Efficient Terrestrial Digital Video Broadcasting Receivers Based on OFDM Techniques

Introduction

Nowadays the market of digital television becomes straight-up technology and the broadcasting borrowed the locate pinnacle boxes to the customer as a fraction of payment conformity [1, 2, 3]. The specifications of receivers are forbidden by broadcasting in an existing market and select middleware for organization requests on these receivers [4, 5]. Consequently, satisfied providers might contain to author their application when they need to sell content with special broadcasting [6, 7, 8]. Hence, the open standards permit to purchase the handset as of any store and guess it to employment with some broadcast. Furthermore, the developer of content sells their satisfaction with no have re-authored it and the receiver manufacturer have a wide selection of middleware providers [9, 10, 11]. The standards of DVB-T involved state-of-the-art technology allowing highly capable use of the earthly range with higher data rate [12, 13, 14]. These innovations contribute to an improved routine which provides enormous elasticity to operators opening with a wide diversity of new business models [15, 16, 17]. The mechanism of multiple physical layer pipes permits too many modulation techniques and robustness for different services and transmits at the same time multiple frequencies such as OFDM [7]. For future broadband wireless communication, the OFDM scheme is promising to apply in this technology [18, 19, 20]. The powerful channel estimation is required for a coherent scheme as in DVBT (digital video broadcasting terrestrial) [21, 22, 23]. The estimation should adapt to the current state to provide optimum performance in the channel estimator [24, 25, 26]. The user speed is the main parameter for a channel in the range from zero to 360 which affects the correlation function used in the channel estimator [27, 28, 29]. An adaptive channel estimator with small computational effort in the mobile systems using OFDM has been proposed by [30-46]. The algorithm of adaption the length of guard interval too short length based on current channel impulse response has been suggested by [47-50] with low accuracy and without guard interval. A filter adoption algorithm based on different vectors of channel transfer functions was introduced by [51]. The simplified block diagram of DVB-T signal production is illustrated in Figure 1 which consists of DVB-T coding block, QAM, pilot insertion, and IFFT with cyclic prefix insertion blocks [44-45].

![Figure 1: DVB-T signal generation](image)

In any digital TV system, the DVB-T coding block is important to provide the following steps [45]:

- MPEG2 transport stream generation
- Scrambling
- Interleaving and outer coding
- Interleaving and inner coding

The signal constellation type is used in DVB-T system QPSK, 16QAM, and 64QAM [44]. In hierarchical transmission mode, the nonuniform 16QAM and 64QAM are suitable schemes in these modes [51]. The received byte is a suitable scheme in these modes [51]. The received byte streams are divided into appropriate blocks of bits as 2, 4, 6 bits by QAM mapping scheme block which maps them into corresponding complex symbols depend on the type of constellations [52]. To carry the data on all transmission parameters, the pilot carrier is used in each symbol with redundancy duration. This redundancy provides strong robustness against channel fading effects and is useful for the synchronization stage [53-55]. The scatter plot's purpose is to show the position changes from symbol to symbol as similar to continual pilots. The power spectrum of OFDM scheme showing in Figure 2 represents the multi-carrier modulation in discrete domain using IFFT [56-57].
DVB-T System Design

The terrestrial digital video broadcasting-based OFDM scheme has been designed and modeled using a SIMULINK block set in MATLAB environments. Figure 3 shows the OFDM transceiver includes data input signal generation, transmitter, channel, and receivers. This model illustrates minimum performance requirements under AWGN channel effects. The functional block set of the suggested design is to compensate for the QAM transmission based on 16 arrays in modulation and demodulation techniques. The generated error statistics are assisted to determine the model algorithms and satisfying the requirements of system performance. In this model, floating-point values of each parameter were used as an ideal case. The eye and constellation scope has been used to display the model results.

DVB-T Receiver Model

The design of DVB-T receiver's dose is not specified in standards as well about how to implement, even though some inverse operation such as the clearly defined of de-interleaving. The suggested model shows the possible design of this type of receiver based on 64-QAM de-mapped to make soft decisions. A set of 6 real numbers for every complex number is used as input data which represents the imaginary and real components. The subsystem of the Viterbi decoder represents the soft decision to use them in decode of perforate convolution code correctly. To evaluate and test the exact mapping, the DVB-T-based 64-QAM de-mapped subsystem showing in Figure 4 was modeled in MATLAB.

Delay Calculation

The traceback depth of 136 has been chosen in the block of the Viterbi decoder within the top-level design. The de-interleaved and interleaved sections consist of the following frame size with corresponding delay and re-buffering, 2176 with 756 delays. 756 with 9072 delays, 2176 with 2176 delays respectively. The resulting delay of the 12004 samples is the input frame size to the Viterbi decoder mode. The mode of 12004 and 2176 in the Viterbi decoder resulting in 1124 delays corresponding to 1124x3/4=843 samples because of the coding rate of 3/4. The convolution and de-convolution interleaved with 12 rows in the shift register add another delay of about 11 frames which introduces a received delay for outer error rate calculation of about 17 frames. Figure 5, Figure 6, and Figure 7 show the de-interleaved, Viterbi decoder, and convolution de-interleaved respectively.

Model Results

The sink blocks in the communication block set have been used to display and examine the model performance under AWGN effects. Figure 8 shows the spectrum analyzer of DVB-T waveforms and Figure 9 illustrates the scatter plot of transmit symbol. The original form of soft computing decisions according to subsystem-based implementation of quadrature and in-phase signals components are extracted after properly scaling the received waveforms. These waveforms were shifted to get a soft decision for many bits. The built-in rectangular QAM demodulator in the alternative form is configured to calculate the correct bitwise log-likelihood ratio under noise variance. This variation of noise is used to provide and calculate the received waveforms.
Conclusion

This paper deals with the DVB-T transmission process which focuses on the receiver section based on the OFDM scheme in this system. The power spectral density estimation of the reception signal has been investigated and examine under noise effects. The frequency and time domain of every stage is plotted by spectrum analyzer and scatter plot blocks. The terrestrial DVB-T networks provide more flexibility, efficiency, and robustness in terms of power consumption, bandwidth, and network coverage to lunch new promising services. The delay system is used to synchronize the receiver waveform with transmitting signals and BER is measured. Extra tuning and development were required by future studies to provide better performances that assist the new versions of DVB broadcasting technology.

Authors: Nazar Jabbar Aliyani, Email: nazar.jabar@duc.edu.iq; Oday Kamli Hamid, Email: oday.kaml@duc.edu.iq; Sarah yahia Ali, Email: sarah.yahia@duc.edu.iq; Ayman Mohammed Ibrahim, Email: ayman971972@yahoo.com.

REFERENCES


