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Optimal controller design for a birotor helicopter   
 
 

Abstract. Robust control problem for a two degree of freedom (2-DOF) lab helicopter is investigated. The helicopter dynamics involves nonlinearity, 
uncertainties, and coupling. A new high performance bounded (HPB) linear quadratic regulator control law has been presented that extends 
classical LQR by providing faster settling times, eigenstructure to optimize its performance, and has much quicker computation times than classical 
LQR. The robust compensator is designed to restrain the effects of uncertainties, nonlinear properties, and disturbances.  
The simulation results on the 2-DOF lab helicopter demonstrate the effectiveness of the proposed control strategy. 
 
Streszczenie. Zbadano problem solidnego sterowania helikopterem laboratoryjnym o dwóch stopniach swobody (2-DOF). Dynamika helikoptera 
obejmuje nieliniowość, niepewności i sprzężenie. Przedstawiono nowe prawo sterowania liniowym regulatorem kwadratowym o wysokiej wydajności 
(HPB), które rozszerza klasyczną LQR, zapewniając szybsze czasy ustalania, strukturę własną w celu optymalizacji jego działania i ma znacznie 
szybsze czasy obliczeń niż klasyczne LQR. Wytrzymały kompensator jest przeznaczony do ograniczania skutków niepewności, właściwości 
nieliniowych i zakłóceń. Wyniki symulacji na śmigłowcu laboratoryjnym 2-DOF pokazują skuteczność proponowanej strategii kontroli. (Optymalna 
konstrukcja kontrolera dla dwuwirnikowego helikoptera) 
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Introduction 
 Unmanned helicopters have gained much attention due 
to their versatile functions in remote sensing, surveillance, 
mineral exploration, etc. The difficulties in attitude and 
position controller design for helicopters, in general, stem 
from their particular features, such as nonlinearity, coupling, 
and uncertainties, and have been focused on by many 
researchers during the last two decades. 
Many theoretical techniques were already proposed to 
solve these problems. The article [1]  presents the 
techniques of the modal control, and in [2],[6]), we find the 
Gaussian quadratic linear LQG/LTR control, the control by 
fuzzy logic and in [3] a non-linear H∞ approach used for 
handling the system coupling considering it as a 
disturbance that should be rejected. In [4] it is considered a 
sliding mode control by defining a sliding surface.  
In recent years the interest for robust methods has 
increased. LQR is a collection of methods that try to tackle 
the challenging problem of nonlinear control in a divide and 
conquer manner. 
Recently, [5] proposed a new weights selection method 
called ZED (ZEro addition Decoupling method) which yields 
desirable closed-loop responses. The method is based on 
asymptotic modal properties of multivariable LQR a control 
weights tend to zero, and it is more practical than the 
inverse LQ method [6] which is a practical method to design 
LQR with desired closed-loop properties.[7] presented a 
new way of pole placement in the LQR via selecting 
weighting matrices which gives desired closed-loop 
locations. One feature of the proposed method is that the 
weighting matrix is obtained by solving differential equations 
which are derived from the characteristic equation of a 
Hamilton matrix, and has  a diagonal form. 
A new control system design algorithm which has the 
advantages of the existing LQR and the conventional 
eigenstructure assignment scheme is proposed here. The 
method of a transformation via block controller is utilized to 
develop the scheme. 
To illustrate this idea, the control of flight simulator is 
studied. Which in a first stage, we present the formulation of 
the model for the study of the dynamics of the system. 
 
System Modeling 
To develop the dynamic model we used a direct method 
based on the calculation of the forces acting on the body of 

the simulator [8]. 
The non-linear model results in a set of six non-linear 
differential equations. 
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where: 
h/v- is the azimuth /pitch angle of beam (horizontal/vertical 
plaen) 
Jtr/mr – is the movement of inertia in motor tail/main propeller 
subsystem 
Kah/ h/ - is the torque constant of the tail main motor 
uh/ - is the input voltage of the tail/main motor 
J - is the moment of inertia about the horizontal ax 
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mms, mts – are the masses of the main and tail shields 
mm, mt – are the masses of the main and tail parts of the 
beam 
mmr, mtr – are the masses of the main and tail DC motor with main 
and tail rotor 
mb, lb -  are the mass and the length of the counter weight beam 
mcb, lcb – represent the mass of the counter weight and the 
distance between the counter weight and the joint 
rms, rts – are the radius of the main and tail shield 
h/ - is the angular velocity around the vertical/horizontal axis 
h/ - is the rotational velocity of the tail/main motor 
 

The nonlinear functions fi into account the frictions and 
coupling effects between horizontal/vertical dynamics, are 
defined as follows: 
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Controller Conception 
 The conventional LQR problem is to find the optimal 
control input u that minimizes the following cost function 
under the constraints of positive semidefinite symmetric Q 
and positive definite R matrices [13-14-15] 
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The gain matrix 
1 TK R B P of LQR can be 

obtained by solving the following matrix Riccati equation 
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If closed-loop eigenstructure information is given, 
however, the gain matrix can be calculated using it [13]. Let 

Ac be the closed-loop system matrix, 

then
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From the above equation, if the 
rank of control input matrix B is N, the solution of the matrix 

Riccati equation is obtained by    11 T
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in order to overcome the rank deficiency problem of the 
control input matrix B, by 
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where Im and 0 denote the (m × m)-dimensional identity 
matrix and (N - m)×m-dimesional zero matrix, respectively. 
The transformation can be achieved by using the following 
transformation matrix 
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Then, the given open-loop system can be transformed as 
follows: 
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the gain and weighting matrices for the transformed system 
should be inversely transformed to those of the original one, 
respectively 
Consider (16) the resulting closed-loop system becomes: 

 x A B K x   

            
Design Algorithm  
 The entire procedure for the proposed algorithm is 
summarized below. 
Step 1: The given system is transformed into the following 
block controller form using the transformation matrix T 
mentioned in Section II as follows: 
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Step 2: Determine the desired eigenvalues ( i ) and 

corresponding right eigenvectors  d
i .  

Step 3: Find the following matrices  
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Where the columns of the matrix R
i
 , form a basis for the 

null space of 
i

S  . 

Step 4: Construct the augmented achievable right modal 

matrix a
aug . 

Step 5: Determine the coefficient vector iP  which yields 

the desirable right modal matrix d  in Step 2 and the 
augmented achievable right modal matrix in step 4. 

Step 6: Construct the achievable right modal matrix a  

(21)                             a a
aug P    
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Step 7: Calculate vector chains and construct the matrix 
Was follows: 

(22)                        1,..., ,..., .
i
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Step 8: Calculate the state feedback gain matrix which 

yields the achievable right modal matrix a and matrix W 
satisfying following equation: 
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Step 9 Construct the following blocked unique solution P of 
the algebraic Riccati equation: 
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Step 10: Calculate each block of the weighting matrix Q 
using the obtained P matrix in Step9. 
Step 11: Check the result of the previous step whether the 
matrix Q satisfies the conditions or not. If it is not satisfied, 
try again Step 10 with another T. If it is satisfied, go to the 
next step. 
Step12: the gain and weighting matrices for the original 
system are obtained by the following relations:  
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The system under consideration is a linearized two-input 
third-order continuous controllable system as follows:  
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 The eigenvalues of the open-loop system 
are  2 , 2o p en i    .  

Let the desired eigenvalues of the closed-loop system 
be    1 2 3, , 3 , 4 , 1d        . The desired right 

modal matrix d and its normalized form d
nor are 

selected arbitrarily as follows: 
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According to the design procedure of the proposed 
algorithm, the achievable normalized right modal 

matrix d
nor can be achieved in the least-square sense as 

follows: 
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However the desired closed-loop eigenvalues are assigned 
exactly.  
The feedback gain matrix K and the weighting matrices Q 
and R can be obtained as follows: 
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Simulation Results 
 The controller is applied to the model of the helicopter 
platform obtained as shown in section II, to control the 
elevation and azimuth trajectory. 
 The following results obtained by delivering a step of 
0.48 rad for elevation, for azimuth we applied a step of 0.6 
rad (fig 1).  
Disturbance of magnitude -0.05 rad to the control input u(t) 
at t = 50s for robustness test. 
 

 

 
 

Fig.1. (a, b) show the elevation and azimuth behavior with the 
above mentioned controller, 
 
In fig. 2 square reference in elevation and Azimuth 
simulations of closed loop performance, with initial values 
θh(0) = 0 rad and θv(0) = -0.45 rad  
 

 

 
Fig.2. (a, b) square reference for the elevation and azimuth 
behavior with the above mentioned controller 
 

A sinusoidal reference in elevation and Azimuth 
simulations of closed loop, with amplitude = 0.45 rad, 
frequency= 0.05 hertz for elevation and amplitude = 0.25 
rad, frequency=0.1 hertz for azmuth, the initial conditions 
are: 

 h(0)=0,v(0)=-0.45rad. 
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It should be noted that the controller presented here can 
stabilize the system to a change of reference, and improve 
system performance and robustness in the presence of the 
disturbance and time-varying uncertainty. 
 

 

 
Fig.3. (a, b) Sinusoidal response for the elevation and azimuth with 
the above mentioned controller, 
 
Conclusion  
 In this paper, we proposed a new LQR design algorithm, 
which guarantees that the desired eigenvalues are 
assigned exactly, and corresponding desired eigenvectors 
are assigned in the least square sense according to the 
conditions of the given system. Simulation results show the 
effectiveness and performance of the proposed controller 
even under disturbance and the cross coupling. 
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