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A study of nonlinear processes in space plasmas 
 
 

Abstract. In this article, readers are invited to explore the world of computational simulations of space plasmas. The computational experiment is 
similar to the traditional laboratory experiment. Neither can it, nor will it be able to solve all the physical problems that remain poorly understood, but 
it does provide a powerful tool to help physicists (scientists) seek solutions for them. We show first that when the Courant-Friedrich-Lewy or CFL 
condition is not met, numerical instability occurs. We also present simulations of electrostatic solitary waves (ESWs). We note that ESWs can be 
generated as a result of the nonlinear coalescence of strong electrostatic waves excited by electrostatic beam instability. This instability is caused by 
the drift of a beam of electrons relative to ions and other electrons drifting with the ions. The ion thermal velocity must be high enough to prevent the 
decay of electrostatic waves to ion acoustic waves, a prerequisite for the production of ESWs. Another condition is that the drift density of the 
electron beam with respect to the ions must be 30% greater than plasma density. 
 
Streszczenie. W artykule przedstawiono  symulację plazmy kosmicznej. Tradycyjny eksperyment obliczeniowy nie może, ani nie będzie w stanie 
rozwiązać wszystkich problemów fizycznych, które pozostają słabo poznane, ale zapewnia narzędzie pomagające fizykom w poszukiwaniu ich 
rozwiązania. Najpierw pokazujemy, że gdy warunek Couranta-Friedricha-Lewy'ego lub CFL nie jest spełniony, występuje niestabilność numeryczna. 
Przedstawiamy symulacje elektrostatycznych pojedynczych fal (ESW). Zauważamy, że ESW mogą być generowane w wyniku nieliniowej 
koalescencji silnych fal elektrostatycznych wzbudzanych przez niestabilność wiązki elektrostatycznej. Ta niestabilność jest spowodowana 
dryfowaniem wiązki elektronów względem jonów i innych elektronów dryfujących wraz z jonami. (Badanie procesów nieliniowych w plazmach 
kosmicznych) 
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1.Introduction 
Traditionally, the scientific method involves mutual 

interpretation between laboratory experiments and theories. 
In the laboratory, experiments are made several times in a 
controlled way, allowing the scientist to observe the 
behavior of the system and the most appropriate physical 
description to explain the phenomenon under study. For 
several years, theories have been successfully developed 
in this way. In recent decades, with advances in technology, 
another type of experimentation has been devised to help 
scientists model the complex form of phenomena that 
govern the laws of nature. 

The computational experiment helped bridge the gap 
between theory and laboratory experiments. The basic idea 
of a computational experiment is to simulate in a controlled 
way the physical behavior of a complex system by solving a 
set of mathematical equations based on a fundamental 
physical-mathematical model well accepted by the scientific 
community. 

Although similar to traditional laboratory techniques in 
which the physical parameters have been changed in a 
controlled way, computational experiments provide certain 
advantages in helping obtain detailed information about the 
system: Diagnoses are non-invasive, i.e. they do not disrupt 
the system. Physical effects may or may not be taken into 
consideration, making it possible to identify which is the 
most important causative agent for an observed 
phenomenon and, above all, the experiments can be 
reproduced in the same way, without being impacted by 
external agents. They also have the advantage of allowing 
the study of linear, non-linear and time-dependent 
phenomena. Usually, in traditional experiments, obtaining 
diagnoses disrupts the system under study. 

The wider the gap between theory and design, the 
greater the benefits of computational design. In space, 
experiments are conducted through satellite observations, 
active experiments in space, and active and passive 
measurements of the Earth. Gaining information from these 
experiments is very costly and time consuming. Due to the 
complexity of the phenomena that occur in space plasmas 
and the difficulty of obtaining on-site information, often only 
in one single region of space, the results of these 

observations can lead to misinterpretation and non-
understanding of the phenomenon. In some cases, 
computational experiments can globally reproduce certain 
phenomena that could not be treated analytically or 
experimentally. 

The complex nature of the problems encountered in 
space plasma Physics has triggered the interest in and the 
devising of codes for the development of space theories on 
plasma. In addition, numerical simulations also contribute in 
the development of high performance computer systems 
and behavioral predictions of new plasma physics 
equipment and experiments, such as controlled 
thermonuclear fusion reactors (Tokamak) and others. 
Traditionally, the study of complex physical phenomena 
relies on two complementary approaches: the theoretical 
approach and the experimental approach, two very powerful 
techniques with however significant intrinsic limitations. 
Great advances in physics have come from the combination 
of these two approaches. 

The experimental approach consists in observing the 
behavior of the physical environment that we wish to study 
after having disrupted it in a controlled way. This method 
turns out to be difficult in the case of very large-scale 
physical phenomena (space plasmas) where observations 
are limited to measuring the response of the environment to 
uncontrolled and most often unknown disturbances. The 
measurement points obtained are punctual and do not yield 
a precise and full representation of certain phenomena. 

The theoretical approach is based on the use of 
analytical techniques to determine the behavior of a system. 
This approach uses simplifying assumptions: 

- Limited number of parameters; 
- Symmetry research; 
- Use of a simple theory in the form of linear expansions 

and / or series expansions. 
Important advances in Physics have originated from the 

combination of these two approaches. However, the 
success of these approaches must be tempered due to the 
existence of systems for which experimentation is difficult 
and which consist of a large number of degrees of freedom 
whose analytical treatment is unpractical. 

As most of the interesting natural physical phenomena 
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correspond to this category, we opted to study them 
through numerical simulation. 

This method is based on the postulate that the physical 
laws used describe reality and can be formulated 
mathematically. These characteristics are summarized as 
follows: 

- Modeling of the theory or the environment to be 
validated; 

- Use of basic principles; 
- Full control of system parameters; 
-Taking into account all phenomena, be they linear or 

non-linear. 
Numerical simulation is therefore a very powerful 

analytical tool, but it is only justified as a bridge between 
theory and experimental observation. 

Computational plasma simulation includes two broad 
areas of activity, one based on kinetic description and the 
other on the description of fluids.      

 

A. Fluid description  
In the fluid description [1, 2], we are interested in the 

evolution of plasma volumes, small when compared to the 
size of the system but containing a very high number of 
particles (see Fig.1). The observables are macroscopic 
mechanical and electrodynamic quantities (averaged over 
small volumes, density, charge density, overall speed, 
temperature, kinetic energy density, current, etc.) whose 
evolution is followed. This type of simulation makes it 
possible to reproduce large-scale phenomena. This 
approach has inherent limitations, among which: 

- The introduction of transport coefficients; 
- The obligation to follow Maxwellian functions. 
 

B. Kinetic description  
description [2], we directly take into account the 

fundamental forces acting on each particle (gravitation, 
Lorentz force, etc.). This approach is carried out either by 
numerically solving the Vlasov or Focker Planck equations 
(see Fig. 1), or by particle simulations which calculate the 
motion of a large number of particles interacting with one 
other and with electromagnetic fields. This description is 
used when the distribution function deviates from the 
Maxwellian distribution (wave-particle interaction, shock 
waves). Using the basic principles allows the study all 
aspects, whether linear or non-linear. This approach seems 
the simplest and the most complete but it encounters 
implementation problems which limit the scope of its 
validity. 

There are so-called hybrid simulations [3, 4] which take 
into account the advantages of both descriptions, fluid 
(large-scale phenomena: electrons and cold electrons) and 
kinetic (microscopic phenomena), by treating certain 
components of the plasma as fluid while others are 
processed kinetically. Such an approach requires the 
introduction of phenomenological parameters that can 
introduce distortions in the physical results obtained.  

 

C. Use of a particle code 
Among the existing numerical models, the simplest from 

a conceptual point of view remains the particle code. In this 
type of model, we match each type of physical plasma 
particle to a simulated particle in the computer’s memory 
and all the interaction forces acting on each particle are 
calculated. Although this method appears to be easy, in 
practice it turns out to be complex due to the limitations of 
computing resources. Physically, ions and electrons are 
treated in most cases as point charges. Some reactions 
between these particles develop over short distances in 
short intervals of time. The most important effects are long-
range interactions or collective effects which occur over 

much larger scales of time and space. The collective effects 
only take into account the interaction of a very large number 
of particles. To this effect, the concept of macro-particles 
has been introduced. Since computer resources do not 
allow all physical particles to be tracked individually, it is 
common to use digital particles known as super particles 
each having a statistical weight to represent a set of 
particles. 

The PIC (Particle-in-cell) method is considered to be the 
first method to have been developed historically for the 
simulation of Vlasov Maxwell or Vlasov Poisson equations. 

This method consists in coupling a particle method for 
Vlasov and a mesh method for Poisson or Maxwell. The 
principle of the method is to discretize the distribution 
function by a set of macro-particles representing at the 
initial moment a realization of the law of probability 
associated with the initial distribution function. These 
macro-particles are advanced in time by numerically solving 
their equation of motion in an electromagnetic field. 
Coupling with the field solver is done by calculating the 
sources, charge and current densities for Maxwell's 
equations using a regularization method. A classic field 
solver can be used. To continue the loop in time, the fields 
at the positions of the particles (Fig.2) must be calculated. 
The literature on this method is abundant [3, 5-7].     

 

D. Kinetic simulation model 
Kinetic simulations have been successfully applied in 

the treatment of basic physical problems in which the 
particle distribution function deviates considerably from the 
Maxwell distribution under stochastic heating, particle 
trapping or wave-particle resonance [2]. MHD simulations 
are generally applied to large-scale problems, directly 
related to the behavior of experimental devices or, for 
example, to the simulation of the global and dynamic 
structure of the magnetosphere on a large scale. In general, 
kinetic simulation models (like the one used in our work) 
follow the diagram shown in Fig.3), where we first 
determine the type of simulation and the approximations to 
be included in the model, the type of system under study 
(whether electrostatic or electromagnetic), geometry, initial 
conditions and boundary conditions. These last three are 
very important, as they will include all the physical 
conditions of the system under study, such as the region in 
which the system is located and the characteristics of that 
region. After having correctly determined the numerical 
model which best represents the physical system under 
study, the kinetic particle simulations use the solutions of 
Maxwell's equations, based on self-coherent sources 
(density and plasma currents) [4], generated by the position 
and velocity of the charged particles representing the 
plasma subjected to electromagnetic fields. During 
simulations, it is necessary to take into account the external 
fields and the fields generated by the movement of the 
charged particles themselves. Often, this process involves 
advancing the particles over a short period, or no time, ∆t, 
to collect the source terms used to calculate the fields.  

Once the new fields have been obtained, the particles 
can be moved again so that the source terms are updated 
and the process is repeated as many times as necessary. 
Basic scheme is (Fig.3). First step is to read the initial 
conditions, particle positions xi and velocities vi represented 
by sub index i = 1, 2, 3... Ntotal, where Ntotal is the maximum 
particle-size number of the system because calculation of 
charge density in mesh grid point depends on distance of 
particle from that point.  

In second step, some weighting has to be done because 
calculation of charge density in mesh grid depends on 
distance of distance of particle from that point. 
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Fig.1. Classification of simulation codes 
 

 
 
 
Fig.2.  Principle of Particle In Cell (PIC) method 
 
 

 
 
 
Fig.3.  Typical cycle of a time step in a simulation program, the 
particles are numbered by i = 1, 2, 3, ... Ntotal; the grid indices are     
indicated by j which represent vectors in 2 and 3 dimensions [3]. 
 

After obtaining charge densities we proceed with 
integration of field equations. The fields are obtained only in 
the spatial grid, discrete points of space represented by sub 
index j = 1, 2, 3 ... Ptotal where Ptotal is the number of points 
of the spatial grid.  Next, we weight how the field in 
individual grid point affects each particle. From the velocity 
and position of the particles, the charge and current 
densities in the spatial grid are calculated using a weighting 
function to calculate the electric and magnetic fields. The 
force used to move the particles is obtained by interpolation 
from the grid, again through the weighting function. The last 
step is integration of equation of motion and to accordingly 

change position and velocity of particles. This cycle is 
repeated throughout the simulation [2-8]. The simulation 
follows step by step ∆t, using the numerical method which 
guarantees sufficient stability and numerical precision. The 
time-step should be small compared to the wave period 
under study,   wp  ∆t << 1, where wp is the local frequency of 
the plasma. The time-step must be small enough to allow 
the observation of the variations of the phenomena under 
study. Usually, fields are calculated in the spatial grid from 
charge and current density. Accuracy requires that the grid 
spacing, ∆x for one-dimensional simulation, be small 
compared to the shortest wavelength of interest / worth 
considering, k ∆x << 1. Using an inadequate temporal and 
spatial grid may introduce false physical behavior in the 
system, minimized by choosing appropriate parameters for 
the simulation [2].  
 

2. Lagrangian formalism or Particle-in-Cell theory  
2.1. Basic equations 
    The most natural way to follow the 

 
(x,v) phase-space 

evolution of a plasma is to consider the evolution of each 
particle over time. In the absence of collisions, the trajectory 
equations are reduced to the following two equations: 
 

(1)                                       
v

dt

xd 


 

(2)                                      
a

dt

vd 


 
 

  The Lorentz force LF


 for a particle of mass m and charge q 

in an electromagnetic field (E,B)
 

 is written: 
 

(3)                  
)BvEq(FL




 
 

   Knowledge of the forces acting on the particles as well as 
of the impact of the initial conditions

 
0 0(x ,v )  entirely defines 

the trajectory of the particles over time. For a particle of 
mass m and charge q, the equation (2) is written as follows:  
 

(4)                           
)BvEq(

dt

vd
m




 
 

Where electric field E and magnetic field B have been 
introduced. Electric and magnetic fields are defined by the 
Maxwell equations given below : 
 

(5)                                   0ε

ρ
E 


 

(6)                                 0  B 


 

(7)                                t

B
E







 

(8)                                 t

E
εμJμB







000
 

 

  Coupling occurs between the positions of the particles on 
the one hand and the electric field that is itself coupled with 
the magnetic field on the other. 
 J ≡ (Jx, Jy, Jz), ρ, c, ԑ0 and µ0 are the current density, 
charge density, light speed, electric permittivity and 
magnetic permittivity respectively. ԑ0 and µ0 satisfy the 
relation: 
 

(9)                                   
200

1

c
με 
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2.2. One-dimensional electrostatic model 
Motion of computer particles is determined in two steps. 

From initial currents and charge densities we calculate 
electromagnetic field by using Maxwell’ equations. Then we 
use this field in Newton equation to move particles for a 
small distance accordingly. Then we recalculate the fields 
from new particle positions and charge density. We are 
repeating these two steps during all simulation and simulate 
particle movement in mean field surrounding them. Rather 
than to solve equations of motion and Maxwellian equations 
in continuous space and time, we divide the physical 
volume into cells by lines which run parallel to the 
boundaries . The intersections of these lines define set of 
points called mesh points or grid points (particle in cell 
simulation). In these points we calculate the charge fields 
and relative to these points, we move our particles.  Their 
space coordinates are continuous and then can occupy 
position anywhere within the mesh. 

 

2.3. Space-time discretization 
As mentioned previously, several methods have been 

developed to allow the numerical resolution of differential 
equations describing a physical system [9]. One of the most 
widely used methods to discretize differential equations is 
finite difference [9]. A good approximation for calculating the 
first derivative, df / dx, and the second derivative, d2f / dx2, 
of a function f varying continuously over an interval ∆x can 
be obtained from equations (10) and (11) using the finite 
difference method. 
 

(10)                           
   

2
11

x

ff

dx

df j-j




 

 

(11)                           
2

11
2

2 2

x

fff

dx

fd j-jj




 

 
 

   Figures (4) and (5) show the geometric diagram to obtain 
derivatives by using the finite difference method. In particle 
simulation, space and time must be discretized. The spatial 
discretization is introduced for two reasons. The first reason 
is due to the way the force acting on the particles is 
calculated [8], because instead of calculating the total 
contribution of the Coulomb force of all the particles, the 
force acting on a super particles is calculated by the field 
quantities defined at adjacent grid points. The second 
reason is that the super particles has a finite size over a 
certain region of space, so a spatial resolution less than the 
size of the super particles is unnecessary and meaningless 
[10]. Normally, the spatial grid spacing varies from one to 
three Debye lengths; this value has been obtained through 
numerical experiments [11, 12]. Numerical stability is 
directly related to this factor. If a spacing greater than three 
Debye lengths is chosen, numerical instability appears [8] 
and, therefore, the simulation results will have no physical 
significance. Another important factor is the number of 
particles per point in the grid. The higher the number of 
particles per point in the grid, the weaker the numerical 
fluctuations linked to the calculation of the electromagnetic 
fields. A more detailed study on numerical instability can be 
found in [13] and [14]. Temporal discretization is an 
inevitable technique in any numerical approximation to 
solve partial differential equations.  A question that always 
arises is what value to assign to the time step. The answer 
will be: always as small as possible. The choice of this 
value must be such that there is numerical stability during 
the simulation. A condition which avoids numerical 
instability and which is generally used in computer 
simulation is the Courant-Friedrich-Lewy (CFL) condition 
given by: 
 

(12)                               
tvx  max  

 
where ∆x is the spatial step, ∆t is the time step and vmax the 
maximum velocity that the particles of the system can 
acquire. This condition guarantees that, in a time step, the 
distance traveled by the particles of velocity vmax must not 
be greater than ∆x. 
 

 
Fig.4 . Approximation for the first derivative of a function f  

 
Fig.5. Approximation for the second derivative of a function f  
 

   For example, this condition can be obtained by the 
propagation of an electromagnetic wave in vacuum, the 
dispersion ratio of which is given by ω2 = k2 c2, where ω is 
the frequency of the wave, k the number of waves and c the 
speed of light in vacuum. Assuming that this 
electromagnetic wave can be represented by A (x, t) = A0 
exp [i (k x - ωt)] where A (x, t) is the amplitude of the wave 
at time t and A0 is the amplitude at time t = 0, using the 
finite difference method centered in space and time, the 
derivative of A (x, t) with respect to x will be given by: 
 

(13)                

   

     
   , txA

x

xk
i       

, txA
x

xikxik
       

x

, txxA, txxA

x

A

0

0

00

2

2sin

2exp2exp

22


















 
By comparing ∆A / ∆x to the partial spatial derivative ∂A /   
∂x, we can see that the wave number k can be replaced by 
K represented by: 
 

(14)                             

 
2

2sin

x

xk
K





 

In the same way, the frequency ω can be replaced by a 
frequency Ω given by: 

(15)                             

 
2

2sin

t

tw
Ω





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By substituting Ω and K in the dispersion relation of the 
previous electromagnetic wave, we get: 
 

(16)                               
222 KcΩ   

 

For the highest wavelength kmax = π / ∆x we will have: 
 

(17)                              
 

2
2 2sin 











x

tc
tw

 
 

   If c ∆t / ∆x> 1, ω becomes complex, generating numerical 
instability, if c∆t / ∆x = 1, the system will be slightly stable 
and if c ∆t / ∆x <1, the system will be stable so that no 
numerical instability will be introduced. This is the standard 
CFL condition [12]. 
   A geometric example of the CFL condition can be seen in 
figure (7). In case (a), the continuous curve represented by 
∆x / ∆t = v = c, where v is the speed of propagation of 
information in the system, the CFL condition is found on the 
dotted curve which characterizes speed c, while maintaining 
the system at a stable level. For case (b), the curve ∆x / ∆t 
= v> c will make the system numerically unstable, which 
means that the information will propagate at a speed 
greater than c. In case (c), ∆x / ∆t = v <c, the system 
becomes stable, so that the information propagates at a 
speed lower than c.  
   In [15], a detailed treatment of the numerical solutions of 
hyperbolic equations can be obtained. 
 

2.4. Super particles 
   It can be said that the particle simulation method consists 
of following the movement of a large number of particles 
under the action of forces produced by the movement of the 
particles themselves, due to the interaction between them 
and / or externally applied fields. In general, the region of 
interest contains an extremely high number of particles. For 
example, in the interplanetary medium (region near the 
sun), the typical particle density of plasma is in the range of 
104 to 106 m-3. From a direct estimation, we can see that 
this number of particles is not plausible on most current 
computers, since the number of arithmetic operations on 
particles is quite high and hence the time required to solve 
the forces involved in the system by step integration would 
be too large, making simulations impractical.  
   To work around this problem, the concept of super 
particles was introduced. It is a mathematical model 
representing many particles of real plasma of finite size, 
with their charge distributed over a finite region of space 
[12].  
   Super particles were originally introduced by two research 
groups to provide statistical fluctuations and short-range 
collisions caused by a delta function [16-19, 20]. In other 
words, for point particles, in numerical terms, the potential 
tends towards infinity when the radius of the particle tends 
towards zero.  
   Several methods have been developed to determine ta he 
charge and current densities of super particles at points on 
the spatial grid.  
   One of the area-weighting methods developed was the 
nearest grid point, the nearest grid point (NPG), which 
equally weights all particles within a certain distance of the 
considered grid point [19]. Other grid load weighting 
schemes are called Cloud In Cell (CIC) or Particle In Cell 
(PIC).  
  These two methods have a slight difference: in the CIC 
method, the position of the particle determines its center 
while for PIC; the particle is limited by the positions of the 
closest grid points, regardless of their position in the cell 
[11]. 

   Super particles can take any shape and the fundamental 
difference between them is how they accumulate charges at 
points on the grid based on their positions. However, the 
most commonly used super particles in simulations are 
called square (1), triangular (2) and Gaussian (3) [10-12], 
as shown in figure (6). 
Since the super particle is idealized to represent many 
particles of a real plasma, the charge density, mass and 
energy of the super-particles must be the same as that of 
real particles [12], that is to say: 
 

 Densité de charge → NsQs = NrQr; 
 

Densité de masse → NsMs = NrMr; 
 

     Densité d’énergie → NskBTs = NrkBTr. 
 

   The subscripts s and r denote the super particles and the 
real particle, respectively. N, Q, M, kB and T are digital 
density, charge, mass, Boltzmann constant and 
temperature, respectively.  
   These parameters ensure that all basic physical 
parameters remain the same for real particles and super 
particles during the simulation. For example, charge-to-
mass ratio, plasma frequency, cyclotron frequency, thermal 
velocity, and Debye length, λD = vthe/wpe where wpe is the 
electronic frequency of the plasma and vthe is the thermal 
velocity of electrons. The physical properties of the plasma 
must be reproduced during the simulation. 
 

3. Code used for simulation  
   The digital code used in this work is KEMPO 1D 'Kyoto 
University’s Electromagnetic Particle Code' [12]. 
 

3.1. Methodology used to solve the basic equations  
   As we said previously, the basic equations used are the 
equation of movement (2-4) and Maxwell equations (5-8) 
given earlier.  
   By writing F = q (E + v × B) and using the finite difference 
method, the momentum equations can be written as 
follows: 
 

(18)                                   

2t/t
ttt

v
t

xx 






 

(19)                                  

t
t/t-t/t

F
t

vv
m 


  22

 
 

where the superscript index represents the temporal 
discretization of the equations. Figure (8) illustrates the 
temporal evolution of the position and velocity of each 
particle (equations (18) and (19)), as well as the temporal 
centering of commonly leap-frog used method. We simply 
replace two first order differential equations with two finite 
difference.  The method used advances vt and xt towards 
vt+∆t and  xt+∆t. We can note that v and x are late by  t/2. 
   The particles advance from position x using velocity vx. At 
each temporal step ∆t, the position of the particles moves 
forward twice, each by a step ∆t / 2, as indicated below:  
 

(20)                           2
22 Δt

vxx Δt/t
x

tΔt/t  
 

(21)                           2
22 Δt

vxx Δt/t
x

Δt/tΔtt  
 

 
   The speed of the particles is obtained by integrating the 
equation of motion (4) which, by the finite difference 
method, becomes: 
 

(22)           
t ∆t /2 t ∆t /2 t ∆t /2 t ∆t /2

t ts

s

qv v v v
E B

∆t m 2

     
   

 
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Fig.6. Super-particle shape : (1) square shape, (2) triangular shape,  
(3) gaussian shape 

 
 
Fig.7.Geometric diagram of the CFL condition : (a) ∆x = c∆t, (b) ∆x 
> c∆t, (c) ∆x < c∆t 

 
Fig.8. Diagram of the leap-frog integration method, showing the 

force F centered in time. 
 

 
Fig.9. Vector relation for the Buneman-Boris method. 

 
We introduce new variables v - and v + in the form:  
 

(23)                                  
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(24)                                 
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Fig.10. Area distribution method in the calculation of charge density 
 
By replacing equations (23) and (24) in equation (22), we 
obtain:  
 

(25)                              

  t

s

s Bvv
m

q

Δt
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By applying the dot product in equation (25) with (v + + v -), 
we will obtain:  
 

(26)                                    
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0

22


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The term to the right of equation (25) becomes null in 
equation (26). Indeed, the vector obtained in the cross 
product is perpendicular to the two vectors, the dot product 

of this new vector with one or the other will therefore be 
null. We, therefore, notice that the term magnetic force is 
only responsible for varying the direction of particles motion, 
without changing the amplitude of the velocity. From 
equation (26), we have: 
 

(27)                       
    22   

vv    
 

Figure 9 shows that equation (25) only represents a 
rotation with the angle θ given by: 
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The particle velocity is obtained by following the four 
steps described below, this procedure is called the 
Buneman-Boris method [11]: 
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where Et and Bt are the electric and magnetic fields linearly 
interpolated from the values obtained at the points of the 
grid. The quantity (q/m)s is the mass charge ratio of types s, 
and v, E and B are vectorial quantities. The components of 
the electric field E ≡ (Ex, Ey, Ez) and of the magnetic fields B 
≡ (Bx, By, Bz) are only obtained at the discrete points of a 
spatial grid, from the charge density ρ and from the current 
density J defined at these same points of the grid. These 
densities are obtained from the speeds and positions of the 
particles, namely equations (7) and (8). By adopting a one-
dimensional system along the x-axis, the electric field Ex 

need to meet the initial condition given by Poisson’s 
equation [10] and Gauss’ equation: 
 

(33)                            0ε

ρ

x

Ex 



 
 

Poisson’s equation is solved only as an initial condition 
of the system, this condition being automatically fulfilled if 
equations (7) and (8) are correctly solved in time; the 
current density J must meet the continuity equation and the 
magnetic field Bx must meet the initial condition: 
 

(34)                             
0




x

Bx

 
 

This condition guarantees that Bx is constant in space 
and time, because we only consider the one-dimensional 
case and we do not have the terms of Bx in Maxwell's 
equations (7) and (8). The current density J and the charge 
density ρ are obtained from the equation of motion of the 
particles. The electric field is calculated by integrating 
equation (35): 
 

(35)                                
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which for a one-dimensional system can be discretized by 
the following equations:  
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The magnetic field is obtained by integrating equation (7). 
The equation in question is discretized with the following 
expressions:  
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The charge density is calculated from the super 
particles, considered as square, as shown in figure (10). A 
super particles at position xp has a q/∆x charge distribution 
in the range xp - ∆x/2 < xp < xp + ∆x/2. Besides, each point 
of the grid in Xj has an area covering a range Xj - ∆x/2 < Xj 
< Xj + ∆x/2. In this way, the charge of super particles q is 
divided into adjacent grid points, in proportion to the area 
shared by the grid points. Numerically, we write q (xp – 
Xj)/∆x denoted by ρ (Xj+1) and q (Xj+1 – xp) / ∆x indicated by 
ρ (Xj). 

The current density is obtained from the continuity equation: 
 

(41)                                
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
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JΔ
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The current density has only one component along the 
Ox axis and discretized takes the following form:  
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Fig.11. Charge conservation method for calculating current density 
when xp (t) and xp (t + ∆t) are at the same point on the grid. In the 
figure qA and qB are defined in equation (45).   
 

 
Fig.12. Charge conservation method for calculating current density 
when xp(t) and xp(t+∆t) are at different grid points. qA and qB are 
defined in (45). 
 

Similar to the calculation of the charge density, the 

current density t t /2
xJ  is obtained by satisfying equation (42). 

We can assume two situations since the particle does not 
move by more than one grid spacing ∆x in a time interval 
∆t, i.e:  
 

(43)                     
Δx(t)xΔt)(tx pp 

 
 

where xp is the particle position of at time t. The first case is 
represented in figure (11); xp (t) and xp (t + ∆t) are both 
found at the same point on the grid, Xi and Xi+1. The second 
case is illustrated in figure (12), in which case xp (t) and xp (t 
+ ∆t) are located at different grid points. In the first case, the 
current density Ji+1/2 to Xi+1/2 is obtained by calculating the 
charge quantity passing at point Xi+1/2 at the time interval 
∆t : 
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(44)                          Δt
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where qA and qB are given by: 
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In the second case, the particles motion contributes to 
the current at the points Xi+1/2 and Xi+3/2 with the two 
relations: 
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q
 ,       J

Δt

q
J B
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In figures 11 and 12, we consider the positive velocities 

of the particles, for a negative velocity it is necessary to 
multiply the right side of equations (44) and (46) by (-1). 

 

 
 
Fig.13. Spatial grid used in the KEMPO 1D code, to calculate the 
fields, density and current density of particles. 

 
 
Fig.14. Evolution of the time step used in the KEMPO code to 
calculate the quantities of interest in the simulation. 

 
3.2. Space grid 
   In the KEMPO simulation code, two grids are defined, 
temporal and spatial 
   For the spatial grid, position j on the grid is defined by the 
integer j ∆x, (j = 1, 2, 3..., Nx), and another position j + 1/2 is 
also defined on the grid so that the next intermediate point 
in the grid is given by (j + 1/2) ∆x, (j = 1, 2, 3 ..., Nx). This 
definition facilitates space-centered finite difference 
interpolation for the spatial derivatives of Maxwell 
equations. 
   In the code, the components Ey, By, Jy and ρ are defined 
on the j-th positions of the spatial grid, j ∆x (j = 1,2,3, ..., Nx), 

while the components Ez, Bz , Jx, Jz are defined on the (j + 
1/2)-th positions of the spatial grid, (j + 1/2) ∆x, (j = 1,2,3, ..., 
Nx), where ∆x is the spacing between points on the spatial 
grid. Figure (13) shows the calculation diagram of the 
density, the components of the electromagnetic fields and 
the current density of the particles in the spatial grid.  
Squares mark integer points and circles represent 
intermediate points of the spatial grid. 
  

3.3. Time grid 
   As for the spatial grid, the temporal evolution is made by 
calculating the quantities in points and half-points of the 
temporal grid.  

The integer points of the time grid are determined by t 
and the intermediate points by (n + 1/2) ∆t. The electric field 
E and the magnetic field B are calculated by the leap 
method where E is calculated in integer time intervals t and 
B is calculated in intermediate time intervals (n + 1/2) ∆t. 
However, the progress of ∆t on the magnetic field takes 
place in two steps of ∆t/2; its value is used to advance the  

position of the particles (calculated in integer multiples 
of ∆t) [12].  

The x position of the particles is also calculated at 
integer points of the time grid, while velocity v is obtained at 
intermediate points of the time grid by the frog-leap method. 
As for the fields, the position is advanced twice with half a 
time step (∆t/2) to obtain the intermediate value and 
calculate J at an intermediate point of the time grid. The 
current density is calculated from the position and velocity 
of the particles. 

The charge density is calculated along the whole time 
intervals and is used to obtain the electric field. This 
process is illustrated in figure (14) and repeated as many 
times as necessary to obtain the results of the simulation. 

 
3.4. Standardization and unity system  
   To perform the simulations, it is not necessary to define a 
real unit system such as CGS or SI. The important thing is 
to define the ratios between the quantities of the system 
used, that is to say the ratio between the magnetic field of 
the wave and the magnetostatic field or the ratio between 
the kinetic energy of the ambient plasma and the total 
system energy, etc. During the simulations, the physical 
quantities are standardized, which makes the basic 
parameters of the system become dimensionless. However, 
the selection of basic parameters may vary depending on 
the physical model adopted. Develop simulation code 
applicable to various Physics problems and with a large 
system of variables taking into account a set of basic 
parameters to obtain the fundamental equations. These 
parameters are: 
 

a. Angular frequency (plasma, cyclotron, wave frequency, 
etc.) ωpi, Ωc1, ω; 
b. System length Lx; 
c. Load to mass ratio (q/m)i; 
d. Number of super particles in the Ni system ; 
 

where the subscript i denotes the ith type of particles. The 
cyclotron frequency is specifically defined for type 1 and is 
related to the intensity of the ambient magnetic field. The 
values of these four quantities are given in an arbitrary 
manner, except that the ratios between the quantities in the 
same unit system, ωpi/Ωc1, ∆x/Lx or (q/m)2/(q/m)1, have kept 
real physical quantities. The number of super particles has 
no relation to the numerical density of the real plasma 
particles and N1 and N2 are independent of each other.  
The basic equations are written in such a way as to be 
identical to the equations of motion and of Maxwell in the 
international system. The values of electrical permittivity ε0 
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and magnetic permeability µ0 can be defined arbitrarily, 
provided that they satisfy the equation (9). 

By adopting a one-dimensional system along the x-axis, 
the electric field Ex needs to meet the initial condition given 
by Poisson’s equation [14] and Gauss’ equation: 
 

(47)                             0ε

ρ

x

Ex 



 
 

The physical quantities are calculated by following the 
relationships obtained from the basic equations. The 
cyclotron frequency for types 1 and the plasma frequency 
for types i are given by: 
 

(48)             

      
0

2

0
1

1
1  

 εm

 qn
w ,        B

m

q
Ω

i

ii
pic 

 
 

where ni is the particles density of type i which can be 
obtained by: 
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From equations (48) and (49), we obtain the following 
physical quantities: 
- Particles charge:  
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- Particles mass: 
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- Magnetostatic field : 
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   We note that the mass mi and the charge qi do not matter 
much in the physical calculation system. To perform the 
simulations, the most important parameters, physically 
speaking, are mass density ni mi and charge density ni qi, 
given by: 
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   The values of wpi and (q/m)i for the different types must be 
taken into account during the simulations. Once the 
spatiotemporal grids are defined, as well as the system of 
equations used in the simulation with the appropriate 
boundary conditions, particle simulations can be used to 
study a series of plasma physics phenomena, as we will 
see later.  
 

4. Results and discussion 
   Particle simulations allow us to obtain a great deal of 
information on the physical behavior of plasmas in space 
and in laboratories. In what follows, we present some 
results obtained with particle simulations for classical 
phenomena of plasma physics which occur in laboratory 
and space plasmas. We will also try to illustrate the 
importance of defining the parameters used to ensure the 
correct resolution of the problem. In the first example, we 
present the result of the simulation of an electromagnetic 

oscillation in plasma in order to visualize the importance of 
ensuring that the CFL condition is met throughout the 
simulations. Table (1) shows the parameters used in the 
simulation, where q/m is the mass charge ratio, PCH is the 
angle between wave number k and field B, vpa and vpe are 
the parallel and perpendicular thermal speeds of particles, 
NX, NTIME and NP represent the number of points of the 
spatial grid, the number of temporal intervals and the 
number of particles of a given type (NS = 1) involved in the 
simulation.  
The other parameters have been defined previously.  
 
Table 1. Plasma parameters for figures simulation (15-16). 

Setting Value Setting Value 

x 1,0 NX  128 

t 0,1 NTIME  4096 

c  8,0 NP  1024 

pew 1,0 PCH  0 

pev 0,5 pav
 

0,5 

c -1,0 mq
 

-1,0 

 

    In figure (15), for the left curves, the CFL condition is 
satisfied (∆x> vmax ∆t) and the parameters used are the 
same as in table (1). We can see that during the simulation, 
the total energy of the system (T) (sum of electrical energy 
(E) and kinetic energy (K)) remains constant.  
Thus, we notice that electric field Ex is almost stable and 
revolves around zero. In case (b), we consider (∆x ≈ vmax 
∆t). In this case, we can perceive a variation of the total 
energy of the system (variation of electric energy E due to 
the instability of the electric field Ex, in addition to the 
variation of the kinetic energy K due to the movement of a 
large number of particles).  
   This variation is related to numerical fluctuations which 
themselves are related to the number of particles per point 
in the grid since we have not introduced any source term in 
the system. The total energy variation results from 
numerical instabilities.  
For the right-hand curves, we cannot fully rely on the results 
of the simulations because numerical instabilities can 
modify the physical behavior of the system.  
    Figure (16) shows another example of a simulation in 
which we show the dispersion ratios of a magnetized 
plasma and the phase space of the particles. In this 
example, we consider the parameters of table (1) with the 
following different parameters, NX = 256, NTIME = 1024, 
wpe = 2.0 and vpa = vpe = 1.0. We consider a propagation 
parallel to the external magnetic field k || B0. The mode at 
the plasma frequency wpe = 2.0 corresponds to Langmuir 
waves: waves in R mode and L mode whose phase speeds 
approach the speed of light and a wave in whistler mode 
whose frequency is lower than the frequency of the 
electronic cyclotron.  
  The dispersion relation of a polarized wave in right-hand 
mode (R) in a circular manner is given by: and the left-
handed polarized mode in a circular manner (L) is defined 
by: 
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and the left-handed polarized mode in a circular manner (L) 
is defined by:  
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   We have also drawn phase diagrams of particles in the x-
Vx space in the right-hand panel of figure (16), but the ω-k 
diagrams do not appear until after the end of the analysis. It 
is also noted that the dispersion relation of the light mode 
with its phase speed close to the speed of light is distorted 
in the high wave number range close to wave number kmax 
= π / ∆x. This is due to the centered difference pattern 
expressed in (16). 
   We now introduce two different groups of electrons, in 
addition to the ions that are supposed to form a neutralizing 
background, as in the previous tests.  
The two groups of electrons have different drift speeds in 
the direction parallel to the static magnetic field. If the 
thermal speeds of the electrons are much smaller than the 
relative drift speed between the two groups of electrons, a 
strong electrostatic instability occurs. The instability growth 
rate is so large that it can be demonstrated despite large 
thermal fluctuations. The parameters used are shown in 
table (2), where vD (a) and vD (b) are the drift rates for types 
(a) and (b) respectively. 
 
Table 2. Plasma parameters for figures simulation (17-20) 

Setting Value Setting Value 

x  1,0 
NX  64 

t  0,04 

c  20,0 NS  2 

c
 

-1,0 mq
 

-1,0 

pew
 

2,0 pev
 

1,0 

pav
 

1,0 PCH  0,0 

(a) NS
 

électrons (b) NS
 

électrons 

(a) vD  
0,0 (b) vD  

10,0 

 
   We first study the growth and saturation of the two-flux 
instability NP (a) = NP (b) = 256 with NTIME = 128 and 256 
(see figures (17) and (18)). We note that a coherent 
electrostatic potential develops to trap most of the electrons 
(NTIME = 128) (figure (17)). Electrons undergo a nonlinear 
oscillation in vortex-forming potentials.  
   The instability is saturated because of the mixing of the 
two electron flows (NTIME = 256) (figure (18)). Second, we 
try a longer time interval with NTIME = 2048, while keeping 
the same number of particles NP (a) = NP (b) = 256. We 
note that the phase mixing continues with the dissipation of 
trapping potentials (figure (19)).  

   Third, we increase the number of particles in order to 
reduce the thermal noise level by setting NP (a) = NP (b) =     
4096 and run the code with NTIME = 2048. 
   We find the formation of very stable potential structures 
by the coalescence of smaller potentials, as shown in figure 
(20). These potential structures are called electron holes, as 
found in the space-phase velocity diagram in the upper left-
hand panel, or electrostatic solitary waves (ESW), as 
   For the third simulation series, we study two electron 
beams of the same density and with reversed fluxes 
strongly interacting and thus forming non-linear electrostatic 
potentials which can then merge to form an ESW. 
Importantly, in this simple description, ion dynamics is 
overlooked as a fixed neutralizing background. 
When incorporating mobile ions into our simulations, we 
have noted that ion dynamics plays an important role in the 
formation of ESWs. The electron beams and an ion beam 
whose densities are n1, n2 and ni respectively: 
(n1 + n2 = ni). 
 
 

  
Fig.15.Simulation pour vérifier la condition CFL. Figures de 
gauche : stable. Droite : instable. 
 

 

 
Fig.16. Dispersion relationship for high frequency modes (R), low frequency (L) and whistler. 
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Fig.17. Simulation of the instability of two electron beams  (NP(a) = NP(b) = 256, NTIME = 128) 

 
Fig.18. Simulation of the instability of two electron beams  (NP(a) = NP(b) = 256, NTIME = 256) 
 

 
Fig.19. Simulation of the instability of two electron beams  (NP(a) = NP(b) = 256, NTIME = 2048) 
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Fig.20. Simulation of the instability of two electron beams  (NP(a) = NP(b) = 4096, NTIME = 2048) 
 

(a) vi/vD = 0.1 (b) vi/vD = 0.005 
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Fig.21. Particules in vx - x at t = 26, 51, 102, 205 et 307 with R = 0,5  

(a)    

         
(b)    

       
 
Figu.22.Frequency spectra  (w) and wave number  (k) de Ex for the time t = 409,6 with R = 0.5 and (a) vi/vD = 0.1,   
(b) vi/vD = 0.005   

 
   One electron beam (of density n1) assumes a drift 

velocity VD/2, while the other electron beam with n2 and the 
ion beam with ni have drift velocities – VD/2.  

We also assume that the beam velocity distributions are 
Maxwellian but shifted by the above drift velocities. The 
thermal velocities are ve for the two electron beams and vi 
for the ion beam, respectively. In the following simulations, 
we vary the thermal speed of the vi ions. We define density 
ratio R = n1 / ni as a parameter. 

The other parameters are listed in table (3).  
We perform two tests with different initial thermal 

velocities vi (vi / vD = 0,1 et 0,005) and the same density 
ratio R = 0.5. The evolution of the instability is illustrated by 
the phase diagrams of the particles in the x-Vx space in 
figure (21). At t = 26 wpe

-1, we note wave excitation around 
mode 10 (10 spatial wave cycles in the system), which is 
equivalent to k = 12 wpe/vD, and we see no significant 
difference between the two cases (a) and (b). However, at t 
= 51 wpe

-1, we find that the number of trapped electron 

vortices coalesces down in the left panel (vi/vD = 0.1), while 
the right panel (vi/vD = 0.005) displays a slightly disordered 
vortex structure. Later, at t = 102, 205 and 307, we observe 
the formation of larger vortices corresponding to ESWs by 
the coalescence of smaller vortices on the left, while the 
vortices seem to disappear in the right panel. 

Figure (22) represents the w - k spectra obtained by the 
Fourier transformation of electric fields in space and time for 
the period t = 1,6 wpe

-1 ~ 409,6 wpe
-1. Panels (a) and (b) 

correspond respectively to the cases (a) and (b) of figure 
(21).  
   In panel (a), the wavenumber spectra are limited in the 
region of k = 0 ~ 1.2 wpe/vD. From the dispersion slope, we 
can talk of the final ESW movement with a speed of 0,26 vD. 
In figure (b) we find two dominant modes covering a wider 
range of wavenumber k <2.4 wpe/vD.  

These modes represent the acoustic waves of the ions 
in the ion beam frame and have phase speeds –vD/2 ±vs, 
where vs is the speed of sound of ions. 
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In both cases, the electrons are thermalized in the speed 
range between the drift speeds ±vD/2  and the strong 
nonlinear trapping of all the electron beams, as shown in 
Figure (21).  
 

Table 3. Plasma parameters used for the simulation of the figure 
(21) 

Setting Value Setting Value 

x  1,0 NX  1024 

t  0,025 NTIME  16384 

 vD  10 ie mm
 

0.01 

pew
 

1,0 piw
 

0,1 

ev
 

1,0 iv  1,0 - 0,05 

(e) NP  524288 (i) NP  1048576 
    
   We can thus estimate the thermal velocity of electrons ve 
in the nonlinear stage in ~vD/2. If vi is negligible, ionic sound 
waves can propagate without Landau ion damping at the 
phase velocity vs given by: 
 

                           
2vmm  v Dies   

 

   Since we assumed that the parameters which give vs/vD = 
0.05 at the nonlinear stage of electron trapping, vi << vs is 
satisfied for the case of Panel (b). Therefore, the initial 
electrostatic waves due to the two-flux instability are 
converted to ionic acoustic waves at higher wavenumbers. 
However, in the case of panel (a) (vi/vD = 0.1), vi > vs, where 
the ionic sound waves are strongly damped. Since there are 
no other modes in which electrostatic waves can decay, the 
coalescence of trapped electrons leads to the formation of 
ESW. 
 

5. Conclusion  
   In this article, we present some characteristics of particle 
simulations applied to plasma simulation. We identify a few 
criteria required to perform computer simulations and the 
steps to follow for the temporal and spatial evolution of a set 
of particles of a magnetized plasma. 
We introduce one dimensional computer simulation in 
plasma physics. We also present some characteristics of 
particle simulations applied to plasma simulation. We show 
some criteria necessary to perform computer simulations 
and the steps to follow for the temporal and spatial 
evolution of a set of particles of magnetized plasma. 
   We underline the care that must be taken in the initial 
conditions of the simulation to avoid numerical instabilities 
which can lead to a corrupt physical behavior of the system. 
In the case where external sources are not included, the 
digital instabilities are characterized by the variation of the 
total energy (T) of the system. 
   Other diagnoses can be obtained by computer 
simulations depending on the type of phenomena under 
study. We also simulated two electron beams of the same 
density and with reversed fluxes strongly interacting, thus 
forming nonlinear electrostatic potentials which can then 
merge to form an ESW. Importantly, in this simple 
description, ion dynamics has been overlooked as a fixed 
neutralizing background. We incorporated mobile ions into 
our simulations and found that ion dynamics plays an 
important role in the formation of ESWs. 

   Computer simulations are not, and probably never will be, 
the solution to all the physical problems, but they are a 
powerful tool that can help researchers solve many 
unanswered Physics problems, especially those related to 
non-linear and time dependent systems. 
  At this day, more realistic simulations are made and 
constantly upgraded. Simulation are not limited to one 
dimension, interaction between particles is not only through 
field but also by direst collisions. To speed up simulations 
and capability to simulate more particles, program are 
adjusted to run simultaneously on several computer 
processors and the simulation performance is done by 
using new numerical methods.  
   Computer simulations are not, and probably never will be, 
the solution to all the physical problems, but they are a 
powerful tool that can help researchers solve many 
unanswered Physics problems, especially those related to 
non-linear and time dependent systems. 
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