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Abstract. The growing share of renewable energy sources in the structure of energy systems causes many problems related to the correct operation 
of the grid. This impact is most evident in low-voltage grids to which many low-power prosumer solar and wind installations are connected. For the 
correct management and, consequently, the economic operation of power systems, the most accurate forecast of electricity consumption and 
generation in grids with different voltage levels is needed. Conventional generation devices have stable production values and can be regulated 
within wide limits, while the production of electricity from renewable sources, by wind farms in particular, depends on external weather conditions and 
requires a more careful approach to its forecasting. The aim of the article is to present a method of forecasting the power generated by wind turbines 
based on publicly available meteorological data. The presented forecasting method uses the theory of neural networks. 
 
Streszczenie. Rosnący udział odnawialnych źródeł energii w strukturze systemów energetycznych, powoduje wiele problemów związanych z 
poprawną pracą sieci. Oddziaływanie to jest najbardziej widoczne w sieciach niskiego napięcia, do których przyłączonych jest wiele fotowoltaicznych 
i wiatrowych instalacji prosumenckich małej mocy. Dla poprawnego zarządzania i w konsekwencji ekonomicznej pracy systemów 
elektroenergetycznych potrzebna jest możliwie dokładna prognoza zużycia i wytwarzania energii elektrycznej w sieciach o różnych poziomach 
napięcia. Konwencjonalne urządzenia wytwórcze mają stabilne wartości wytwarzania i mogą być regulowane w szerokich granicach, natomiast 
produkcja energii elektrycznej ze źródeł odnawialnych, a w szczególności przez elektrownie wiatrowe, zależy od zewnętrznych czynników 
atmosferycznych i wymaga staranniejszego podejścia do jej prognozowania. Celem artykułu jest przedstawienie metody prognozowania mocy 
generowanej przez turbiny wiatrowe w oparciu o publicznie dostępne dane meteorologiczne. W prezentowanej metodzie prognozowania 
wykorzystano teorię sieci neuronowych. (Prognozowanie energii wytwarzanej przez źródła wiatrowe na podstawie danych meteorologicznych 
z wykorzystaniem sieci neuronowych). 
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Introduction 
Nowadays, renewable energy sources occupy a large 

part of the generation structure. The advantages of using 
renewable types of energy sources are as follows: reduced 
CO2 emissions and the reduced consumption of 
hydrocarbon fuels, but they also have a significant 
drawback, i.e. complex management and dispatching of 
such power systems due to the instability of electricity 
production [1 - 4]. 

At the same time, if large wind-powered generating 
plants have the equipment and information resources to 
predict generation depending on weather conditions, small 
wind-powered generating plants (the prosumers) do not 
have such capabilities and the usual meteorological 
weather forecast is the only available data source. 

The power system operator must have the data forecast 
on possible short-term and long-term generation from the 
wind-powered generating plants in order to maintain the 
most economical operating mode of the power system with 
distributed generation, without reducing its reliability 
indicators.  

The power production of the wind-turbine depends on 
many variables, primarily such as wind speed, wind 
direction, temperature, air pressure, etc., which must be 
taken into account in the forecasting model. 

Currently, the greatest attention is devoted to the issues 
of forecasting electricity production from large wind-
powered generating plants that have the meteorological 
equipment and the necessary information resources to 
transfer the electricity production plan to the grid operator [5 
- 9]. 

But at the same time, there is an issue of forecasting 
electricity production from the prosumers of small wind 
turbines as part of an electric power system with distributed 
generation, because they are also capable of having a 
strong effect on the power flow and the operating mode of 
the power system. 

The aim of the article is to develop a method of 
predicting the power generation from wind turbines that is 
based on public meteorological data. 
 
Research method 

Nowadays, neural networks are one of the most 
progressive and accurate methods of forecasting and 
assessing various processes in power engineering. The 
feasibility of their use is confirmed by previous studies [10, 
11], in which their main advantages are determined: high 
accuracy, versatility and flexibility. 

A neuron is an information–processing unit that is 
fundamental to the operation of a neural network. The block 
diagram of Figure 1 shows the model of a neuron which 
forms the basis for designing a large family of neural 
networks studied in the next chapters. Here, we identify 
three basic elements of the neural model [12]: 
 A set of synapses, or connecting links, each of which is 

characterized by a weight or strength of its own. 
Specifically, signal xj at the input of synapse j 
connected to neuron k is multiplied by the synaptic 
weight wkj. It is important to take note of the manner in 
which the subscripts of the synaptic weight wkj are 
written. The first subscript in wkj refers to the neuron in 
question and the second subscript refers to the input 
end of the synapse to which the weight refers. Unlike 
the weight of a synapse in the brain, the synaptic 
weight of an artificial neuron may lie in a range that 
includes negative as well as positive values. 

 An adder for summing the input signals, weighted by 
the respective synaptic strengths of the neuron; the 
operations described here constitute a linear combiner. 

 An activation function for limiting the amplitude of the 
output of a neuron. The activation function is also 
referred to as a squashing function, in that it squashes 
(limits) the permissible amplitude range of the output 
signal to some finite value. 
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The neural model of Figure 1 also includes an externally 
applied bias, denoted by bk. Bias bk has the effect of 
increasing or lowering the net input of the activation 
function, depending on whether it is positive or negative.  

 
Fig.1. Nonlinear model of a neuron 
 

In mathematical terms, we may describe neuron k 
depicted in Figure 1 by writing the pair of equations [11]: 
 

(1)  j

m

j
kjk xwv 




1
  

and 

(2)   kkk bvy    
 

where: x1, x2, ..., xm – input signals; wk1, wk2, ..., wkm – 
respective synaptic weights of neuron k; vk – linear 
combiner output due to the input signals; bk – bias; φ(·) – 
activation function; yk – output signal of the neuron. 
 

Source data 
Data on electricity production taken from the website of 

the Australian energy market was used as a source of 
preliminary data for the training of the neural network. 

The data is a time series for the generation of electricity 
by various wind-powered generating plants in Australia with 
a discreteness of 5 minutes for 2018 (about 105 000 
values). The data obtained from 195 MW wind farm in 
Portland was used in the study. This choice is due to the 
rather close (16 km) location of the weather station at the 
Portland airport (Fig. 2), and it was data freely available for 
research. In preparation, the data was reduced to the 
discreteness of 1 hour. 

 

 
 

Fig.2. The relative position of the wind farm and the meteorological 
station in Portland (Australia) 

 

The archive of the meteorological data obtained from 
the meteorological station located at the Portland airport 
[14] includes data on time, temperature, air pressure, wind 
speed and direction, as well as pressure trends (Fig. 3). 

The time data is presented in fractions of the whole 
value of the day (24 hours is 1) for the ease of use in the 
neural network. The wind direction data for the training of 
neural networks is presented as 0.01 part of the wind rose 
angle (for example, north wind - 0, east - 0.9, south - 1.8). 
The rest of the data was accepted unchanged. 
 

 
Fig.3. The block diagram of the source data for the neural network 
training  
 

Creation and training of neuron networks 
To predict the power generation via meteorological data, 

a neural network with the following variables was 
established (the selection of the variables was based on the 
fact that they provide high speed and quality prediction 
selected for different configurations): 
 Number of layers – 2; 
 Function of the first layer activation: Log–sigmoid; 
 Function of the second layer activation: Linear; 
 Training algorithm – Bayesian regularization back 

propagation. 
The number of neurons N was selected empirically [9], 

based on the following ratio: 
 

(3)   3 INNN   
 

where NIN – number of inputs (in the analysed case NIN = 6). 
 

A simplified model of a neuron network created in the 
MATLAB program using the Neural Network Toolbox 
package [15] is presented in Figure 4. 

 

 
 

Fig.4. A simplified structure of a neuron network for forecasting 
electricity generation by wind farms 

 
The performance graph (Fig.5) indicates the iteration at 

which the validation performance reached a minimum. The 
training continued for 6 more iterations before it was 
stopped. 

 
Fig.5. Performance of neural network 

In the analysed case, the figure does not indicate any 
major problems with the training. The validation and test 
curves are very similar. If the test curve had increased 
significantly before the validation curve increased, it would 
have been possible for some overfitting to have occurred. 
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The next step in validating the network is to create a 
regression plot which shows the relationship between the 
outputs of the network and the targets (Figure 6). If the 
training were perfect, the network outputs and the targets 
would be exactly equal, but the relationship is rarely perfect 
in practice. 

The dashed line in each plot represents the perfect 
result – outputs = targets. The solid line represents the best 
fit linear regression line between outputs and targets. The R 
value is an indication of the relationship between the 
outputs and targets. If R = 1, this indicates that there is an 
exact linear relationship between outputs and targets. If R is 
close to zero, there is no linear relationship between 
outputs and targets. For this example, the training data 
indicates a good fit. The validation and test results also 
show R values close to 0.9. The scatter plot is helpful in 
showing that certain data points have poor fits.  

 
Fig.6. Graphs of training, validation and testing of the neuron 
network 

Figure 7 shows the graph with an example of real (blue) 
and predicted values obtained as a result of the neural 
network operation. Forecasting was carried out during 
training on different volumes of data sets (1500–5500 
values). 

The forecasting was carried out 100 hours ahead, then 
the values were compared with the actual 100 values that 
were previously received from the Australian grid operator. 

 

 
 
Fig.7. An example of a forecast of electricity generation in 
comparison with real values 

 

Table 1 shows the average generation power forecast 
errors for wind-powered generating plants. The following 
equation was used to calculate them: 

 

(4)   realpredn PPErr    

where: Err is the error value, MW; Ppred is the predicted 
value of the generation power, MW; Preal is the real value of 
the generation power, MW. 
 

Next, for each element in the error vector, the error 
value is calculated as a percentage: 

 

(5)   100







P
Err

ErrPer n
n   

 

where: ErrPer – is the error value, %; P – is the installed 
capacity of the wind-powered generating plant, MW. 

 

To get the final result of the average vector error as a 
percentage, the following equation was used: 

(6)   
N

ErrPer
MeanErrPer

N

n
n

 1  

 

where MeanErrPer – is the average error value, %; N – is 
the number of predicted values of electricity generation. 

 

The comparison of the average errors when using 
different ranges of data sets is given in Table 1:   

 
Table 1. Comparison of the values of the mean forecast errors  

Number of 
experiment 1 2 3 4 5 
Data range 

from 
dataset

1…1500 1…2500 1…3500 1…4500 1…5500 

Mean 
error, % 14.3 1.15 –2.46 1.34 4.91 

 

Conclusion 
The use of neural networks to predict the generation of 

electricity from wind-powered generating plants, including 
private ones of low power, provides an accurate forecast (1-
2% average error).  

It is possible to obtain an accurate forecast using 
conventional meteorological weather forecast data just for 
private small wind farms without meteorological stations 
(data on temperature, air pressure, and most importantly, 
wind speed and direction) as the initial data. 

When the forecasting uses neural networks, it is 
necessary to take into account the requirements for the 
quality of the initial data and its volume. For example, when 
using a sample of data of 1500 values for training a neural 
network, an average error of 14.3% was obtained, and 
when a sample of 2500 values was used, it was 1.15% 
(Table 1).  

At the same time, the error value increased to 4.91% 
with too large a sample (5500 values), which is caused by 
over-generalization for the time series.  

Therefore, the objective is to find a compromise for the 
sample size for training the network. This forecast can also 
be used by operators of distributed generation power 
systems to assess the impact of weather conditions on the 
power generation capacity by prosumers and more 
accurately balance power flows to achieve the most 
economical power system operation mode. 
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