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Control of PID parameters by iterative learning based on neural 
network 

 
 

Abstract Iterative learning refers to the development, analysis and implementation of methods that allow a machine to evolve through a learning 
process, and thus perform tasks that are difficult or impossible to perform by more conventional algorithmic.Learning is a dynamic and iterative 
process for modifying the parameters of a network in response to the stimuli it receives from its environment. The type of learning is determined by 
how parameter changes occur.  In this article , we contribute to the design and development of an  algorithm, that can optimize the parameters of a 
PID controller for the control of repetitive system, using the iterative learning approach based on neural network. The theoretical are illustrated by 
simulation. The results of simulations prove clearly the efficiency of the control by iterative learning based on neural network . 
 
Streszczenie. Uczenie się iteracyjne odnosi się do rozwoju, analizy i wdrażania metod, które pozwalają maszynie rozwiązywać problem w procesie 
uczenia się, a tym samym wykonywać zadania, które są trudne lub niemożliwe do wykonania przy użyciu bardziej konwencjonalnego algorytmu. 
Rodzaj uczenia się zależy od tego, jak zachodzą zmiany parametrów. W tym artykule zaprojektowano i opracowano algorytmu, który może 
zoptymalizować parametry regulatora PID, wykorzystując podejście iteracyjnego uczenia się w oparciu o sieć neuronową. Wyniki symulacji 
jednoznacznie dowodzą skuteczności sterowania poprzez iteracyjne uczenie się w oparciu o sieć neuronową. (Sterowanie PID przy 
wykorzystaniu uczenia iteracyjnego bazującego na sieciach neuronowych) 
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Introduction 

When the desired trajectory is repetitive or periodic, 
the control system will make the same errors from iteration 
to the other one. Indeed, the control system does not take 
into account errors made during the previous iterations. So, 
it would be interesting to use all the information obtained on 
the control system during the previous iterations to improve 
the pursuit of the desired trajectory. This basic idea gave 
rise to the iterative learning control(ILC). The concept of ILC 
was originally pioneered in the work of [1], although the field 
began to take the present shape starting with the works of 
[2] and others[3,4]. ILC is a feedforward signal design 

technique that iteratively fine-tunes and adjusts the 
feedforward signal by considering the error from previous 
iterations of the repetitive process. In other words, we 
iteratively reshape the input signals to the closed-loop 
system from one run to another to reduce tracking error. 
This method requires that the repetitive process have 
specified start and finish states [5-6]. ILC is intended for 
discontinuous operation. For example, an ILC application 
might be to control a robot that performs a task, returns to 
its home position, and comes to rest before repeating the 
task. ILC has been implemented in several industrial 
processes because of its simplicity of design, analysis, and 
implementation, typical applications of ILC include industrial 
robotics, rapid thermal processing, metal rolling, and wafer 
scanning. Along with applications, many ILC algorithms that 
guarantee better robustness, performance, and faster rates 
of convergence have been developed.  

PID controllers were empirically regulated by the 
methods described by Ziegler and Nichols (1942) [7]. They 
have proposed two experimental approaches to adjust the 
parameters of the PID. The first solicits the registration of 
the step response of the system to be regulated in an open 
loop, and the second requires to bring the closed-loop of 
the system to its limit of stability. Which must have very low 

damping, typically =0.2. PID controllers can yield accurate 

position control arduous as the  is increased[8-9]. For the 
desired improvement in control, it is necessary To use 
methods other than the traditional PID controller [7]. The 
intelligent control method represented by a neural network 
can perform arbitrary functions with arbitrary precision and 
a self-learning function. neural networks are applied to the 

design of the control system for its ability to manage, the 
non-linearity, uncertainty, and complexity of the system. 
And due to the adaptability, the parallel processing 
capability and the robustness of the neural network, the 
control system using the neural network has superior 
adaptability and robustness[9]. The traditional PID controller 
has the advantages of a simple structure, convenient 
adjustment and a close connection between 
parameterization and technical indicators. However, the 
traditional PID controller also has some limitations: when 
the parameters of the plant are nonlinear, the controller 
settings are automatically adjusted to accommodate 
changes in the plant, and it is difficult to change the time 
and the time of some complicated processes and 
parameters [8]. So it is easy to compensate for the 
disadvantages of conventional PID control. The 
combination of conventional PID control with neural 
networks is a trend of modern control theory [10-14]. 

The remainder of this paper is structured as 
follows: section II presents the basic theory of PID control, 
including the characteristics of the algorithm. Section III 
exposes the problem, followed by the tuning methods 
studied which are: PID based on neural network, and PID 
parameters by iterative learning based on neural network. in 
Section IV. The simulation for two approaches is presented. 
And a conclusion is done in section V. 
 

basic theory of PID control 

 The PID controller consists of three steps: proportional, 
integral, and differential. Its mathematical description is: 

(1)         

0

( )
( ) ( ) ( )  .

t

p i d

de t
u t k e t k e d k

dt
     

 

where : u(t)   is the  output value;  e(t)    is the tracking error 

signal; pk     is the proportionality factor; ik  is the integral 

time constant;  and dk     differentiate the time constant. 

 

Digital PID controller: 

In the computer control system, a digital PID controller is 
used and the digital PID control algorithm is generally 
divided into a position PID control algorithm and an 
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incremental PID control algorithm. according to (1) of the 
analog PID control algorithm, the continuous-time t is 
represented by a series of sampling time  points, the 
integral is replaced by the sum, the differential is replaced 
by the increment and the following approximate 
transformation can be performed: 

(2)        
        

where   t=kT,     and        k=0,1,2,3,4,5,..

( ) ( ) ( ) 0
0 0

k k
t e t dt T e jT T e j

j j

  
   

 

T represents the sampling period.   

(2.1) 
( ) ( ) [( 1) ] ( ) ( 1)

  
de t e kT e k T e k e k

dt T T

   
    

 By Substituting equation (2.1) and (2.1) in (1),we obtain a 
discrete  expression of the PID: 

(2.2)  
0

( ) ( ) ( ) [ ( ) ( 1)]  

k

p I D

j

u k K e k K e j K e k e k


      

where ( )e k denotes the error  at trial  k, and  ( )u k  

denotes the input at trial k . ( )u k is the control signal at the 

k the  iteration while  e(k)  y y(k)d k   is the 

tracking error signal between the actual output trajectory 

y(k )  and the desired one  yd k  . 

 

 PID neural network controller: 

    The neural network is a non-linear function of several 
variables. This feature has many parameters labeled 
weight, adjusted by the learning procedure so that the 
function matches the desired data such as described in 
fig.2.  Neural network-based PID control does not use 
neural networks to set PID parameters but uses neural 
networks directly as controllers, and indirectly adjusts PID 
parameters by training neural network weight coefficients. 
The neural network applied to the PID control is associated 
with the traditional PID controller, for improvement and 
optimization of the traditional PID control described by 
equation(1). According to (1) and (2.2), a single neuron is 
used to build the PID controller, as shown in Figure 1 
 

 
Fig.1. PID neural network controller 

here   : 
 

(2.3)      
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The network output is: 

(2.4)
1 1 2 2 3 3

( ) ( ) ( ) ( )   
n

u k w X k w X k w X k     

where W1, W2, and W3 are the weighting factor of the 
neuron, which is equivalent to the proportional, integral, and 

differential coefficients of the  PID controller. the wi 
parameter can be fixed online. By continuously adjusting it 
to reach an optimal value, the system's control performance 
can be improved. tests that are commonly performed in the 
industry.  They include the Step, Pulse, Pseudo-Random 
Binary , and Doublet. 
 

Iterative learning control 

The configuration of the learning controller system will 

operate as follows. During the  1
th

n  trial an input signal 

 1u tn is applied to the plant, producing the output 

signal  1 tny  . In the meantime, these two signals are 

stored in a memory buffer. At the end of this trial a new 

input signal,  u tn , is computed by an ILC algorithm. The 

ILC algorithm computes a new input signal which is 

dependent on the tracking error  1e tn and the previous 

input signal  1u tn  . The new input can be used in the 

next trial. The importance of the modification of the input 

signal is to reduce the tracking error  e tn . 

Mathematically expressed, this means that the control input 

( )u t
n

at the  
th

n trial to the plant is given as a function of 

previous inputs and errors. 
  

(3)               
1 1( , )    

n n nu f u e
                  
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1 1
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1
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n
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de t
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

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Neural  learning controller:  

By combining the two methods, iterative learning, and 
neural network, to adjust the parameters in real-time as is 

illustrated in fig.2, the state of the controlled system is 
represented by yn (t) and the desired output by yd(t). The 
outputs of the neural controller correspond to the states 
required for learning in the neural plane. The control signal 
is generated by the neurons via the activation function and 
self-learning. The neural network PID is added to the ILC 
controller to adjust the gains of the PID parameters on-line 
according to the change of the error signal.  

 

 
Fig.2. Bloc diagramme of Neural learning  controller 

 

The update law derived from the diagramme presented in  
the above figure  is: 

(3.1) 
1 1 2 2 3 3

( ) ( 1) [ ( ) ( ) ( ) ] u k u k K w k x w k x w k x      

where : 

1 2 3
. ( ), . ( ), and, . ( ).

p d I
k K w k k K w k k K w k     

 

Simulations illustrations 

The CSTR continuous agitation reactor is the 
primordial element of many plants in the chemical industry, 
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ill. The quality of control is affected mainly by the lack of a 
sufficiently clear understanding of the reaction mechanism, 
as well as the sensitivity, and the non-linearity of the 
process itself. The CSTR is a cylindrical tank with a 
diameter approximately equal to its length and a turbine for 
the stirring action. the level of mixing caused by the stirring 
action characterizes the quality of the CSTR. The CSTR 
parameters and their nominal operating condition are listed  
in the table1. If the input of the reactor is a periodic function, 
the output of the reactor is also a periodic function[15-16]. 
The learning control law described in this work is applied to   
manipulate the  jacket temperature (Tj)  of CSTR, to keep 
the system temperature at the desired level.    

Table 1:cstr parameters 
CSTR Parameters Nominal operating condition 

Feed concentration (CA0) 1 mol/l 

Feed temperature (T) 350 K 

Inlet coolant temperature (TCO) 350 K 

CSTR volume (V) 100l 

Heat transfer term (h/A) 7x105cal/(min K) 

Reaction rate constant (k0) 7.2x1010 min
-1

 

Heat of reaction (DH) 2x105 cal/mol 

Liquid density 9r, rc) 103g/l 

Specific heats 9Cp, Cpc) 1 cal/gk 

Process flow rate (q) 100 l/min 

Action energy term (E/R) 1x104k 

 

CSTR dynamic Equation 

The equilibrium equation of a chemical reaction in 
CSTR is given by: 

(4)   ( ) ( ) ( ) ( )  input generation output accumulation                                      

 

For a  perfect mixing and constant volume is maintained 
in the jacket and reactor, the accumulation term is zero, and  
the state variable form of the dynamic equation can be 
derived by considering the mass and energy balance 
equations [13-14]. The CSTR  model and the state space 
form  are represented by the following equations  : 
(5a,b)

0

0

  (C -C )-k e C                                      

dT
( ) ( )k e C ( )    

E

A RT

Ai A A

E
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i A j

p p

dC F

dt V

F H U
T T T T

dt V C V C 








    

 

where the state x(t) and  input u(t) vectors are given by 
x(t)=[CA ;T] and u(t)=[Tj]. 
Therefore, the state space and the input matrices are 
calculated as shown below: 
 

(5c)  
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 By substituting the nominals  values, in the equation 
(5.C), we get the following state-space model : 

 
7.9909 0.013674 0

, , 0 1 ,
2922.9 4.5564 1.4582

[0].

A B C and

D

 
  



   
        

The  transfer function expression and the step response 
without a controller of this process is done below: 
  

 
 
 

 

 
Fig. 3. system response for step change. 
 

The designing of control parameters for this process is 
done by two approaches: neural network approach and 
neural ILC approach. The system response for a step input 
and error response with PID controller are first determined 
by neural network approach as shown in figure 4. 

 
Fig..4.a. The output response                                          

 
 Fig..4.b. The error response  
 

It can be seen that the jacket temperature   follows the 
desired one with a significant reduction in the rise time and 
on the other hand an increase in the duration of the 
transient regime. 

Applying the neural iterative learning control to the 
CSTR system described above, the simulation result for 6 
trials   are shown in fig.5, fig.6. It can be seen that the jacket 
temperature follows the desired one with a decreasing 
margin of error. The tracking error and transient behavior 
diminished when the number of iterations increases  

.
2

1.4582S+11.65
G=

S +3.434S+3.557
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Fig.5.a. temperature response  with one  ILC iteration   
 

 
 

Fig.5.b.Evolution of error with one  ILC iteration   

 
 

Fig.6.a.Temperature response for 6 iterations 
 

 
Fig.6. b.evolution of error for  six  iterations 
 

Conclusions 

The control of PID parameters based on the neural 
network, and iterative learning control for repetitive systems 
based on neural network are designed separately to 
achieve better system performance, and the results of the 
two methods are compared. 
     The neural network is used to produce Kp, Ki and Kd in 
real-time according to the control requirements, which in 
turn are used as real-time parameters of the PID controller, 
instead of manual tuning. As long as the difference between 
the current jacket temperature and the desired CSTR 
temperature is not zero, the neural network weight (w1, w2, 
and w3) is adjusted, then the PID parameters are adjusted 

to give less settling time and reduced overshoot compared 
to conventional PID and PID controller using Metaheuristic 
algorithms [17 ] . 
        The results of the simulation confirm that the systems 
in the initial state equal to zero and with a less rate, the 
convergence assured for a reduced number of iterations. 
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