the 
parameter µ are given in fig. 3b. 
 

 
a) 

 

 
b) 

Fig. 3. Effect of parameter µ changing on transient characteristic of 
system and frequency characteristics in case of the fractional 
controller  
 

In the case of the fractional order PID-controller, (block 
diagram in Fig. 2), we obtain transfer function: 

ܹሺݏሻ ൌ ௉ܭ ൅

஽ܭ
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ூܭ
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ܹሺݏሻ ൌ
௉ሺܭൣ ௙ܶଵ ௙ܶଶݏଶ ൅ ൫ ௙ܶଵ൅ ௙ܶଶ൯ݏ ൅ 1ሻ൧

൫ ௙ܶଵݏ ൅ 1൯൫ ௙ܶଶݏ ൅ 1൯
 

൅

ூܭ
1 െ μ ൫ ௙ܶଵݏ ൅ 1൯ ൅

஽ܭ
ߙ ൫ݏ ௙ܶଶݏ ൅ 1൯

൫ ௙ܶଵݏ ൅ 1൯൫ ௙ܶଶݏ ൅ 1൯
. 

 

And we can rewrite 

ܹሺݏሻ ൌ
௉ܭଶሺݏ ௙ܶଵ ௙ܶଶ ൅

஽ܭ
ߙ ௙ܶଶሻ ൅ ௉ܭ ൅

ூܭ
1 െ μ

൫ ௙ܶଵݏ ൅ 1൯൫ ௙ܶଶݏ ൅ 1൯
 

൅ݏ൫ܭ௉ሺ ௙ܶଵ ൅ ௙ܶଶ൯ ൅
஽ܭ
ߙ
൅

ூܭ
1 െ μ ௙ܶଵሻ 

where ௙ܶଵ ൌ
ଵିఈ

ఈ
  ;  ௙ܶଶ ൌ

ஜ

ଵିஜ
. 

  

After we input   

஽ܭ
∗ ൌ ሺܭ௉ ௙ܶଵ ௙ܶଶ ൅

஽ܭ
ߙ ௙ܶଶሻ 

ூܭ
∗ ൌ ௉ܭ ൅

ூܭ
1 െ μ

 

௉ܭ
∗ ൌ ௉൫ܭ ௙ܶଵ ൅ ௙ܶଶ൯ ൅

஽ܭ
ߙ
൅

ூܭ
1 െ μ ௙ܶଵ, 

the transfer function can be rewritten as (16): 

(16)   ܹሺݏሻ ൌ
ଵ

൫்೑భ௦ାଵ൯
ሺܭ஽

∗ ∙ ଶݏ ൅ ௉ܭ
∗ ∙ ݏ ൅ ூܭ

∗ሻ ∙
ଵ

൫்೑మ௦ାଵ൯
. 

 It’s corresponding known digital control theory in 
differential form submission PID-controller and connected in 
series with it filters high and low frequencies. The above 
transfer function can also be represented as: 

ܹሺݏሻ ൌ
ݏ

൫ ௙ܶଵݏ ൅ 1൯
൬ܭ஽

∗ ∙ ݏ ൅
ூܭ
∗

ݏ
൅ ௉ܭ

∗൰ ∙
1

൫ ௙ܶଶݏ ൅ 1൯
 

 From this transfer function, we can select parts, which 
corresponds to the series connection of the real 
differentiator, PID-controller and low-pass filter (Fig. 5).  

 Such a structure (see Fig. 4) can be interpreted as a 
PID- controller by the derivative of the discrepancy with the 
intensity determiner. 

 
 
Fig. 4. Block diagram of the fractional order PID-regulator. 
 

 Taking into account that  

௙ܶଵ ൅ ௙ܶଶ ൌ
1 െ ߙ
ߙ

൅
μ

1 െ μ
ൌ
ሺ1 െ ሻሺ1ߙ െ μሻ ൅ μߙ

ሺ1ߙ െ μሻ
 

we obtain the dependences of the change of coefficients on 
the orders of fractional integration and differentiation: 

௉ܭ
∗

ൌ
௉ܭ ∙ ൫ሺ1 െ ሻߙ ∙ ሺ1 െ μሻ ൅ ߙ ∙ μ൯ ൅ ஽ܭ ∙ ሺ1 െ μሻ ൅ ூܭ ∙ ሺ1 െ ሻߙ

ߙ ∙ ሺ1 െ μሻ
 

஽ܭ
∗ ൌ

௉ܭ ∙ ሺ1 െ ሻߙ ∙ μ ൅ ஽ܭ ∙ μ
ߙ ∙ ሺ1 െ μሻ

, ூܭ
∗ ൌ ௉ܭ ൅

ூܭ
1 െ μ	

. 

 Similarly, as for the structure of the fractional order PID- 
controller (is shown in Fig. 1), we investigate the effect of 
the change µ on the transient characteristic (Fig. 5a) and 
the frequency characteristics (Fig. 5b) of the fractional order 

PID-controller,  the  block  diagram  of which is shown in 
Fig. 4.  

 These results allow us to state that the characteristics of 
the controller significantly depend on the chosen operator to 
describe the integral of the fractional order. 

 
a) 

 
 

b) 
Fig. 5. Effect of parameter µ changing on transient characteristic of 
system and frequency characteristics in case of the fractional 
controller  
  

 One of the advantages of the fractional order PID-
controller, as shown in [26], is the greater number of 
debugging parameters compared to the classic PID-
controller. In addition to the gain of the proportional, 
differential and integral components, there are two 
additional parameters, in particular – the order of the 
fractional integrator μ and the order of the fractional 
differentiator λ.  This leads to the solution of the 
optimization problem in five-coordinate space. When using 
the operator Caputo-Fabrizio and the implementation of the 
fractional integral in accordance with [19], given that  

߬ௗ
∗ ൌ

݇ௗ

ߙ ∙ ቀ݇௣ ൅ ݇௜ ∙ ሺ1 െ ሻቁߤ
ൌ ܰ ∙

1 െ ߙ
ߙ

						 

and from which we obtained  

݇௣ ൅ ݇௜ ∙ ሺ1 െ ሻߤ ൌ
݇ௗ

ܰ ∙ ሺ1 െ ሻߙ
 

the equation for determining the output signal of the 
fractional order PID-controller will given as (17): 
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1 െ ߙ
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ݏ
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௦
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and the number of parameters for the settings is similar to 
the classic PID-controller.  
 
 At the same time the appropriate settings  ݇௣_௖௟ ൌ
௞೏∙൫ଵା்೑൯

ே∙்೑
        and          ݇௜_௖௟ ൌ ݇௜

∗	of the classical regulator, 

it is possible to provide in system control signal which is 
realized by the adjusted fractional order regulator. 
 

 
Fig. 6. Block diagram of the PID- controller with „anti wind-up” 
block. 

 
a) 

 
b) 

Fig. 7. Transients of the different type of PID-controller (____ -  
fractional PID-regulator according to the scheme of fig. 1; _ _ _  - 
classic PID- controller; ......... - fractional PID-controller according to 
the scheme of fig. 2) and for two cases (a - when   µ=0.6, b – when 
µ=0.9) 
 

 In control systems with a PID-controller, the output 
signal is traditionally limited to such level. At the same time, 
the task of eliminating integration becomes relevant. One of 
the traditional approaches to avoid integration (anti wind-up) 
is shown in Fig. 6. 
 It should be noted that this problem does not arise in the 
fractional order PID-controller (Fig. 2).  
 In fig. 7-8 transient characteristic for different cases of 
PID-regulator are shown.  
 There are the dependences of the change of the output 
signal of the system, and in Fig. 8 - changes in the integral 
component of the classical and fractional regulators, when 
setting the limit on the control signal  ± 1. 
 Changing the parameter µ fractional order PID-controller 
of type 1 with the adjustment of the gain of the proportional, 
differential and integral components corresponding to the 
classical controller, provides additional opportunities to 
improve system performance. A similar change in the 
parameter µ fractional order PID-controller of type 2 
provides a reduction in oscillation and, thus, reduce the 
control time. 
 

 
a) 

 
b) 

 
Fig. 8. Transients of the different type of PID-controller and by 
block of sigmal limitation (____ -  fractional PID- controller 
according to the scheme of fig. 1; _ _ _  - classic PID- controller; 
......... - fractional PID-regulator according to the scheme of fig. 2.) 
and for two cases (a - when   µ=0.6, b – when µ=0.9) 
  
The obtained dependences of the output coordinate 
changing demonstrate that in the control systems with 
output signal limitation of the PID-controller, the advantages 
of the fractional order controller are somewhat leveled.  
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 At the same time in the system with the fractional order 
PID-regulator that is shown by block diagrams (Fig. 2) the 
quality of transients is slightly deteriorating. 
 
Conclusions 
 The use of the Caputo-Fabrizio operator to 
representation fractional derivatives and integrals after 
Laplace transforming provides product with integer 
derivatives and integrators after application. It is, 
respectively, simplifies the synthesis of control effects and 
analysis of system behavior.  
 The use of fractional derivatives in linear models of a 
two-mass system is equivalent to changing individual 
parameters of the model and is not appropriate. 
  The use of fractional PID-controller with the 
adjustment of the coefficients corresponding to the classical 
controller when changing the parameter µ improves the 
characteristics of the system. 
 The classic PID controller is a partial case of the 
fractional PID-controller and, at the same time, at certain 
settings of parameters can reproduce work of the fractional 
PID-controller. 
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