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Design of a high directive sensor for microwave imaging 
application 

 
 

Abstract. This paper presents a compact uniplanar Vivaldi antenna sensor for microwave imaging. It is ideal for microwave imaging systems with its 
large bandwidth and end-fire radiation performance. The Vivaldi patches integrate a coplanar waveguide (CPW) feed line, ensuring the entire 
structure is compact and simple. Reflection coefficient, radiation pattern, gain, efficiency, and directivity were the antenna parameters analyzed to 
determine the Vivaldi antenna's performance. The bandwidth of the antenna sensor is wider, approximately 5 GHz (3-8 GHz).  The gain of the 
antenna is 6.72 dBi, and the directivity is 9.59 dBi. 
 
Streszczenie. W artykule przedstawiono kompaktowy jednopłaszczyznowy czujnik antenowy Vivaldiego do obrazowania mikrofalowego. Jest 
idealny do systemów obrazowania mikrofalowego dzięki dużej szerokości pasma i wydajności promieniowania końcowego. Łaty Vivaldi integrują 
współpłaszczyznową linię zasilającą falowodu (CPW), zapewniając, że cała konstrukcja jest zwarta i prosta. Współczynnik odbicia, charakterystyka 
promieniowania, wzmocnienie, wydajność i kierunkowość były parametrami anteny analizowanymi w celu określenia wydajności anteny Vivaldi. 
Szerokość pasma czujnika anteny jest szersza, około 5 GHz (3-8 GHz). Zysk anteny wynosi 6,72 dBi, a kierunkowość 9,59 dBi. (Projekt czujnika o 
wysokiej kierunkowości do aplikacji obrazowania mikrofalowego) 
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Introduction 
Microwave imaging introduces a complementary fast and 
non-ionizing method to the existing techniques such as X-
ray, mammography, ultrasound, Computed Tomography 
(CT) scan, and Magnetic Resonance Imaging (MRI) that are 
either expensive and bulky or based on ionizing radiations. 
As a consequence of mammography using ionizing 
radiation, painful breast compression is required during the 
breast examination. Furthermore, mammography ionization 
has many side effects that paradoxically risk malignancy in 
healthy cells. Besides, deep cancer cells are difficult to 
identify. Magnetic Resonance Imaging (MRI) produces 
high-resolution images. The cost of an MRI machine is also 
exorbitant [1]. Physicians are currently using the computed 
tomography (CT) and MRI as stroke detection devices. The 
CT will confirm the stroke diagnosis and inform whether a 
brain hemorrhage causes the stroke. MRI is used to detect 
and locate the stroke’s site and source. An ischemic stroke 
can be easily detected. However, these two tools are 
expensive and not always available [2]. Both are massive 
and cannot be transported by paramedic teams as the first 
responder. Microwave imaging can be replicated better than 
conventional systems since it is free of ionizing radiation 
compared to existing imaging systems. Recently, 
microwave imaging technologies have found applications in 
significantly different sub-surface sensing medical imaging, 
non-destructive testing and evaluation (NDT&E), and 
security screening system. Disadvantages and limitations of 
existing detection techniques motivated researchers to 
investigate and develop new microwave-based imaging 
techniques. Three configurations were explored for 
microwave imaging based on the radar-based technique. 
The configurations of the three radar-based techniques are 
monostatic, bistatic, and multistatic.  
 A monostatic configuration is a single antenna in which 
a transmitter (Tx) and a receiver (Rx) are collocated [3]. The 
receiver can collect the information from the transmission or 
reflection signal. This configuration only depends on the 
reflected signal and covers a small section area if the 
antenna's position is static. However, the antenna can be 
non-static where it displaces the circularly cover area and 
sends more data within the operating frequency band to the 
receiver [4]. This approach aims to use backscattering 
signals to produce images that detect the presence of an 

embedded object recorded at 144 different angular 
positions [5]. The monostatic configuration can also cover 
all areas if the object is rotated when the antenna is fixed 
position [6]. Within this movement, the data was 
automatically acquired at 44 locations [7]. The other pro-
posed antenna moves along the object to scan all areas [8].  
 Next, the bistatic configuration has two antennas, where 
the positions of Tx and Rx are separated by a distance 
comparable to the expected target distance [9]. This 
configuration is static and only covers one cross-section 
area. The receiver can collect the information from the 
transmission or reflection signal. The antennas are placed 
face to face at a distance and in a static position, and the 
breast phantom rotates at 120 equivalence point with a 3-
degree of separation [10]. Hence, [11] presented the non-
static configuration for both antennas that can move 
independently on their track by rotating at 24 x 19 data 
collection. However, [12] showed only Rx moves while Tx is 
static where the target data are collected for 26 evenly 
spaced receiving antenna points. Some of these 
configurations used either reflection [13] or transmission 
[14], and others used the combination of transmission and 
reflection [11] for data collection. Both configurations for 
monostatic and bistatic can also cover all areas if the 
antenna or the object is rotating, but it is time-consuming. 
This setback can be eliminated if the multistatic 
configuration is utilized.  
 Multistatic configuration means having more than two 
antennas [15], and it has three approaches. Some of these 
multistatic configurations use a static or non-static antenna. 
The first approach is monostatic where it uses reflection 
[16]. It is used in one antenna for Tx and Rx and applied to 
other antennas. The second approach is bistatic, in which 
the transmission between antenna 1 and 2 occurs while the 
electric field is transmitted through the object [17]. Antenna 
1 or 2 can serve as a transmitter, while the other antenna 
should be used as a receiver.  

Subsequently, the third approach is multistatic; it can be 
a single Tx and multiple RX, multiple Tx and single Tx, or 
multiple Tx and multiple RX configurations. For this 
configuration, the static antenna position is most used. The 
transmission used in this multistatic configuration is either 
transmission or reflection, but others used the combination 
of transmission and reflection. [18] presented 16 antennas 
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in static positions with array configurations (regular cross, 
regular ring, asymmetrical regular, and asymmetrical 
irregular). The proposed array has 16 static antennas [19] 
where one is the TX and other antennas act as the RX and 
collect 240 multistatic signals. [20] put forward 20 elements 
array antenna in a static position and proposed using a 
reflection coefficient in the array configuration.  
 Antenna sensors play a vital role in microwave imaging 
systems, where the antenna serves as a transmitting and 
receiving sensor. A microwave imaging system involves 
transmitting microwave signals through the objects and 
receiving the scattered signals from different locations. The 
technique can detect and locate abnormalities inside the 
object from the reflected and scattered signals of the object. 
Eventually, through the advancement of technology, the 
criteria for success are modifications for optimal imaging 
results. Antenna sensors with high gain, directive design, 
and higher efficiency are required for microwave imaging 
applications. Various types of antenna sensors have been 
proposed for microwave imaging applications, namely horn 
[21], slotted patch [22], bowtie antenna [3], coplanar 
waveguide CPW  , and Vivaldi. Several design use 
monopole for enhance the performance of the antenna to 
get the UWB frequency range [24]–[26] and other some use 
CPW for compact antenna [27]. In this case, the Vivaldi 
antenna sensor is an ideal candidate for its high directive 
radiation patterns, compact size, and higher gain due to the 
antenna sensor performance from other researchers in a 
microwave imaging application. The Vivaldi tapered slot 
antenna has received considerable publicity since Gibson 
first offered it in 1979 [28].  
 A Vivaldi antenna can be designed with several 
techniques to enhance the performance of gain, directive 
radiation pattern, and directivity of the sensor with the 
dielectric lens in hemisphere-loaded [29], a palm tree , 
corrugated Vivaldi [4], irregular slot [10], metamaterial [30], 
and elliptical parasitic element [31]. A regular triangular slit 
(RTS) [8] and exponentially tapered arms [1] in antipodal 
Vivaldi antenna (AVA) have been used in the past. Due to 
its wide range of applications, the Vivaldi antenna has 
always been a research interest and studied to improve 
output parameters, such as bandwidth, radiation pattern, 
gain, and directivity. Recently, the Vivaldi antenna is mostly 
used in microwave imaging applications to enhance the 
performance of the antenna. 
 In this paper, a coplanar Vivaldi antenna sensor is 
proposed for a microwave imaging application. The antenna 
operated in the frequency bandwidth of 3-8 GHz. The 
antenna sensor is fabricated, and the results of the 
reflection coefficient, radiation pattern, gain, and directivity 
are compared between the measured and simulated results 
of the proposed antenna. 
 

Antenna design 
The antenna is mainly composed of a CPW feed with two 
Vivaldi patches [32]. The material is FR-4 substrate with 

dielectric constant ԑr=3.3. It has a copper thickness of h = 
0.6 mm. The length of the embedded CPW feed is (Lo), the 
width of the feed line is (Fw), length aperture (La), and the 
gap between the ground and the feed line is (g2) to ensure 
impedance matching as depicted in Figure 1. The entire 
setup is symmetric, which means (g1) is in the center of the 
patch and (g2) is in the right patch's center. The gap of 
Vivaldi for parameters is (g1).  
 The length (L) and width (W) of the antenna can be 
calculated by using equation (1) and (2) below [33], where 

(c) is the speed of light, and ሺ࢘ࢿሻ is a relative permittivity. 
Tapered slot antennas have an exponential rate as defined 
in equation (3), and the mouth opening rate can be found 

via formula (4). 
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Fig.1. Design structure of the purposed antenna (a) front view and 
(b) back view (c) the fabricate of the purposed antenna 
 

Table 1: Dimensions of all the parameters 
Parameter Value [mm] 

L 61.03 
W 50 
Lo 20 
g1 1.3 
g2 0.54 
Fw 2 

  

The simulation study was performed using Microwave 
Studio Computer Simulation Technology (CST) tools. Some 
optimizations were accomplished during this modelling by 
adjusting the antenna width and length and tapered slot 
size parameter values. All parameters of the antenna 
dimensions are tabulated in Table 1.    
 

Result 
The fabricated prototype was measured using a Vector 

Network Analyzer (VNA). The simulated and measured 
return loss performance is shown in Figure 2. However, a 
small shift can be seen at the resonant frequency of the 
antenna. Reflection coefficient, S11 is below −10 dB over 
the antenna bandwidth of about 3–7.19 GHz in the 
simulation and 3–7.28 GHz in the measurement. The 
minimum reflection coefficient is -28.9 dB at 6.78 GHz in the 
simulation and 3.78 GHz in the measurement. The resonant 
frequency shifted to the right from 5.3 GHz in the 
measurement and to 5.7 GHz in the simulation. The 
difference is due to the lowest reflection coefficient changes 
from -20 dB in the simulation to -28.9 dB in the 
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measurement at 3.7 GHz and -18.9 dB in the measurement 
and to -28.9 dB in the simulation at 6.78 GHz. 

 
 
Fig.2. Reflection coefficient for the measurement and simulation 
result  

 

a) 

 
b) 

 
c) 

 
 
Fig.3. Simulated and measurement radiation patterns of the 
antenna in Phi=0° and Phi=90° planes respectively at (a) 3.7 GHz, 
b) 5.5 GHz and (c) 6.7 GHz 
 

The far-field radiation characteristics of the antenna are 
at phi=0° and phi=90°. These antennas show the directional 
type of radiation pattern for 3.7 GHz, 5.5 GHz, and 6.7 GHz, 
as depicted in Figure 3.  At the lower frequency, the large 
main lobe can be seen at 0°. However, when the frequency 
increases at 5.5 GHz, the main lobe becomes smaller. The 
side lobes are found in the radiation pattern when the 
frequency increases. It can be seen from the radiation 
pattern, 3 dB beamwidth decreases from 168.9° to 106.5° at 
phi=0°, and from 86.8° to 42° at phi=90°. The antenna 
performance for gain, directivity, efficiency, half-power 
beamwidth (HPBW), and first null beamwidth (FNBW) are 
tabulated in Table 2. It is evident the HPBW of the antenna 
at phi=0° is reduced from 168.9° to 106.5°, and at phi=90° 
is reduced from 86.8° to 42°. The FNBW of the antenna is 
reduced at phi=0° from 84.45° to 53.25°, and at phi=90° is 
reduced from 43.4° to 21°. 
 

 
 

Fig.4. Simulation and measurement gain of the purposed antenna 
 

 
 

Fig.5. Simulation and measurement directivity of the purposed 
antenna 
 

The maximum gain of the simulation is 5.61 dBi at 6.5 
GHz and 6.72 dBi at 5 GHz for the measurement. The 
lowest gain is 3.7 dBi at 3 GHz in the simulation and a lower 
gain is 3.82 dBi at 3 GHz in the measurement. Furthermore, 
the gain remained over 3.5 dBi above 3-8 GHz for the 
simulation, as shown in Figure 4. The maximum directivity 
is 6.55 dBi at 6.6 GHz and the lowest directivity is 4.4 dBi at 
3 GHz in the simulation, as depicted in Figure 5. The 
measurement results exhibit the maximum directivity of 9.59 
dBi at 5.1 GHz, and the lowest directivity is 5.8 dBi at 3 
GHz. The antenna's efficiency is less than 90% at 5.5 GHz 
and 6.7 GHz, as tabulated in Table 3. However, the 
antenna efficiency exceeds 90% at a lower frequency of 3.7 
GHz (91.93%). 
 

Table 3: Gain, directivity and the efficiency of the antenna 

Frequency, 
GHz 

Gain (dBi) Directivity(dBi) Efficiency, 
% Sim Mea Sim Mea 

323.7 4.89 5.54 5.33 7.48 91.93 

5.5 5.14 5.9 5.77 9.17 89.25 

6.7 5.6 4.9 6.54 6.92 86.39 
Sim= simulation, Mea= measurement  
 

Conclusion 
 In this paper, a compact CPW of the Vivaldi antenna is 
presented. The overall dimension of the proposed antenna 
is 61.03 mm×50 mm. The antenna prototype is achieved 
with a −10 dB wider bandwidth from the frequency range of 
3–7.28 GHz (83.33%) in the operating band. The measured 
results evidently showed that the antenna could reach a 
maximum gain of approximately 6.72 dBi and maximum 
directivity at 9.59 dBi. In a nutshell, the proposed antenna 
sensor can be used for microwave imaging applications.  
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