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Hybrid machine learning in electrical impedance tomography 
 
 

Abstract. Artificial intelligence plays an increasingly important role in industrial tomography. In industry, various types of tomography can be used, 
where one of the criteria for classification may be a physical phenomenon. Thus, it is possible to distinguish computed tomography, impedance 
tomography, ultrasound tomography, capacitance tomography, radio-tomographic imaging, and others. The research described in this paper focuses 
on the EIT method used to imaging reactors' interior and industrial vessels. Inside the tested reactor, there may be a liquid of various densities 
containing solid inclusions or gas bubbles. The presented research presents the concept of transforming measurements into tomographic images 
using many known, homogeneous methods simultaneously. It is assumed that there is no single method of solving the inverse problem for all 
possible measurement cases. Depending on the specifics of the studied case, various methods generate reconstructions that differ in terms of 
accuracy and resolution. The presented research proves that the proposed approach justifies the increase in computational complexity, ensuring 
higher quality of tomographic images. 
 
Streszczenie. W tomografii przemysłowej coraz większą rolę odgrywa sztuczna inteligencja. W przemyśle można stosować różne rodzaje 
tomografii, gdzie jednym z kryteriów podziału może być wykorzystywane zjawisko fizyczne. W ten sposób można wyróżnić tomografię komputerową, 
tomografię impedancyjną, tomografię ultradźwiękową, tomografię pojemnościową, obrazowanie radio-tomograficzne i inne. Opisywane w niniejszym 
opracowaniu badania skupiają się na metodzie EIT Wykorzystywanej do obrazowania wnętrza reaktorów i zbiorników przemysłowych. Wewnątrz 
badanego reaktora może znajdować się ciecz o różnej gęstości, zawierająca wtrącenia stałe lub pęcherze gazu. W prezentowanych badaniach 
przedstawiono koncepcję przekształcania pomiarów na obrazy tomograficzne wykorzystującą wiele znanych, homogenicznych metod jednocześnie. 
Przyjęto założenie, że nie istnieje jedna metoda rozwiązania problemu odwrotnego dla wszystkich możliwych przypadków pomiarowych. W 
zależności od specyfiki badanego przypadku różne metody generują rekonstrukcje zróżnicowane pod względem dokładności i rozdzielczości. 
Zaprezentowane badania udowadniają, że proponowane podejście uzasadnia wzrost złożoności obliczeniowej zapewniając wyższą jakość obrazów 
tomograficznych. (Hybrydowe uczenie maszynowe w impedancyjnej tomografii elektrycznej). 
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Introduction 
Tomography is a non-invasive imaging technology that 

allows for visualising the interior of objects [1]. Medical 
tomography is increasingly being performed using 
technologies of artificial intelligence. Tomography comes in 
a variety of forms. Electrical capacitance tomography (ECT) 
[2], electrical impedance tomography (EIT) [3], computed 
tomography (CT) [4], radio tomographic imaging (RTI) [5], 
ultrasonic tomography (UST) [6,7], and others [8–10]. The 
purpose of this study is to examine the EIT's utility in 
medical diagnostic applications. 

EIT is a subfield of electrical tomography. The EIT works 
by measuring the voltages between individual electrodes 
placed on the surface of the object being tested. Therefore, 
it is critical to specify the background measurements 
appropriately, i.e., the interior of the test object that is free 
of inclusions. When inclusions are present, the voltages 
between the electrode pairs change due to the change in 
conductivity within the tested object. 

Because tomography, particularly EIT, addresses the 
so-called inverse issue, which is frequently poorly defined 
(ill-posed), it is challenging to acquire high-resolution and 
reliable tomographic pictures. Observing the evolution of 
tomographic methods and algorithms, one can observe a 
constant effort to build a universal method and produce 
good results for as many different types of monitored 
objects as feasible. 

A distinctive feature is the simultaneous use of multiple 
machine learning algorithms, which enables their automatic 
and instantaneous selection based on two criteria: the 
measurement case and the tomographic image pixel 

 
Materials and Methods 

The prototype hybrid tomograph seen in Figure 1 is 
capable of connecting up to 32 EIT electrodes. The physical 
model depicted in Figure 2 is of a tank filled with tap water. 

In the water, plastic tubes filled with air were plunged. There 
are 32 electrodes located around the reactor/bucket (see 
Figure 2). Every second electrode was employed in the 
presented research for a total of sixteen electrodes. 
 

 

 
Fig. 1. The electrical impedance tomography (EIT) device. 

Several dozen test measurements were conducted 
using the thus-prepared physical model. The forward 
problem was solved using the measurements by altering 
the parameters of the numerical model based on the finite 
element approach (FEM). This was accomplished through 
the usage of the Eidors toolbox [11]. Based on a dense 
mesh of finite elements, the model created in Eidors 
accurately provided measurement values. A set of 30000 
examples was simulated using this model, including both 
the data and the accompanying conductivity distributions. 
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Gaussian noise with a standard deviation of several per 
cent was applied to the value of each measurement. The 
triangular finite element mesh, which reflected the 
reservoir's cross-section, contained 2502 elements.  

 

  
 (b) (b) 

Fig. 2. Physical model of the reactor with electrodes arranged 
around: (a) - round phantoms, (b) - square phantom. 

Each finished element is a pixel of a tomographic image. 
Thus, the output image is an illustration of the conductivity 
distribution of the individual mesh elements. 

The Support Vector Machines (SVM) idea presupposes 
the presence of a decision space that may be partitioned by 
defining boundaries between items belonging to distinct 
categories. SVM is a well-known machine learning 
technique that may be used to solve regression and 
classification problems. Vladimir Vapnik and his colleagues 
pioneered this approach in 1992. Support vector models 
(SVMs) are classified into four categories based on the sort 
of error function they use: classification type 1 (C-SVM), 
classification type 2 (ߝ-SVM), regression type 1 (ߝ-SVM), 
regression type 2 (ߥ-SVM). In SVM regression, we look for 
the functional dependence of the dependent variable y on 
the set of independent variables x. In regression, it is 
assumed that this relationship is of the deterministic type 
݂ሺݔሻ, with some addition of random noise: ݕ ൌ ݂ሺݔሻ ൅  .݁ݏ݅݋݊
The primary objective is thus to determine the shape of the 
function f that will best supply the value of the dependent 
variable for new cases that the SVM model has not 
previously "seen". This process is accomplished by training 
the SVM model system on a set of cases referred to as the 
learning test. The offered notion implies that each SVM 
subsystem independently derives the value of a single 
picture pixel. A complete EIT system has the same number 
of trained SVMs as the resolution of the output picture, 
which is ሺ96 → SVM → 1ሻ ൈ 2502. The algorithm utilised in 
these studies maps data into a higher-dimensional space, 
solving the regression type 2 problem (ߥ-SVM). The 
deviation function of the type (1) is reduced to a minimum 
value: 
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under the following conditions (2, 3, 4): 
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where ߝ,  is a constant called ܥ ,are the penalty parameters ߥ
the capacity, ݓ is a vector of coefficients, b is a constant, 
and ߦ௜, ௜ߦ

∗ are the parameters handling overlapping cases. 
Index i numbers the N learning cases, ݔ௜ are independent 
variables and ݕ௜ are regression patterns. The kernel 
function transforms the data in the input stream into a new 

feature space. It should be stressed out that ܥ has a 
significant effect on the deviation and that its value must be 
carefully chosen to avoid overfitting the model. Each of the 
SVM subsystems was trained using 1000 training cases. 

In addition to SVMs, a shallow artificial neural network 
can be used (ANN). The multilayer perceptron was utilised, 
with ten neurons in the hidden layer. 96 measurements 
were included in the input vector. The output of the ANN 
was a real value indicating the conductivity of a single finite 
element within an image pixel grid. A single network has the 
structure ሺ96 → 10 → 1ሻ. Like SVM, a comprehensive EIT 
system based on ANNs is ሺ96 → 10 → 1ሻ ൈ 2502. Scaled 
conjugate gradient backpropagation was used to train 
neural networks. This approach consumes less memory 
and permits concurrent training on the GPU, which is not 
achievable with other algorithms, such as the Levenberg-
Marquardt method. The hidden layer makes use of the 
hyperbolic tangent sigmoid function for transfer. The output 
layer, on the other hand, makes use of the linear transfer 
function. The training set for ANNs contained 27440 
examples. It was separated into training, validation, and test 
sets in the proportion of 70:15:15. To avoid overfitting, an 
early halting approach was adopted. After the sixth iteration, 
which failed to reduce the validation error, the network 
training process was automatically halted. 

This research makes a significant contribution by 
optimising the "pixel by pixel" reconstruction method by 
employing a more efficient algorithm (SVM or ANN) to 
create conductivity values for each pixel. It was anticipated 
that among all pixels in the EIT image, there are some for 
which the SVM approach provides superior reconstruction 
and others for which the ANN method provides superior 
results. To determine the existence of pixels for which one 
of the two tested approaches produces superior results, a 
sample of n=100 randomly selected cases was tested. The 
resulting image has a resolution of ௜ܰ௝ ∶ 	݅ ∈ ሾ1, 2502ሿ, ݆ ∈
ሾ1, ݊ሿ. Let ݕ௜௝ be i-th pixel at j-th reference (ground-truth) 
case conductivity, ݕො௜௝ be the reconstructed conductivity and 
௜௝ݕ∆ ൌ ௜௝ݕ െ ௜௝ݕ∆ ො௜௝. Letݕ

஺ேே be the deviation for i-th pixel 

reconstructed by ANN, and ∆ݕ௜௝
ௌ௏ெ be the same for SVM. 

Let ݌௜௝ be the binary indicator, such that if ∆ݕ௜௝
஺ேே ൑ ௜௝ݕ∆

ௌ௏ெ 
then ݌௜௝ ൌ 1 otherwise ݌௜௝ ൌ 0. Let ܲ ൌ ∑ ∑ ௜௝݌

௡
௝ୀଵ

ே
௜ୀଵ  when 

ܰ ൌ 2502	 and ݊ ൌ 100. Then the percentage 
predominance ܵሺܲሻ of one of the methods (ANN or SVM) is 
calculated according to the formula (5) 

 

(5)  ܵሺܲሻ ൌ ቄ2ܲ െ 100									if		50 ൑ ܲ ൑ 100
100 െ 2ܲ									otherwise.													

 
 

Figure 3 shows the Pareto chart. This histogram shows 
the percentage bins sorted in descending order and a row 
that shows the cumulative total percentage. 
 

 
Fig. 3. Pareto chart showing the constant supremacy of one of the 
two tested methods 
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The Pareto chart in Figure 3 indicates the most 
important parts of the dataset as the percentage ranges that 
demonstrate the effectiveness of the presented concept. It 
is showing the constant supremacy of one of the two tested 
methods for the pixels of the tomographic image. 

 

Results 
Figure 4 illustrates four test cases that were utilised to 

validate the presented concept's usefulness. The columns 
depict the reference image, followed by images generated 
using the ANN and SVM approaches, and finally, the output 

image formed by utilising either SVM or ANN selectively 
based on the pixel. Three of the cases presented in Figure 
4 involve reconstructions with inclusions 1 and 2. 
Unfortunately, visual evaluation of reconstruction is 
permanently harmed by subjectivism. It can be used in 
conjunction with the objective assessment based on the 
MSE, RIE, and ICC indicators. Nonetheless, the 
reconstructions created using the new hybrid method 
appear to be the most accurate reference images. 

 

 #1 #2 #3 

Reference 
image 

 

ANN 

 

SVM 

 

New hybrid 
concept 

 
 

Fig. 4 Test reconstructions for 3 methods: ANN, SVM and selective (ANN or SVM). 
 
Table 1 corresponds to Figure 4, which depicts a 

comparison of the reconstructions derived using three 
different metrics. This study aims to compare quantitative 
indicators that are unique to each of the three investigated 
methodologies. The first two methods (ANN and SVM) are 
homogeneous, but the third method is a novel hybrid 
approach. Each approach was evaluated using three 

different criteria: MSE, RIE, and ICC. Formula (6) satisfies 
the mean squared error. 
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The relative image error is defined by equation (7).  
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Table 1. Comparison of image reconstructions 

Methods Evaluation metrics 
Investigated cases 

Average 
#1 #2 #3 

Artificial Neural 
Network 

MSE 0.031 0.187 0.238 0.152 

RIE 1.847 1.249 1.537 1.544 

ICC 0.936 0.450 0.753 0.713 

Support Vector 
Machine 

MSE 0.031 0.220 0.232 0.161 

RIE 1.842 1.355 1.517 1.571 

ICC 0.848 0.342 0.802 0.664 

New hybrid method 

MSE 0.029 0.171 0.215 0.138 

RIE 1.792 1.192 1.460 1.481 

ICC 0.947 0.465 0.812 0.741 

Is MSE for the new hybrid method the best? YES YES YES YES 

Is RIE for the new hybrid method the best? YES YES YES YES 

Is ICC for the new hybrid method the best? YES YES YES YES 

 
 

The image correlation coefficient is often called 
Pearson's correlation coefficient. It is explained by (8) 

 

(8)  ICC ൌ
∑ ሺ௬೔ି௬തሻ
ಿ
೔సభ ൫௬ො೔ି௬ොത൯

ඨ෌ ሺ௬೔ି௬തሻమ
ಿ
೔సభ ෍ ൫௬ො೔ି௬ොത൯

మ೙

೔సభ

 

 

where ݕത is the mean conductivity of pattern image, and ݕොത is 
the mean conductivity of reconstructed image. The smaller 
the MSE and RIE are, the better the quality of the image. 
ICC have the opposite meaning - the closer to 1, the better 
correlation between the pattern image and its 
reconstruction. 

When analysing the metrics in Table 1, the best results 
are obtained by the new method for all three analysed 
cases. The last column of Table 1 shows the average 
values of MSE, RIE and ICC indicators for all analysed 
cases. The last 3 lines of Table 1 show the results of the 
detailed comparison of the metrics for the ANN and SVM 
methods with the new hybrid method. In all comparisons, 
the highest quality of the reconstructive images was 
achieved thanks to the new concept. 

 
Conclusions 

We introduce a novel hybrid pixel-dependent paradigm 
for EIT systems in this article. The original method 
presupposed that the quality of reconstructed pixels in a 
given tomographic image is dependent on the 
reconstruction technique used. Two machine learning 
algorithms – SVM and ANN – were trained to validate the 
initial assumption. Then, pictures were reconstructed using 
singular ANNs and singular SVMs on a random sample of 
100 cases. The reconstruction results for each of the 2502 
pixels were compared, and the appropriate approach (ANN 
or SVM) for each pixel was chosen based on these 
comparisons. Finally, three test cases were reconstructed 
using a novel pixel-dependent concept (see Figure 4 and 
Table 1), and the results were compared to those obtained 
using a single ANN or SVM. MSE, RIE, and ICC indices 
demonstrated unequivocally that the new hybrid idea with 
method selection is more effective than employing a single 
homogeneous method for all pixels in the tomographic 
reconstruction. 
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